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Abstract: Most of the literature on denoising focuses on the additive-white-gaussian-noise (AWGN) model. However, 
in many important applicative fields, images are typically affected by non-Gaussian and/or colored noise, in 
which cases AWGN-based techniques fall much short of their promises. In this paper, we propose a new 
denoising technique for correlated noise based on the non-local approach. We start from the well-known 
BM3D algorithm, which can be considered to be the state of the art in AWGN denoising, and modify it in 
various critical steps in order to take into account the non-whiteness of noise. Experimental results on 
several test images corrupted by correlated noise confirm the potential of the proposed technique. 

1 INTRODUCTION 

The noise is an unpredictable perturbation which 
disturbs a signal causing random fluctuations of the 
observed variables. Generally speaking, it is an issue 
of considerable importance in any acquiring and 
processing data system, especially imaging 
techniques. The scientific literature offers a plethora 
of denoising functions often included in commercial 
software as tools to support and simplify the 
extraction of significant information from noisy 
images. 

In fact, image denoising has been the object of 
intense research from the very beginning of the 
digital era, with tremendous performance 
improvements over the years, especially with the 
advent of wavelet-domain shrinkage techniques 
originally proposed by Donoho and Johnstone 
(1994). Nonetheless, this “mature” field has seen yet 
another big leap forward in recent years with the 
introduction of the non-local filtering concept, first 
formalized in the non-local means (NLM) algorithm 
proposed by Buades, Coll and Morel (2005).  

The major breakthrough of NLM consists in 
selecting in a very sensible way the set of pixels 
used to estimate the true value of a target pixel, that 
is, not the pixels closest to the target, but those 
deemed to be the most similar to it. In practice, for 
each target pixel zT of the noisy image z(n), the 
surrounding patch PT is extracted and compared with 
all patches Pi in a given neighborhood of the target. 

The patches that are more similar to the target patch, 
according to a suitable “distance” measure, are 
associated with the most relevant predictor pixels, 
that is 

்ݖ  = ෍ ௜ݓ ௜ (1)ݖ
 

where the weight wi is a decreasing function of the 
distance di= d(PT,Pi).  

The nonlocal approach turns out to be especially 
effective in the presence of edges and textures, when 
patches are well characterized and bring valuable 
information on the pixel context, providing a 
significant performance improvement w.r.t. 
conventional techniques both in the spatial and 
transform domain. Following the success of NLM 
many variations have been proposed, among which 
the block-matching 3d (BM3D) algorithm (Dabov, 
Foi, Katkovnik and Egiazarian, 2007), which 
appears to be the current state of the art in image 
denoising and restoration in general. 

Although a thorough description of BM3D is out 
of the scope of this work, we need to recall here its 
basic steps. The first action taken by BM3D, just 
like in NLM, is to locate similar patches by means of 
block-matching. Unlike in NLM, however, all such 
patches are then collected in a 3D structure which 
undergoes a decorrelating transform (typically 
wavelet) so as to exploit both spatial and contextual 
dependencies. Once a sparse representation is 
obtained, some form of shrinkage is used to remove 
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noise components, before going back in the image 
domain. Since filtered patches can overlap, several 
estimates of the same pixel are typically obtained, 
which are weighted to compute a “basic estimate” ݕො௕௔௦௜௖ of the denoised image. At this point, the noisy 
image z(n) undergoes the denoising process anew, 
with the difference that block-matching takes place 
on the basic estimate ݕො௕௔௦௜௖ of the clean image so as 
to obtain more reliable matches, and wavelet 
shrinkage is replaced by empirical Wiener filtering, 
with statistics computed again on ݕො௕௔௦௜௖. 

Both NLM and BM3D have been proposed in the 
context of AWGN image denoising and, therefore, 
work poorly in all situations where the noise cannot 
be considered Gaussian nor white. Nonetheless, the 
nonlocal approach keeps making full sense, and 
hence there is much interest in adapting the basic 
algorithms to such new conditions. For example, 
with reference to synthetic aperture radar (SAR) 
images, where the speckle is clearly non-Gaussian 
(actually, not even additive) suitable ad hoc versions 
of NLM and BM3D have been proposed by 
Deledalle, Denis and Tupin (2009) and by Parrilli, 
Poderico, Angelino, and Verdoliva (2011) 
respectively, with very good results.  

