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Abstract: Improving video user experience is an essential task allowing video based algorithms and systems to be 
more user-friendly. This paper addresses the problem of video object selection by introducing a new 
interactive framework based on the minimization of the Active Curve energy. Prior assumption and 
supervised learning can be used to segment images using both color and morphological information. To deal 
with the segmentation of arbitrary high level object, user interaction is needed to avoid the semantic gap. 
Hard constraints such scribbles can be drown by user on the first video frame, to roughly mark the object of 
interest, and there are then automatically propagated to designate the same object in the remainder of the 
sequence. The resulting scribbles can be used as hard constraints to achieve the whole segmentation process. 
The active curve model is adapted and new forces are included to govern the curves evolution frame by 
frame. A spatiotemporal optimization is used to ensure a coherent propagation. To avoid weight definition 
problem, as in classical active curve based algorithms, a new concept of dynamically adjusted weighting is 
introduced in order to improve the robustness of our curve propagation. 

1 INTRODUCTION 

In the context of immersive video experience, some 
of the key questions are: What can immersion bring 
to communication, entertainment or human machine 
interaction? How to introduce immersion? One 
important research track related to those general 
questions is: how to better understand video in real-
time? The main issue here is the semantic gap issue, 
that is, the way to transform low level description of 
the video (computer vision, signal processing) into 
high level understanding. In the case of object 
segmentation, the process of separating an image 
into foreground and background regions using a hard 
binary labeling, which can be also extended by 
finding a smooth alpha channel, known as image 
matting, some methods (Joshi et al., 2006) or 
(McGuire et al., 2005) introduce extra information 
coming hardware, such camera array, multi-focus 
imaging …, or also from learning technics to fill this 
semantic gap. The problem with these methods is 
their lack of ability to handle various types of object. 
When the objects are not rigid, the learning becomes 
difficult; the problem of object representation has to 
be addressed. Other approaches introduce interactive 

or user guided algorithms to take advantage of prior 
information on what or how the object is. This 
allows to deal with topology changes and to remove 
confusions. In recent years, a big progress has been 
achieved on interactive object segmentation and 
matting methods in the case of still images, which is 
well described in (Wang and Cohen, 2007). Two 
types of user interaction have been involved: the 
scribbles and silhouette. The scribbles are strokes 
placed roughly by the user to indicate the 
background and the foreground (Boykov et al., 
2001). The silhouette is a coarsely tracing of the 
object’s boundary which allows the construction of a 
trimap which is a three part image partitioning 
(foreground, background and unknown region) 
(Chuang et al., 2001.). High quality results can be 
achieved for fairly complex images. However, when 
dealing with videos, the user interaction is more 
difficult to get. (Wang et al., 2005) introduced a new 
way to let user make scribbles directly on 3D 
temporal video volume, this kind of interaction is 
not natural because visualizing and understanding 
information on video volume is not easy. In (Bai and 
Sapiro, 2007) the user is asked to act on different 
key frames. The choice of key frames is important 
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and often depends on the video. A complete 
segmentation of the object of interest is achieved on 
these frames, and then this segmentation is 
interpolated and propagated to extract the video 
objet. 

 
                       (a)                                                 (b)      

Figure 1: (a) Example of a scribble drawn by the user. (b) 
A set of curve’s points representing discretized scribble. 

This paper focuses on minimal user interactions 
that could enable video object segmentation and 
matting. We proposed an interactive method, which 
aims at tracking a moving object and designate it 
through video frames. The user is asked to designate 
an object of interest by drawing scribbles (or 
curves). Then, the problem is to propagate these 
scribbles in next frames while designating the same 
object. This allows to get user’s hints in all video 
frames while reducing the user effort. We are taking 
the general problem when deformable object, 
moving in a non-constant environment and the 
camera is also a moving camera. Section 2 describes 
the curve propagation problem and the proposed 
active curve modeling. Section 3 presents and 
discusses the different forces we defined to govern 
the propagation, dynamic weighting is introduced 
and described in section 4. Experiments and results 
are presented in section 5. 

