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Abstract: This work presents an approach to detection of planar structures in three-dimensional (3D) datasets obtained
by different bioimaging modalities. The strategy has already turned out to be effective to segment membranes
from 3D volumes in the field of electron tomography, an emerging and powerful technique in structural and
cellular biology. This approach can also be useful to detectplanar structures in general in other bioimaging
modalities. The goal of this position paper is to present this approach to the computer vision community and
illustrate the performance on a number of representative bioimaging datasets.

1 INTRODUCTION

The advent of biological imaging has made it possi-
ble to observe, directly or indirectly, the molecular
and cellular architecture and interactions that under-
lie essential functions within cells and tissues (Chan-
dler and Roberson, 2009). The availability of imaging
techniques (optical, confocal, electron microscopies,
electron tomography, just to name a few) in biology
laboratories is growing rapidly. So does the need
for image processing methods that facilitate analy-
sis and interpretation at different scales of resolution
and complexity. In this regard segmentation, which
intends to semantically decompose the datasets into
their structural components, plays a central role.

Structures that can be considered as planes at lo-
cal scale are often found in bioimaging datasets. Bi-
ological membranes are one of the best examples.
Membranes encompass compartments within biolog-
ical specimens, define the limits of the intracellular
organelles and the cells themselves, etc. Detection
of planar structures in general is important towards
(semi-)automated segmentation of the whole datasets.
Recently, we have presented an approach based on
local differential information that succeeds in seg-
menting biological membranes (or any planar struc-
ture in general) in three-dimensional (3D) datasets
obtained by electron tomography (ET) (Martinez-
Sanchez et al., 2011). ET nowadays proves to be one
of the leading techniques for visualizing the molecu-
lar organization of the cell environment (Frank, 2006;
Lucic et al., 2005). In this field, manual segmentation
still remains prevalent because no computational me-

thod has stood out as general applicable yet due to dif-
ferent reasons (they were case-specific, or limited per-
formance under low signal-to-noise ratio, difficult pa-
rameter tuning, user-intervention required, etc) (Volk-
mann, 2010). In manual segmentation, the user delin-
eates the features of interest using visualization tools,
which is tedious and subjective.

This position paper aims to present our approach
to detect planar structures to the computer vision
community and show its performance on datasets de-
rived from different bioimaging modalities, includ-
ing others than ET. Based on a Gaussian model for
the thickness of the planes, the procedure relies on
the characterization of structures at a local scale us-
ing differential information. Later, the integration at a
global scale yields the definite detection.

2 DETECTION OF PLANES

2.1 Model for the Planar Structure

In experimental datasets and at a local level, the pla-
nar structure has certain thickness and the density
along the direction normal to the plane progressively
decreases as a function of the distance to the centre of
the plane (Fig. 1) (Fernandez and Li, 2003; Fernandez
and Li, 2005). This density variation can be modelled
by a Gaussian function (Fig. 1):

I(r) =
D0√
2πσ0

e
− r2

2σ2
0 (1)
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wherer runs along the normal to the plane,D0 is a
constant to set the maximum density value (at the cen-
tre of the plane) andσ0 is related to its thickness.

Figure 1: Plane model and the density profile across it.

The eigen-analysis of the density function at
point p = (x,y,z) of the plane yields the eigenvec-
tors−→v1, −→v2 and−→v3 with eigenvalues|λ1| >> |λ2| ≈
|λ3| (Fig. 1) (Fernandez and Li, 2003; Fernandez and
Li, 2005). This reflects that there are two directions
(−→v2, −→v3) with small density variation and the largest
variation runs along the direction perpendicular to the
plane (−→v1, parallel tor, i.e.−→v1||r ).

2.2 Scale-space

The scale-space theory was formulated in the
80s (Koenderink, 1984; Witkin, 1983) and allows
isolation of the information according to the spatial
scale. At a given scaleσ, all the features with a size
smaller than the scale are filtered out whereas the oth-
ers are preserved. Therefore, the scale-space is useful
to focus on the structures of a particular size, ignoring
other smaller or spurious details. A scale-space for a
volume f can be generated by convolvingf with a set
of kernels with sizeσ (Lindeberg, 1990). In this work
we have used a recursive implementation of the Gaus-
sian kernel with standard deviationσ, G(x;σ) (Young
and van Vliet, 1995).

To analyze the scale-space applied to the plane
model, it can be assumed without loss of generality
that r runs along thex direction (i.e.−→v1||r||x), hence

reducing the problem to one dimension (alongx).
Given the Gaussian plane profileI (Eq. 1), ignoring
constants, and taking into account that the convolu-
tion of two continuous Gaussian functions yields an-
other Gaussian function whose variance is the sum of
the variances (Florack et al., 1992), the plane model
with thicknessσ0 at a scaleσ is:

L(x;σ) = G(x;σ)∗ I(x) = G(x;
√

σ2+σ2
0) (2)

2.3 Local Detector and Plane Strength

Now it is possible to define a detector for the plane
model at a given scaleσ (Eq. (2)). This detector is
based on differential information, as it has to ana-
lyze local structure. In order to make it invariant to
the plane direction, the detector is established along
its normal (i.e. the direction of the maximum cur-
vature) at the local scale. An eigen-analysis of the
Hessian matrix is well suited to determine such di-
rection (Frangi et al., 1998). At every voxel of the
volume, the Hessian matrix is defined by:

H =





Lxx Lxy Lxz
Lxy Lyy Lyz
Lxz Lyz Lzz



 (3)

whereLi j =
∂2I
∂i∂ j ∀i, j ∈ (x,y,z). The Hessian matrix

provides information about the second order local in-
tensity variation. The first eigenvector−→v1 resulting
from the eigen-analysis is the one whose eigenvalue
λ1 exhibits the largest absolute value and points to the
direction of the maximum curvature (second deriva-
tive).

