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Abstract: Relatively simple ideas of fractal geometry result in an infinite number of complex images and objects. 
Fractals are used in computer graphics to increase visual fidelity of the vector models. Although derived 
from dynamical systems, fractals are usually presented as static objects. The paper presents a new concept 
of embedding physical description in the model of IFS (Iterated Function System). Dynamically changing 
fractal structures offer better sense of ‘material’ than static images or key-framed animations. The model 
can augment IFS attractors with the illusion of softness, weight and other material-related features. The 
proposed model is flexible, deterministic and offers high rendering performance. 

1 INTRODUCTION 

We can observe tremendous upgrade in computer 
graphics. Computing power of currently available 
PCs and game consoles support real-time rendering 
of high-resolution images. Image quality is still a 
result of trade–off between geometry and 
performance. Vector graphics is a core of 3D 
computer simulation models (Hearn and Baker, 
1997); (Heckbert, 1994). Shading algorithms add 
visual details to the rendered scene. Fractals has 
always been a source for procedural shaders, greatly 
improving quality of images. There are fractal 
models that perfectly describe some organic 
structures (Prusinkiewicz and Lindemeyer, 1990). 
Genetic Programming and fractals are also used in 
shape grammar-based rendering (Glassner, 1989; 
1992); (Mignonneau and Somerrer, 2000); (Sims, 
1991). Most fractal models, however, are usually 
presented as static structures. This is probably due to 
their geometric complexity, easily consuming 
available computation power. IFS proposed by 
Barnsley were originally focused on application of 
affine transformations to image analysis and 
synthesis (Barnsley, 1993). They proved to be 
enough flexible to be rendered even on limited-
resource mobile devices (Nikiel, 2007). IFS are part 
of dynamic systems (Clempner and Poznyak, 2011); 
(Di Trapani and Inanc, 2010), but their graphic 

representations are rather static. Recent 
developments of Super-IFS and IFS 
homeomorphism open path to dynamical morphing 
of flat images and textures (Barnsley, 2006). 
Extension of classical IFS with a vector model along 
with the purely deterministic rendering algorithm 
enabled real-time IFS shape modelling (Nikiel, 
2005). Adding non-scaling parameters such as a type 
of vector object to the affine maps enhances the 
process of fractal shape construction. Key-framed 
and parameter-driven animations of IFS attractors 
have also been discussed in literature (Barnsley, 
2006). Adding physical description to IFS model 
offers quite new interaction and simulation 
properties. Fractals behave ‘naturally’ reacting to 
gravity and deformations in realistic manner. IFS 
attractors can be elastic bodies. User can interact 
with them the same way as with their real-life 
counterparts. 

The paper is organized as follows: First Section 
describes theoretical background of the model 
including necessary precautions to determine the set 
of IFS functions. Then the IFS with embedded 
physics model is described. It is followed by 
presentation and discussion on real-time rendering 
and simulation. Concluding remarks sum up 
advantages of the proposed method. Directions for 
further developments are indicated at the end of the 
paper. 
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2 ITERATED FUNCTION 
SYSTEMS 

2.1 Background 

The Iterated Function Systems theory defines 
mathematically some concepts of chaos and 
irregularity in geometry. Research done mainly by 
Barnsley led to significant new methods for image 
understanding (Barnsley, 1993; 2006). A basic set of 
tools for image construction is created through a set 
of simple geometric transformations. IFS are based 
on mathematical foundations laid by Hutchinson. An 
IFS fractal is constructed from a collage of 
transformed copies of itself. The transformation is 
performed by a set of affine maps. An affine 
mapping on a plane is usually a combination of 
rotation, scaling and translation in R2. There are no 
particular conditions imposed on the maps except 
their contraction (Falconer, 1990). 

A set of affine transformations is accompanied 
by respective contraction factors. They are relatively 
easy to estimate for classical linear two-dimensional 
IFS. When all contraction factors are less than 1 the 
IFS are called to be hyperbolic IFS. If each mapping 
has a specific measure assigned a probability IFS are 
called IFS with probabilities. Probabilities can be 
proportional according to Jacobians of 
transformation matrices. Proper adjustment of 
probability according to a given contraction factor 
enhances the rendering process. The average 
contraction suggests that even non-hyperbolic and 
non-linear IFS can posses their constant points, 
called the attractors. Estimation of the contraction 
factor for non-linear IFS is not trivial (Skarbek, 
2006). It is often a matter of trial and error process 
to check the existence of the IFS attractor. If we 
consider an IFS to be a hyperbolic and linear, then 
the situation is quite safe. We will always obtain the 
image of the IFS attractor. With the help of the 
Collage Theorem it is possible to design 
interactively nature-like images and shapes. 