 

  
                       (a)                                                 (b)      

Figure 2: (a)(b) Optical flow based propagation in frame 
10 from ‘Amira sequence’ and in frame 5 from ‘walking 
man sequence’. Errors are indicated by the green circles. 

2 SCRIBBLES PROPAGATION 

Our method aims at propagating scribbles drawn on 
a video frame to the remainder of the sequence. For 
this purpose we chose an active curve modeling. 
First, we will explain the characteristics and the 
problems of propagating a curve drawn manually by 
the user to designate an object. Then, we will expose 
the active curve method, its properties and, based on 
it, how our problem is solved. 

2.1 Curve Characteristics and 
Propagation 

What are the characteristics and the functionality of 
the curve we want to propagate? This question is 
implicit to the user who wants to select specific 
regions to point out an object. What are the 
properties enabling to propagate the curve while 
preserving its functionality? This curve crosses 
several regions that compose the selected object. 
The curve is usually located at the middle portion of 
these regions as shown in Figure 1.  User’s drawing 
is usually coarse; security leads him to stay away 
from the object’s edges. 

Propagating a hand drawn curve along the 
different video frames consists in tracking a set of 
points. Standard point based motion estimation 
methods, such as (Baker and Matthews, 2004), do 
not allow a correct propagation of the curve’s points 
through a large number of video frames. Indeed, to 
be correctly tracked, points must be illegible to 
criteria that can be found in interest points. This is 
the case of point of interest presented in (Shi and 
Tomasi, 1994). Moreover, due to the initial curve’s 
properties (the way and where the drawing is done), 
tracking errors will be propagated and accumulated 
progressively frame after frame. This will decrease 
the tracking or the propagation quality. Point based 
tracking is sensitive to texture similarity or aperture 
problems. 

In fact, the curve’s points are not geometrically 
independent, as in some way they stay adjacent 
points along the video. Processing points 
independently can quickly become incoherent. We 
suggest processing all the points as a whole, as a 
curve, with a one dimension parameterization. 

To point out the same object in next video 
frames, the curve must stay in the selected regions 
and must be located in the middle of these areas in 
order to reduce the drift. It is dangerous to move 
toward the crossed areas boundaries. In Figure 3, ܥଶ 
is more representative than ܥଵ. Whatever the applied 
shifting ܥଶ (video temporal coherence i.e. little 
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shifting) is less sensitive to get away from the 
crossed region. 

From these remarks, three constraints have been 
identified, allowing the curve propagation, they are 
stated as follows: 
 If the selected object moves, the curve has to 
move accordingly to the movement of the different 
regions of the object. 
 The characteristics of crossed regions must be 
conserved; however, the evolution of these regions 
must be taken into account as the environment may 
change along the video. 
 In order to minimize errors, the curve has to 
move and to converge towards the middle of each 
region to give a good representation of the each one. 

In our case, as the curve is manually drawn by the 
user, no initial assumptions can be done on the curve 
shape. As they are too global, some models like 
Bezier curves or splines don’t seem flexible enough 
to enable curve propagation, considering our 
constraints. To perform a coherent propagation, we 
define forces and the associated energy functional to 
position the curve on the next frames. As several 
forces are involved, a dynamic balancing scheme is 
introduced to allow better sticking of the curve on 
the image data. Estimating the position of the curves 
in next frames is then done by an energy minimizing 
process based on dynamic programing (Williams 
and Shah, 1992). It is an active curve based 
approach presented here. 