The problem of nonlocal image denoising in the 
presence of colored noise has been already 
addressed as well. A version of NLM for colored 
noise (NLM-C) is proposed by Goossens, Luong, 
Pizurica and Philips (2008) where the noise is 
assumed to come from the linear filtering of white 
Gaussian noise. Given the impulse-response of the 
filter, and hence all noise statistics, the Authors 
replace the Euclidean distance, used originally to 
compute the similarity among patches, with the 
Mahalanobis distance which takes the noise 
covariance matrix into account. Alternatively, to 
reduce the computational load, they apply a 
prewhitening linear filter to the noisy image and use 
the resulting image to compute the weights by the 
Euclidean distance. Numerical experiments show 
NLM-C to provide significant improvements, both 
visually and in terms of PSNR, not only over basic 
NLM (called NLM-W in this context) but also w.r.t. 
to some recent wavelet-based denoising techniques 
for colored noise: BLS-GSM (Portilla, Strela, 
Wainwright & Simoncelli, 2003) and MP-GSM 
(Goossens, Pizurica, 2009).  

Also BM3D has been already adapted, by 
Dabov, Foi, Katkovnik and Egiazarian (2008), to the 
case of correlated noise. The Authors observe that 
the decorrelating transform, used before shrinkage, 
outputs coefficients which, due to noise 
nonwhiteness, have variances ߪଶ஽ଶ (݅) that do depend 

on the coefficient index i. This fact is taken into 
account in various phases of the algorithm: by using 
a weighted block distance computed in the transform 
domain; by using a different shrinkage threshold for 
each coefficient; and by aggregating filtered blocks 
based on their expected noise level. 

In this work, based on the above ideas, we 
propose a new version of BM3D for correlated 
noise. We use the basic strategy of the original 
BM3D algorithm because of its strong rationale, but 
modify it in several steps to keep into account the 
actual noise statistics. In particular, we improve the 
block matching by resorting to image prewhitening, 
and the shrinkage (hard thresholding in the first step, 
and Wiener filtering in the second step) by taking 
into account the different noise variances of 
coefficients and improving their estimate. 

2 PROPOSED ALGORITHM 

Since the proposed algorithm is a modification of 
BM3D, we describe and discuss here only the 
differences w.r.t. the original algorithm (Dabov et 
al., 2007). The first and probably most important 
improvement concerns the block matching, based on 
straight Euclidean distance in the original algorithm.  

The ultimate goal of block matching is to find 
out the signal patches that most resemble the signal 
target patch. However, since the clean image is not 
available, at least in the first step, one can only work 
on signal+noise patches. Therefore, it can happen 
that some patches happen to be close to the target 
not because of an actual similarity of signal but as 
the effect of the random patterns of noise. This 
event, relatively uncommon in the AWGN case, can 
become a serious problem in the presence of strong 
correlated noise, when independent noise samples 
are reduced. If the noise is very structured and 
comparable in intensity with the signal it can 
dominate the block matching phase, leading to the 
selection of patches loosely related (in terms of 
signal) with one another and, eventually, to a poor 
performance. Therefore, in nonlocal approaches it is 
very important to counter this problem. To this end, 
we carry out a prewhitening of the noisy image. Let 
z be the observed noisy image, related to the noise-
free image y by 

(݊)ݖ  = (݊)ݕ + ℎ(݊) ∗  (2) (݊)ݑ
 

where u(n) is stationary white noise independent of 
y(n), and h(n) is a linear filter. The prewhitened 
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image zpw(n) is then computed as the inverse 
transform of 

 ܼ௣௪(߱) =  ܼ(߱) 1max(߳, (3) (|(߱)ܪ|
 

where X(߱) indicated discrete Fourier transform of 
x(n), and ε is a small positive constant added to 
ensure stability. The prewhitened image is then used 
to locate the best matching patches, while all other 
processing steps take place on the original image. It 
is worth underlying that this approach is quite 
different from that of Dabov et al. (2008), let us call 
it BM3D-C, where no prewhitening is carried out 
but block similarity is computed in the transform 
domain with a weighted Euclidean distance, with 
smaller weights associated to noisier coefficients to 
reduce their detrimental effects.  