2.2 IFS with Physics 

First implementations of the IFS used binary images 
and were rather inefficient. There have been many 
improvements made over the IFS models and 
alternative fractal rendering methods. IFS 
(Partitioned IFS) and VRIFS (Vector Recurrent IFS) 
are incorporated in fractal image compression and 
decompression schemes (Barnsley, 1993). Polar IFS 
along with Genetic Programming is a very 
interesting alternative targeted at inverse problem: 

how to find IFS set for a given image (Collet et al., 
1999). Adding color-space to the IFS codes 
enhanced the process of colorization of fractal 
models (Nikiel, 1998). In the field of rendering 
methods, Dubuc and Elquortobi recognized that only 
new points of the IFS attractor are necessary to 
visualize the attractor (Dubuc, 1990). Monroe and 
Dudbridge developed an optimized version for on-
screen display of IFS images, called the Minimal 
Plotting Algorithm (Monroe and Dudbridge, 1995). 
Bell proposed a recursive rendering scheme called 
Tesseral Synecdoche Algorithm (Bell, 1995); (Bell 
and Holroyd, 1991). Vector Recursive Rendering is 
another algorithm that can be used to transform an 
arbitrary set of points in n-dimensional spaces 
(Nikiel, 2005). Considering above-mentioned 
developments and purely deterministic character of 
some IFS models it is possible to render their 
attractors in real time. This enables interaction and 
animation of IFS fractals. There have been many 
attempts to use key-framed or parameter-driven 
animations (Barnsley, 2006). Adding physical 
description to IFS model opens quite new ways of 
interaction and simulation. Fractals behavior might 
be sensitive to deformations, gravity or other kind of 
forces. 

Let (F, d) be a complete metric space. Let F→F 
be a collection of mappings (ωi; i=1,2,…,L) 
operating on points (p) in F, then the  
 

Ω=(F, (ωi); i=1,2,…,N) (1)
 

is called the Iterated Function System. An affine 
transformation ωi scaling and translating points (p) 
in R3 has the form, and can be treated as a 
transformation matrix MT: 
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where (tx, ty, tz) determine translations and (sx, sy, sz) 
determine scaling. A 2D example of such IFS model 
might be Sierpinski triangle built with three 
transformations. The IFS described above can be 
treated then as an elastic body by using classical 
physical formulas to define its behavior. Fractal 
objects can be influenced by external forces of 
gravity and wind. They can also collide with each 
other as well as with other objects or with the 
ground. 
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Figure 1: The model of  IFS representing rigid bodies 
connected with springs. 

Fig. 1 depicts an example, in which transformations 
are treated as rigid bodies connected by springs (for 
the model defined by Eq. 2). Spring forces are 
calculated using following formula: 
 

bvstretchkFFF dampingspring   (3)
 

where k is the spring stiffness coefficient, stretch is 
the difference between neutral length of the spring 
and its current length, b is the dumping coefficient 
and v is a relative velocity between both ends of the 
spring. The resultant force Fresultant acting on objects 
is a sum of forces of connected springs and other 
forces like gravity, wind, etc. In the example 
presented in this paper, simple Euler integration 
method have been used. 

Let P=[tx, ty, tz] represent a position of the fractal 
object. Then, following formulas describe new value 
of P after time: 
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where v is velocity and m is mass of the object. Final 
transformation used in the IFS to generate the object 
in current frame of simulation depends on forces 
acting on it, time between the current and the 
previous frame, on its mass and on previous position 
and velocity. Final transformation matrix based on 
Eq. 2 can be described by: 
 

 

Figure 2: A few screens from the simulation. 
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It is possible to apply this method to other 
transformations, like scaling, rotation or skew but 
their physical interpretation is less obvious and 
could not be explained directly as for translation. 
Final transformation set used in our prototype 
application consists of all these transformations and 
is calculated as follows: 
 

TRCRRCS MMMMMM  1  (6)
 

where MS is scaling, MR is rotation, MT is translation 
and MRC is the center of rotation matrix. 

2.3 Rendering Algorithm 

The physical IFS objects are rendered with vector 
recursive rendering (VRR) (Nikiel, 2005). It 
provides fast and deterministic way to calculate 
structure of the object. According to the VRR 
algorithm set transformations are used N times on 
initial point to estimate fractal attractor. The final set 
of points might be drawn directly on the screen or 
rendered as coordinates of billboards or CSG sets. 
The amount of physical calculations depends on the 
number of transformation, not on N or the final 
complexity of the object. 

A deterministic rendering scheme is necessary to 
construct physics-based three-dimensional fractals. 
Either Tesseral Synecdoche Algorithm or Vector 
Recursive Rendering Algorithm can be adapted to 
handle the model described in the previous Section. 
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3 IMPLEMENTATION 

The simulation and rendering procedure was 
implemented using C++ and DirectX API. The 
application delivers full structure in real-time. The 
overall performance is very fast and some of the 
operations may be performed at the GPU. The scene 
was composed of 256 geometric objects, which 
contained 10,752 vertices and 20,480 faces all 
together. Average efficiency was about 165 FPS. 
Without rendering it was about 780 FPS. The 
prototype application was running on AMD Athlon 
64 3000+ (1.8GHz) with ATI Radeon X700Pro 
graphics card. Fig. 2. presents sample screens from 
the simulation. 

4 CONCLUSIONS 

The developments described in the paper broaden 
the application area of fractal modeling in three 
dimensional vector graphics with the idea of 
physical behavior of fractals. It opens up even more 
possibilities to create artificial objects. When 
simulated or interactively manipulated, physics-
based IFS attractors acts ‘naturally’ showing their 
mass (inertia) or elasticity (they behave like jelly, 
strings, plants or fur). The model presented in the 
paper is relatively simple and provides real-time 
interaction. It changes appearance of fractals from 
complex static images to dynamically changing 
structures. It is possible to describe IFS physics in 
more advanced way, including collision detection. 
Transformations might influence each other with 
gravity or electromagnetic field instead of springs. 
That would simulate objects like galaxies or atoms. 
Considering plants, the hierarchical structure might 
be used. 
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