3 CONSTRAINTS MODELLING 

To ensure a coherent propagation of scribble’s 
points and to make them evolve while designating 
the same object -a set of heterogeneous areas- 
through video frames, we define a set of energies: 
internal and external energies. First, we model the 
forces, associated with the curve itself and then with 
image data, according to the defined constraints. In 
term of energies modeling, the global energy is 
composed from two terms: internal energies, related 
to internal forces that manage the liberty given the 
curve, and external energies, related to external 
forces that manage the environment of the curve. 
Internal forces are managing the intrinsic cohesion 
of the curve, and external forces are ensuring data 
attachment. Based on these forces we can define 
corresponding energies we want to globally 
minimize. Many elements may be considered such 
as the curvature, motion, texture, etc. Let’s write the 
global energy as the sum of an intrinsic energy and 

an external one: ܧ௚௟௢௕௔௟(ܥ) = (ܥ)௜௡௧ܧ + (1) (ܥ)௘௫௧ܧ 

If the minimization has to be achieved in a global 
way, the forces are acting locally and we will 
present them when applied to each point. 

 

Figure 3: Curve’s region representation: (C2) is less 
affected by object movements; (C2) is more representative 
to the region (r1) than (C1). 

Let C be a curve discretized by N ordered points 
p. The global energy of curve E(C) can be estimated 
by: Ê௚௟௢௕௔௟(ܥ) = ෍ (݌)௜௡௧ܧ + ௣∈ோ(݌)௘௫௧ܧ   (2)

with R = ,ଵ݌} … ,  ே}. The estimated solution݌
correspond to the set R of points such that E(R) is 
minimum, that is to say rather more 
complete (݌ଵ, … ,   .ே) for which energy is minimal݌

3.1 Internal Forces 

Conventionally, the internal used forces are related 
to the curve bending. They are: uniformity and 
curvature forces. The uniformity force associated 
with its energy functional ܧ௨௡௜௙ tries to maintain the 
cohesion of curve’s points and therefore 
standardizes the distances between each pair of 
successive points. Notice ܽ݃ݒௗ௜௦௧ the average 
distance separating two successive curve’s points ݌௜ 
and ݌௜ାଵ.  ܧ௨௡௜௙(݌) = ௗ௜௦௧݃ݒܽ| − ௜‖| (3)݌ ݌‖

The curvature energy ܧ௖௨௥௩ influences the rigidity of 
the curve. Let ݌௜ିଵ, ݌ and ݌௜ାଵ three successive 
curve’s points. Let ݑ௫ the projection of ݌௜ିଵ,  on ݌
the image’s x axe and ݒ௫ the projection of ݌,  ௜ାଵ on݌
the same axe. Let ݑ௬ and ݒ௬ the equivalent 
respectively of ݑ௫ and ݒ௫ projection on the image’s 
y axe. ܧ௖௨௥௩(݌) = ൬ ௫ݑ) + ,௜ିଵ݌‖(௫ݒ ,݌‖‖݌ ‖௜ାଵ݌ ൰ଶ + ቆ ௬ݑ) + ,௜ିଵ݌‖(௬ݒ ,݌‖‖݌ ௜ାଵ‖ ቇଶ݌

 
(4)
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On each point p, the internal energy can be written 
as: ܧ௜௡௧௘௥௡௔௟(݌) =  ߱ଵ ܧ௨௡௜௙(݌) + ߱ଶ ܧ௖௨௥௩(݌) (5)

3.2 External Forces 

The definition of external forces is more sensitive. It 
is directly related to the nature of the problem. To 
get a coherent tracking system, which selects the 
same object in the successive frames, we decided to 
model the constraints defined previously by three 
forces: 
 One is related to the estimated motion of each 
point, 
 Another is related to the local texture similarity,  
 The last one indicates a privileged direction for 
propagation. 