On the contrary, for our second modification, 
concerning coefficient shrinkage, we follow closely 
the approach proposed by Dabov et al. (2008). In 
particular, focusing on the first step of BM3D, we 
carry out hard thresholding using a different 
threshold for each coefficient, proportional to the 
expected variance of noise. In formulas 
,݅)ߣ  ݆) = ߣ ଶ஽(݅) (4)ߪ
 

where i and j are indexes associated with the 2D 
spatial and 1D transforms, respectively, and ߣ is a constant. By so doing, we increase our chances to suppress large coefficients originated exclusively by noise and, at the same time, to keep small coefficients with significant signal contribution. As for the variances, following the model in (2), they can be computed as: 
ଶ஽ଶߪ  (݅) = ଶߪ 

ଵܰଶ ฮ|ܨ|(߱)ܪ൛்߰మವ(௜) ൟฮଶଶ (5)

 

where ߰ మ்ವ(௜)  is the i-th basis element of T2D, F{·} is 
the discrete Fourier transform operator, ߪଶ  is the 
overall noise variance and N1 is the block dimension. 

Our last improvement concerns the empirical 
Wiener filtering in the second step which, just like 
hard thresholding in the first step, can be adapted to 
take into account the actual noise variances of 
coefficients according to  
 ܹ(݅, ݆) = ቚ ଷܶ஽௪௜௘( ௕ܻ௔௦௜௖௭೅ )(݅, ݆)ቚଶ

ห ଷܶ஽௪௜௘( ௕ܻ௔௦௜௖௭೅ )(݅, ݆)หଶ + ଶ஽ଶߪ (݅) (6)

 

where ቚ ଷܶ஽௪௜௘( ௕ܻ௔௦௜௖௭೅ )ቚଶ (݅, ݆) is the energy of the 3D 

transform coefficients of the basic estimate group 
where patches more similar to the target one PT of zT 
are collected.  

(a) Original (b) Noisy 

(c) NLM (d) NLM-C 

(e) BM3D-C (f) Proposed 

Figure 1: Visual results for a crop-outs of House, 
corrupted with correlated noise (σ=30); (a) original image, 
(b) noisy image, (c) NLM filtered image, (d) NLM-C 
filtered image, (e) BM3D-C filtered image, (f) proposed 
technique filtered image. 

Here, we propose to estimate the variances ߪଶ஽ଶ (݅) starting from the basic estimate of the clean 
image, ݕො௕௔௦௜௖, provided by the first step. As a matter 
of facts, BM3D exploits the knowledge of ݕො௕௔௦௜௖ in 
the second step to accomplish several tasks: ݕො௕௔௦௜௖ is 
used to carry out the block matching process, which 
is why prewhitening is not required anymore, and 
also to obtain reliable estimates of signal statistics 
for the Wiener filtering. In the same manner, 
assuming that ݕො௕௔௦௜௖ is a reliable estimate of the 
clean image y, the difference between the noisy 
image and the denoised one: ݒො(݊) = (݊)ݖ − (݊)ො௕௔௦௜௖ݕ ≈  ℎ(݊) ∗ (7) (݊)ݑ

can be assumed to be a good estimate of the actual 
correlated noise. Therefore, by working on this noise 
image we can actually measure the coefficient noise 
variances, in each single group of blocks, rather than 
estimating them according to (5). 

IMPROVED BM3D FOR CORRELATED NOISE REMOVAL

131



 

(a) Original (b) Noisy 

(c) NLM (d) NLM-C 

(e) BM3D-C (f) Proposed 

Figure 2: Visual results for a crop-outs of Flinstone, 
corrupted with correlated noise (σ=40); (a) original image, 
(b) noisy image, (c) NLM filtered image, (d) NLM-C 
filtered image, (e) BM3D-C filtered image, (f) proposed 
technique filtered image. 

3 EXPERIMENTAL RESULTS 

In this Section we describe the results of a limited 
set of experiments chosen to allow a comparison 
with reference techniques and highlight the major 
phenomena of interest. 

In particular, we have simulated four type of 
colored noise: a bandpass noise with σ=30 on 
“House” image (Figure 1), and a line pattern noise 
like that found on analogue video with σ=40 on 
“Flinstones” image (Figure 2), exactly as they 
appear in the work of Goossens et al. (2008). In 
addition, we simulated two other types of colored 
noise, one characterized by a power spectral density 
with circulsar symmetry, as usually found in digital 
pictures, with σ=35 on “House” image (Figure 3) 
and a double line pattern noise with σ=30 again on 
“House” image (Figure 4), as a further test of the 
efficacy of the proposed method. 

Focusing on the numerical results reported in 
Table 1, we note first of all that both NLM and 
BM3D degrade their performance as the noise 
becomes more structured, very likely because of the 
detrimental effects of noise on block matching. 

In almost all cases, BM3D keeps a 2dB edge 
w.r.t. NLM, confirming that the BM3D two-steps 
structure leads to better results. 

