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Abstract: The petroleum industry uses helicopters to transport employees to and from the offshore installations. The
helicopter transportation represents a major risk for the employees. The helicopter routing problem is an
application of vehicle routing problem with combined pickup and delivery demands, which usually minimizes
the total cost of the routes and the fleet size (the number of routes) in a classical form. It is also of interest
to minimize the transportation risk. In this paper, a multi-objective genetic algorithm is presented for the
helicopter routing problem. The algorithm uses a variation of the cluster-first route-second method for routing
helicopters. We apply the proposed algorithm to instances derived from real data and evaluate its effectiveness
by comparing withε-constraint approach with a state-of-the-art single-objective tabu search metaheuristic.

1 INTRODUCTION

In the offshore petroleum industry, helicopter has
been the main way of transporting personnel to and
from offshore installations for decades. It is very
costly to purchase and operate a helicopter. Take heli-
copter model Sikorsky S–92 as an example, which is
widely used in the petroleum industry, the unit pur-
chase cost is from US$ 13 million to US$ 14 mil-
lion and the direct operating cost is US$ 2,381 per
hour, comprising 1,194 fixed and 1,175 variable costs
(2002)1. Helicopter transportation is perceived by
many offshore employees to be a risky part of their
work. Vinnem et al. (2006) claim that the hazards
associated with helicopter transportation of personnel
are among the main risks experienced by offshore em-
ployees.

Helicopter routing can be viewed as a vehicle
routing problem with combined pickups and deliv-
eries (VRPPD), in which each installation receives a
delivery originating at a common heliport and sends
a pickup quantity to the heliport. In literature, sev-
eral papers on helicopter routing for passenger trans-
portation have been published, and all of them focus
on minimizing transportation cost in terms of travel
distance or time (Galvão and Guimaraes, 1990, Fi-

1http://aviastar.org/helicopterseng/siks-92.php. Last
accessed 30 November 2011.

ala Timlin and Pulleyblank, 1992, Sierksma and Ti-
jssen, 1998, Rosero and Torres, 2006, and Tang and
Galvão, 2006). Moreno et al. (2006) and Menezes et
al. (2010) seek to minimize the flight costs, the num-
ber of flights, and the total number of offshore land-
ings in order to improve flight safety. The objective
function in the optimization model uses weights to
balance these multiple goals.

The purpose of this paper is to conduct a study
of helicopter routing problem as a multi-objective
VRPPD, in which the risk, the cost and the num-
ber of flights objectives are considered. We solve
the multi-objective helicopter routing problem using a
genetic algorithm (GA) by adapting the general pur-
pose multi-objective evolutionary algorithm NSGA-
II (Deb et al., 2002) to this particular application.
An instance from literature was studied and the re-
sults are evaluated by comparing withε-constraint
approach with a state-of-the-art single-objective tabu
search metaheuristic.

The remainder of this paper is organized as fol-
lows. In Section 2, a multi-objective model of the he-
licopter routing problem is presented. The GA com-
ponents are provided in Section 3. A case study based
on a real-life setting are presented in Section 4, fol-
lowed by conclusions in Section 5.
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2 THE MULTI-OBJECTIVE
HELICOPTER ROUTING
PROBLEM

The risk for passenger transportation is defined as the
expected number of fatalities for passengers. Risk
is decomposed into take-off and landing risk (TLrisk)
and cruise risk (Crisk):

Risk = T Lrisk +Crisk

= PT L · fTL · pTL +PFH · fC · pC, (1)

wherePT L is the total number of person take-offs and
landings, fTL is the probability of an accident during
a combined take-off and landing operation, defined
as the mean number of take-off and landing accidents
per million pairs of take-offs and landings,pTL is the
probability of a fatal outcome for an individual per-
son involved in a take-off and landing accident;PFH
is the total person flight hours,fC is the probability
of an accident during one cruise hour, defined from
statistics as the mean number of cruise accidents per
million flight hours, pC is the probability of a fatal
outcome for an individual involved in a cruise acci-
dent.

In this paper, we deal with the helicopter routing
problem as a multi-objective vehicle routing problem
under a general routing policy, in which the risk, the
cost and the number of flights objectives are consid-
ered. In a general solution, each installation is al-
lowed to be visited twice if necessary, once for de-
livery and once for pickup, and these visits to an in-
stallation may take place in two different flights. The
cost objective is measured in terms of travel time of
the routes. The risk objective contains the passenger
risk.

3 A GENETIC ALGORITHM

3.1 GA Components for Helicopter
Routing Problem

Non-dominated sorting genetic algorithm II (NSGA-
II) was proposed by Deb et al. (2002) for multi-
objective optimization. In the past years this al-
gorithm has become very popular in solving multi-
objective vehicle routing problems. It is adapted to
solve vehicle routing problem with route balancing
(Jozefowiez, Semet and Talbi, 2007a), covering tour
problem (Jozefowiez, Semet and Talbi, 2007b) and
traveling salesman problem with profits (Jozefowiez,
Glover and Laguna, 2008). Maruta and Itai (2005)

employ this algorithm to a vehicle routing problem
where both the number of vehicles and the maximum
routing time among them are minimized. It is also ap-
plied to a capacitated arc routing problem which seeks
to minimize the total cost of the routes and minimize
the cost of the longest trip (Lacomme, Prins and Se-
vaux, 2006).

3.1.1 Chromosome and Route Construction
Heuristics

One way of encoding a VRP solution is using giant
tour chromosome, in which a chromosome is a se-
quence ofn client nodes, without trip delimiters (Prins
2004). An optimal splitting procedureSplit is also
proposed to retrieve the best VRP solution respecting
the sequence. It is regarded as a route-first, cluster-
second heuristic for the VRP.