3.2.1 Motion 

As no restriction has been expressed on the nature of 
the object, the movement of an object may be 
defined as the juxtaposition of different movements 
from different parts of it. For instance, the 
movement of the hand is not necessary the same as 
the movement of the head of some one. So, locally 
based motion estimation at each point is necessary 
to ensure that the overall curve is committed to the 
movement. Let ݌′௧be the optical flow [4] estimated 
image in frame t+1 of a curve’s point ݌௧ from frame 
t. To adjust the curve to the movement, we look for 
pt+1 among the points p in frame t+1 that have the 
lowest possible Euclidean distance to point ݌′௧. The 
energy to minimize is given in frame t+1 by 
formula: ܧ௠௢௧௜௢௡(݌) = ห|݌ ݌ᇱ|ห (6)

3.2.2 Texture 

Between frames at time t and t+1, the point must 
remain in the same part of the object. The area may 
be color uniform, but it also can be characterized by 
a texture. Characterization of the texture would be 
too time-consuming, so we chose to limit the study 
to the average color in a neighborhood of each 
curve’s point. To better model the temporal changes, 
we chose CIE Lab color space. It is composed from 
three components L, a and b. This color space allows 
us to better distinguish between luminance (L) and 
chromatic components (a and b) of color than in 
RGB space. When we deal with video, contrast 
change artifact is very common, so luminance is less 
discriminant than chromatic components. One 

curve’s point ݌௧ will then evolve to a new position 
with a similar color while including some tolerance 
to illumination change. Then we define color 
similarity energy using a weighted Euclidean 
distance in the Lab space, where less importance is 
given to the luminance than to the chrominance. The 
average color at point p is denoted cm. The average 
is computed in the neighborhood according the  ௜ܵ 
segment described in the section. Three components: 
cm(a), cm(b) and cm(l). Then the energy formula is: ܧ௖௢௟௢௥(݌) = ቀܿ݉௣௧(ܽ) − ܿ݉௣(ܽ)ቁଶ + ቀܿ݉௣௧(ܾ) − ܿ݉௣(ܾ)ቁଶ

 + 14 ቀܿ݉௣௧(݈) − ܿ݉௣(݈)ቁଶ
 

(7)

The ¼ coefficient has been empirically set and is 
used in all the experiments we present. 

3.2.3 Stability 

The last energy comes from the fact that the user 
tends to draw scribbles while trying to stay well 
within the middle zones of the different object’s 
regions (which prevents him from getting out of the 
object). The curve must also reproduce this effect. 
This will make the system more stable. To answer 
this third constraint, we first detect the locally 
homogeneous region around the curve, depending on 
the color of each of its points. The curve is extended 
to a confidence region R. The extension is computed 
from the set of ݌௜ points. From each ݌௜ the extension 
is computed in an orthogonal direction to the curve, 
using a region growing process. Each point is 
extended as a segment, denoted ௜ܵ. R is so defined as 
the convex hull of all S୧ (Figure 4). The region 
growing is based on color similarity. To calculate 
this energy, we estimate the normal to the curve at 
each point ݌௜ at the time t, and calculate a similarity 
line segment S୧. This segment associated with ݌௜  is 
the maximum segment of uniform color. That is to 
say, all its points’ colors are similar to the ݌௜ color. 
The maximum concerns the length of the segment. 
No larger segment can be found with respect to  ݌௜ 
color. The extremities of this segment are the limit 
tolerance points. ݌௟௧ denotes the extremity which is 
farthest from ݌௜. This models the direction in which 
the curve is the farther from the region contour. 

Our goal, starting from the state of a point on the 
curve at time t, is to privilege the propagation 
towards the middle of the region. This energy will 
push points to an area of greater homogeneity, as 
shown in Figure 5. To prevent curve’s displacement 
from motion estimation errors and introduce more 
coherence and stability to our system, we look for 
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pt+1 among all possible position p in frame t+1 that 
have the lowest possible Euclidean distance to point ݌′௟௧ which is the optical flow image of ݌௟௧, the point 
for each  point ݌௜ represents the limit of the 
similarity region R. The stability energy to minimize 
is given in by the following formula: 

(݌)ௌ௧௔௕௜௟௜௧௬ܧ  = ௟௧‖ (8)′݌  ݌‖

The external energy is composed from three 
weighted terms, and then we can finally write the 
global energy as: ܧ௚௟௢௕௔௟(ܥ) = ෍ ቌ ߱ଵܧ௨௡௜௙(݌) + ߱ଶܧ௖௨௥௩(݌)  +߱ଷܧ௠௢௧௜௢௡(݌) + ߱ସܧ௖௢௟௢௥(݌) +߱ହܧௌ௧௕௜௟௜௧௬(݌) ቍ௣∈஼  

(9)

  
                       (a)                                                (b)      

Figure 4: (a) Similarity line segment drawn on each point 
of the curve. (b) Zoomed view of (a). 