Obviously, the colored-noise versions of the 
algorithms, NLM-C and BM3D-C, provide a 
significant gain w.r.t. the basic versions, especially 
for the case of more structured noise. Note that the 
gain of NLM-C over NLM is much stronger than 
that of BM3D-C over BM3D, especially for 
structured noise. 

 

(a) Original (b) Noisy 

(c) NLM-C (d) BM3D-C 

(e) BM3D (f) Proposed 

Figure 3: Visual results for a crop-outs of House, 
corrupted with correlated noise (σ=35); (a) original image, 
(b) noisy image, (c) NLM-C filtered image, (d) BM3D-C 
filtered image, (e) BM3D filtered image, (f) proposed 
technique filtered image. 

This backs up our conjecture that strong 
structured noise very much impairs block matching, 
and that the solution proposed by Dabov et al. 
(2008) for BM3D does not really solve the problem. 
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On the contrary, using the pre-whitened image for 
the block matching, the risk of patch mis-
classifications is reduced. In fact, plain BM3D with 
prewhitening provides already a performance 
comparable or superior to that of BM3D-C, see Table 
1. 

Table 1: PSNR results. 

 
House (σ=35) House (σ=30) 

Flinst. 
(σ=40) 

circular psd band pass stripes stripes 

Noisy 17.25 18.59 18.59 16.09 

NLM 26.68 28.51 26.67 22.51 

BM3D 28.12 30.94 28.91 22.01 

NLM-C 28.11 30.74 32.01 25.44 

BM3D-C 28.77 31.44 30.78 23.63 

BM3D/p.w. 28.50 31.38 31.04 24.23 

Proposed 28.77 31.62 32.26 25.54 

 
Our proposed version of BM3D, which includes 

also improvements in the shrinkage phase and in the 
variance estimation, turns out to work well with all 
types of noise (unlike the reference techniques 
which fail in one or another situations) and provides 
consistently the best performance.  

For example, the performance of NLM-C is good 
on streaked noise, but not so much for granular 
noise, even worse than BM3D developed in AWGN 
hypotheses. This behaviour is probably due to noise 
spectral characteristics. The whitening operation 
before filtering is probably more “invasive” for band 
pass noise than for other types, altering the 
underlying signal characteristics, thereby reducing 
the denoising effectiveness. 

On the contrary, BM3D-C returns better results 
for the band pass noise and only modest results for 
streaked noise. Although suitable estimates of the  
transform coefficient variances are used in block-
matching to reduce the influence of noisier 
coefficients, the particular and repetitive pattern of 
streaked noise strongly influences the block distance 
measure. If the block matching is compromised, the 
remaining filtering part is ineffective. 

Cleverly combining the two approaches and 
exploiting the two-step BM3D structure, the method 
proposed in this work leads to robust results on all 
types of correlated noise simulated. 

The visual inspection of the filtered images from 
Figure 1 to Figure 4 further reinforces the positive 
judgement on the proposed algorithm. In addition to 
the reference image and the noisy one, in Figure 1 
and Figure 2 we show a visual comparison between 
our technique and NLM-C, BM3D-C and NLM 
developed for white noise, as suggested by Goossens 

et al. (2008) in their work. In Figure 3 and Figure 4, 
instead, we have chosen BM3D as a comparison 
technique developed for white noise, because it is 
the basis of the technique for removing correlated 
noise that we propose. 

In any case, the proposed method removes most 
of the noise, like the other colored-noise algorithms, 
but presents a smaller number of ghost artifacts and 
of generally lower intensity. 
 

(a) Original (b) Noisy 

(d) NLM-C (c) BM3D-C 

(e) BM3D (f) Proposed 

Figure 4: Visual results for a crop-outs of House, 
corrupted with correlated noise (σ=30); (a) original image, 
(b) noisy image, (c) NLM-C filtered image, (d) BM3D-C 
filtered image, (e) BM3D filtered image, (f) proposed 
technique filtered image. 

4 CONCLUSIONS 

Since noise is a primary cause of reduced image 
analysis capability in many application fields, in this 
work we focus on the problem of correlated noise 
removal. To this regard, we introduce a modified 
version of BM3D for correlated noise reduction, in 
which three significant changes are introduced with 
respect to the original algorithm. In particular, we 
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improve the block matching by resorting to image 
prewhitening, and the shrinkage (hard thresholding 
in the first step, and Wiener filtering in the second 
step) by taking into account the different noise 
variances of coefficients and by improving their 
estimate. 

This method turns out to be competitive both 
with state of art nonlocal algorithm for colored noise 
and with the original BM3D.  
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