The Hessian matrix of the plane model of the pre-
vious section (i.e. with maximum curvature along x)
at a scaleσ has all directional derivatives null, except
Lxx. As a result,λ1 = Lxx and−→v1 = (1,0,0). Along
the direction normal to the plane,λ1 turns out to be
negative where the plane has significant values and
its absolute value progressively decreases from the
centre towards the extremes of the plane, as shown
in Fig. 2(top). Therefore, we propose the use of|λ1|
as a local plane detector (also known as local gauge).
In practice, in experimental studiesλ2 andλ3 are not
null. Thus, a more realistic gauge would be:

R =

{

|λ1|−
√

λ2λ3 λ1 < 0
0 λ1 ≥ 0

(4)

where
√

λ2λ3 is the geometrical mean betweenλ2 and
λ3.

Unfortunately,R is still sensitive to other local
structures that may produce false positives along the
maximum curvature direction. To make the gauge ro-
bust and more selective, it is necessary to define de-
tectors for these cases. First, the noisy background
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Figure 2: Second derivativeLxx of the plane model (σ0 = 1)
at a scaleσ = 1 (top) and Gauges for the density profile of a
plane withσ0 = 1 at a scaleσ = 1 (blue):R2 (red),S (cyan)
and plane strengthP (green). The profile across the plane,S
andP are normalized in the range[0,1]. R2 keeps the scale
relative toS.

in the volume may generate false positives. However,
the background usually has a density level different
from that shown by the structures of interest. A strat-
egy based on a density thresholdtl (Fernandez and Li,
2005) helps to get rid of these false positives.

Local structures resembling ‘density steps’ in the
volume also make the gaugeR produce a false peak.
A suitable detector for a local step is the edge
saliency (Lindeberg, 1998):

S = L2
x +L2

y +L2
z (5)

whereLi =
∂I
∂i ∀i ∈ (x,y,z). A plane exhibits a high

value ofS at the extremes and a low value at the centre
(Fig. 2(bottom)). Based on their response to a plane,
the ratio between the squared second-order and first-
order derivatives (i.e.R2/S) quantifies how well the
local structure around a voxel fits the plane model and
not a step. We thus define plane strength as:

P=

{

R2

S ,(L > tl) and
(

sign
(

∂R
∂r

)

6= sign
(

∂S
∂r

))

0 , otherwise
(6)

The first condition in Eq. (6) denotes the density
thresholding described above. The second condition

represents the requirement that the slopes ofR and
S in the gradient direction must have opposite signs.
This condition is important to restrict the response of
that function for steps (see Fig. 2(bottom)) . If the
local structure approaches the plane model,P will
have high values around the centre of the plane (high
values ofR2, low values ofS).

2.4 Hysteresis Thresholding and Global
Analysis

Due to the local nature of the plane model (see Sub-
section 2.1), any detector based on this model can also
generate a high response for structures different from
planar structures. For that reason, it is important to
incorporate “global information” to discern true pla-
nar structures from these others. The stages in this
subsection are introduced for this purpose.

First, thresholding is applied toP in order to dis-
card voxels unlikely belonging to planar structures.
Hysteresis thresholding has been shown to outper-
form the standard thresholding algorithm (Sandberg,
2007). Here two thresholds are used, the large valuetu
undersegments the volume whereas the otherto over-
segments it. Starting from the undersegmented vol-
ume (seed voxels), adjacent voxels are added to the
segmented volume by progressively decreasing the
threshold until the oversegmenting levelto is reached.

Here we have increased the robustness of hystere-
sis thresholding by constraining the selection of seeds
to the particular characteristics of planar structures
in experimental biomedical datasets, namely the rela-
tively high number of voxels connected. So, we have
introduced two additional thresholds so that seed vox-
els belonging to components with less thanta pixels
slicewise, orth in 3D, are discarded. This allows iso-
lation of seeds that are most representative of planar
structures, thus improving the global performance.

Finally, a global analysis stage intends to iden-
tify the segmented components that are actually pla-
nar structures. A distinctive attribute is their relatively
large dimensions. Therefore, the size (i.e. the num-
ber of voxels of the component) can serve as a ma-
jor global descriptor. A thresholdtv (similar or equal
to th) is then introduced to set the minimal size for a
component to be considered as a planar structure.