In our implementation, a solution chromosomeS
is a permutation ofn installations, which is interpreted
as the order in which the installations are routed by
some constructive heuristics. The installations are in-
serted into a route sequentially along theS until no
more installation can be inserted without violating ca-
pacity constraint. The rest installations are inserted
into a new route in the same manner, and so on. This
process finishes when the last installation in the chro-
mosome is inserted.

To construct each route, we adapted a Generalized
Insertion Procedure (GENI) initially developed for
Traveling Salesman Problem in Gendreau, Hertz and
Laporte (1992). We implement two versions of GENI
heuristics by modifying the original GENI heuristic.
In the first version GENIc, we implementthe least
cost insertion which does not incur any capacity vi-
olations to obtain cost efficient solutions. In the sec-
ond version GENIr, we evaluate the increment in risk
instead of cost for each possible insertion, and imple-
ment the least risk insertion to yield solutions with
small risk values.

The installations appeared in the routes may not
follow the installation sequence in the chromosome
due to the insertion procedure. In this regard, our
scheme is different from the chromosome represen-
tation andSplit procedure in Prins (2004), in which
the installations appeared in the route respect the
sequence in the chromosome. Our scheme can be
viewed as a cluster-first, route-second heuristic, since
only the consecutive installations in chromosome be
inserted in the same route.

3.1.2 Initial Chromosomes

We apply a modern version of Fisher-Yates shuffle al-
gorithm (Durstenfeld, 1964) for generatingN random
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chromosomes. The Fisher-Yates shuffle is an algo-
rithm for generating a random permutation of a finite
set. This algorithm is unbiased, so every permutation
is equally likely.

3.1.3 Crossover

A classical Order Crossover (OX) is used to construct
child chromosomes (Prins, 2004).

3.1.4 Mutation

Three mutation operators are implemented:Swap, In-
version andRelocation.

3.1.5 Stopping Criterion

The genetic algorithm is terminated after running a
predefined number of generationsMaxGen.

4 COMPUTATIONAL STUDY

The genetic algorithm is tuned experimentally. The
computational results are generated based on the fol-
lowing setting of parameters: Size of the popula-
tion: N = 256; Probability ofSwap mutation 0.5;
Probability of Inversion mutation 0.1; Probability
of Relocation mutation 0.1; Probability ofthe least
risk insertion 0.85; Maximum number of generations
MaxGen = 10,000.

4.1 ε-constraint Approach

As far as we know, there is no other approach in the
literature that addresses the helicopter routing prob-
lem as a multi-objective problem. To assess the
efficiency of the proposed genetic algorithm, anε-
constraint approach is used to transform the multi-
objective problem to a single-objective one. In our
case, the risk objective is optimized and the other
objectives are considered as constraints. The single-
objective problem is then solved with an adapted ver-
sion of tabu search heuristic, with which high quality
solutions are reported in literature.

4.2 Case Study

The algorithms were coded in C using Pelles for
Windows, version 5.00.8. All experiments were
performed on a personal computer with an inter(R)
Core(TM)2 Duo CPU E8400 @ 3.00GHz, 2.99GHz,
and 3.25 GB of RAM, with the operating system Mi-
crosoft Windows XP Professional Version 2002, Ser-
vice Pack 3.

An test instance from literature is presented here
to demonstrate the solutions from the GA approach.
The GA approach identified 143 solutions for this in-
stance. The risk value and the travel time varies in
[718.24,837.73] and[34.04,53.09], respectively. The
number of routes varies in[14,24]. These solutions
are illustrated in Figure 1, in which the y axis rep-
resents the risk value and the x axis represents the
travel time. The GA solutions are well dispersed
(symbol×). There are 26 solutions found by theε-
constraint approach (symbol+). For this instance, the
ε-constraint outperforms the GA approach approach
in terms of solution quality. For each solution found
by theε-constraint approach, we can find one or sev-
eral dominated GA solutions. On the other hand, the
GA approach uses less time to find more solutions as
compared to theε-constraint approach. The GA ap-
proach found these solutions in 2688 CPU seconds,
while the ε-constraint approach use 5067 CPU sec-
onds to identify the relatively small amount of solu-
tions.

Figure 1: Risk and travel time objectives of the case in-
stance.

Figure 2: Inter-relationship among the three objectives of
the case instance.

The inter-relationship among the three objectives
including the number of flights of the GA solutions
are illustrated in Figure 2. We use symbol+ for the
travel time and symbol× for the risk at each given
number of flights (x axis) in the figure. At a given
number of flights, both the risk and cost objectives
may vary to some extent. The general trend is that as
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the number of flights increases, the risk decreases but
the travel time increases.

In the GA solutions with low risk, each flight first
performs deliveries, and then it starts with pickups af-
ter finishing all the deliveries. All installations are
visited twice, expect those at which the helicopters
perform their last delivery and their first pickup.

In the GA solutions with low travel time, Hamil-
tonian routes are often identified. The installations in
Hamiltonian routes are visited only once to simulta-
neously perform pickup and delivery.

5 CONCLUSIONS

We have addressed a helicopter routing problem aris-
ing in the transportation of offshore employees as
a multi-objective problem, in which the risk, the
cost and the number of flights objectives are consid-
ered. A genetic algorithm is applied to the problem
and it is evaluated by comparing withε-constraint
approach with a single-objective tabu search meta-
heuristic. Preliminary case study shows that the ge-
netic algorithm can generate high quality solution, in
terms of the spread and convergence of solutions.
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