 

Figure 5: Stability force representation; the curve is 
pushed toward the middle of homogenous regions. 

4 DYNAMIC WEIGHTING 
MECHANISM 

One of the major problems in using active curves 
methods is how to tune the energies’ related weights. 
There is no defined method to set them. Using 
different sets of weights, ones can get similar results. 
Usually, the weights are set from prior information 
or empirical estimations as in (Kass et al., 1987). In 
more recent studies (Etyngier et al., 2007), learning 
based approaches are used to adapt more robustly 
the weights to a pre-defined problem. Such an 
approach cannot be applied in our case due to the 

interactive nature of our application and the variety 
of object we want to handle. Moreover, we noted 
that even if one force has more importance than the 
others, this is not true all the time and for all points’ 
position, so it could lead us to errors in later 
processed frames. 

As shown above, the curve drawn, by the user, 
can cross many different high textured regions. A 
global parameterization is, so, not adapted in our 
case due to the lack of priors. In contrast of the 
active curve based previous works (Kass et al., 
1987) or (Lefevre and Vincent, 2004), we introduce 
a dynamic weighting scheme based on the following 
observations: in the cases of points in regions 
containing many high gradient, one point can be 
easily tracked based on classical motion estimation 
methods with higher robustness. In the other cases 
motion estimator seems to be very errors prone and 
it would be better to give more importance to the 
others data terms. According to the position of the 
curve’s point, for external forces, we want to 
dynamically change the weights to match the nature 
of the image, thus the area in which the point 
belongs to.  

In the previous section, the global energy was 
formulated as fellow: 

(ܥ)௚௟௢௕௔௟ܧ = ݉݅݊ ෍ ߱௜ܧ௜(ܥ)௡
ଵ  (10)

While we consider dynamic weighting scheme, we 
can rewrite the global energy as follows: ܧ௚௟௢௕௔௟(ܥ) = ෍ ቌ ߱ଵ(݌)ܧ௨௡௜௙(݌) + ߱ଶ(݌)ܧ௖௨௥௩(݌)  +߱ଷ(݌)ܧ௠௢௧௜௢௡(݌) + ߱ସ(݌)ܧ௖௢௟௢௥(݌) +߱ହ(݌)ܧௌ௧௔௕௜௟௜௧௬(݌) ቍ௣∈஼  

(11)

We consider that the weight associated with each 
energy is related to the point characterization. To 
describe the area around the point, we have chosen 
the similarity segment S୧ (described above) at each 
point of the curve. We may act individually on each 
point. Thus we can say, for example, the shorter the 
segment S୧ is, the higher is the probability that the 
point is a contour point. Therefore we give more 
confidence (and thus more weight) to the estimated 
motion and so to ܧ௠௢௧௜௢௡ by increasing ߱ଷ 
proportionally to the length of ௜ܵ denoted ݏܮ௜ . In the 
other case we want to increase the stability force 
effect. In practice, the lengths of all similarity 
segments Ls୧ are normalized by the maximum length 
then we can write: ܰݏܮ௜ = ௜ݏܮ ൗ.(௜ݏܮ) ݔܽ݉  (12)
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The global energy has to be rewritten according to 
this following formula: ܧ௚௟௢௕௔௟(ܥ) = 