3 EXPERIMENTAL RESULTS

To illustrate the performance of the algorithm, it was
tested with several volumes taken under different ex-
perimental conditions and with several bioimaging
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Figure 3: The procedure applied to a volume of Vaccinia virusobtained by electron tomography. (a) slice of the original
volume. (b) at a scaleσ = 3. (c-e) R, S and P, respectively. (f, g) hysteresis thresholding. seed voxels to extract the outer
membrane after theta and afterth thresholding, respectively. brighter colour means largernumber of connected voxels. (h)
Membranes detected after the global analysis. The membraneof the internal core (in pink) was obtained after running the
algorithm at a scale ofσ = 6.

techniques. The volumes were rescaled to a common
density range of[0,1]. The optimal results were ob-
tained using the same basic parameter configuration
for hysteresis thresholding, in particulartu ∈ [0.35,1],
to ∈ [0.05,0.4] and ta ∈ [15,35]. The values of the
parametersσ, tl , th and tv, however, depend on the
specific dataset and were readily set by inspection of
the volume.σ is the thickness of the sought planes,
which were membranes in most of our tests.

First, to show the procedure at work, Fig. 3 shows
the different stages applied to a volume of Vaccinia
virus (Cyrklaff et al., 2005). This volume was ob-
tained by electron tomography under low electron
dose and cryogenic temperatures, which makes it par-
ticularly noisy and with low contrast. The algorithm
succeeds in segmenting both the outer and the inter-
nal core membrane by properly tuning the parame-
ter σ. A scale ofσ = 3 was applied to extract the
outer membrane. For the core membrane, however, a
much higher value was necessary (σ= 6) because this
membrane actually comprises two layers that make it
rather thick, thereby needing a higher scale to extract
it separately.

Fig. 3(c-e) (which were obtained atσ = 3, tar-
geting at the outer membrane) clearly shows that,
though the gaugeR actually quantifies the level of
local membrane-ness, it still depends on the density
level. Thus, there are some parts of the membrane

whereR exhibits weak values. On the contrary,P
only contains differential information and, therefore,
higher strength is shown throughout the membrane re-
gardless of the density value. However, the side ef-
fect is that other structures resembling planes at local
level also produce a high value ofP (for instance, the
dense material between the outer membrane and the
core seen at the top of (e); or the fiber attached to the
internal side of the outer membrane seen at the bottom
of (e)). The hysteresis thresholding procedure and the
global analysis then manage to extract the true mem-
branes. This behaviour is an inherent feature of the
algorithm.

To further illustrate the performance of the algo-
rithm, it was applied to several volumes obtained by
electron tomography and using experimental condi-
tions that provides better contrast than in the pre-
vious case. The volumes contained different spec-
imens, namely vesicles, mitochondrion and chloro-
plast, respectively. Fig. 4 shows a gallery of the
structures, mostly membranes, detected by the algo-
rithm. The algorithm was run at a scaleσ of 2,
1.5 and 0.1, respectively. As shown, all the planar
structures present in the volumes were clearly iden-
tified and come out of the background. The datasets
were taken from the CCDB (Cell-Centered DataBase,
http://ccdb.ucsd.edu) (Martone et al., 2008).

Finally, in order to demonstrate the applicabil-
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Figure 4: Planar structures detected by the algorithm for three different volumes containing vesicles, mitochondrionand
chloroplast, respectively, that were obtained by electrontomography. Top: a slice of the original volume is shown. Bottom:
3D visualization.

Figure 5: Planar structures detected by the algorithm for three representative areas of a thick retina tissue. Top: a slice of the
original volume is shown. Bottom: 3D visualization of the planar structures.

ity of the algorithm to other bioimaging disciplines,
we applied it to a volume derived from a study con-
sisting in the ultrastructural characterization of the
mouse optic nerve head and retina (Kim et al., 2010;

Nguyen et al., 2011), which was taken from the
CCDB database (Martone et al., 2008). In this study,
the thick tissue section was subjected to 3D recon-
struction by a technique known as ’Serial Block Face
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SEM’ (SBFSEM). Here the tissue is progressively
sliced into thin sections and the face of the remain-
ing block is imaged by means of a Scanning Elec-
tron Microscope (SEM). At the end of the process,
the images that were taken are stacked into a single
volume, hence the 3D reconstruction. The tissue that
was studied here contained different nerve cell lay-
ers. Figure 5 shows a gallery of representative areas
of the different layers, where the segmentation of the
planar structures performed by our algorithm is appar-
ent. For these cases, the scale used in the application
of the algorithm was 0.5.

4 CONCLUSIONS

We have presented a procedure to detect planar struc-
tures in volumes obtained by different bioimaging
techniques. It relies on a simple local model for a
plane and on the local differential structure to deter-
mine points whose neighbourhood resembles plane-
like features. Later stages of the algorithm then intend
to definitely determine which of those points do actu-
ally constitute the planar structures. The performance
of algorithm has been shown on a set of representative
volumes. In general, the algorithm has turned out to
be effective to detect planar structures, often found in
biological datasets. Therefore, it has potential to be a
useful tool for (semi-)automated interpretation of 3D
volumes obtained by different bioimaging technolo-
gies.
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