෍ ۈۉ
(݌)௨௡௜௙ܧ(݌)ଵ߱ۇ +  ߱ଶ(݌)ܧ௖௨௥௩(݌)  +(1 − (݌)௠௢௧௜௢௡ܧ(݌)௜) ߱ଷݏܮܰ (݌)௖௢௟௢௥ܧ(݌)௜ ߱ସݏܮܰ+ (݌)ௌ௧௔௕௜௟௜௧௬ܧ(݌)௜ ߱ହݏܮܰ+ ۋی

ۊ
௣∈஼  

(13)

5 EXPERIMENTS AND RESULTS 

Our system proposes a graphical user interface 
allowing user to draw one or many scribbles at any 
frame of a video to point out an object. Our 
algorithm is designed to handle dynamic 
backgrounds, as it is the case in Figure 6 and 8 
sequences. There are two modes: an interactive 
mode allowing the user to designate the object of 
interest and an automatic mode where the scribbles 
are propagated automatically in a real time 
processing. Therefore user can interact at any time to 
point out a new region which was not visible at the 
beginning of the video Figure 8. Our final results are 
best seen in video form, though we show several still 
images for example in this section. 

 

 
                       (a)                                                (b)      

  
                       (c)                                                (d)      

Figure 6: (a) Three scribbles drawn at frame 1 by the user 
to designate the women in the video. (b)(c)(d) The 
respective results of propagating scribbles from frame ‘a’ 
to frames 8, 23 and 30. 

We tested our approach on three standard video 
sequences (640x480x30) from the literature (Bai et 
al., 2009) and (Wang and Cohen, 2005) (Figure 6, 7, 

8). It is difficult to objectively measure a success of 
systems like our presented one. One possible 
approach is based on the number of frames in which 
the initial designated object continues to be pointed 
out by our algorithm. This information is got from 
the final user. To compare our method, we 
implement an optical flow based scribbles 
propagator, denoted OFBP. Figure 6a, 7a show two 
examples of scribbles drawn by user. We try to 
propagate these user’s hints automatically to 
designate the object initially pointed by the user on 
the next video frames these scribbles can be used as 
input to (Levin et al., 2008) matting method applied 
frame by frame to extract to whole video object. 
OFBP approach fails even on basic cases as shown 
on Figure 2. Our results are shown on Figures (6, 7, 
8) and compared to OFBP implementation in Table 
1. We evaluate the improvement of the dynamic 
weighting mechanism. In the case of Amira 
sequence, the gain is 20%. In the Walking man 
sequence the gain is around 37%. 

  
                       (a)                                                  (b)      

  
                       (c)                                                 (d)      

Figure 7: (a) The user points out the man by drawing two 
scribbles on the first video frame of walking man 
sequence. (b)(c)(d) The respective results of propagating 
the scribbles from frame (a) to frames 7, 14 and 25. 

6 CONLUSIONS 

In this paper, we showed a new approach for hand 
drawn curve propagation. It consists in using active 
curves model to formulate the problem of video 
object selection. In addition a new dynamic 
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weighting scheme has been introduced to let the 
curve stick better to the image data. Our framework 
allows user driven designation of objects in videos. 
Our contributions consist in the formulation of 
scribbles propagation as an active curve model and 
the definition of the different related energies 
functional combined with dynamic weights 
management in order to obtain a more accurate 
video tracking. Our algorithm can be further 
improved by adding features such as texture or by 
using a more recent and accurate optical flow 
estimator. We are currently focusing on this 
improvement and studying the potential of our 
approach in two fields: video matting and human 
actions classification. 

Table 1: The number of frames in which the initial 
selected object is still designated. 

        
 Video     

 
Method 

Amira 
(30 frames) 

Adam Lib 
(29 frames) 

Walking man 
(30 frames) 

OFBP 11 26 5 

our method 
without dynamic 

weights 

24 29 14 

our method 30 29 25 
 

   

Figure 8: (a) The user adds a new scribble to point out a 
new region which was not visible in the beginning of the 
“Adam lib” sequence. (b) The propagation continue on 
based these two scribbles as shown in frame 29 (b). 
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