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Abstract: We present a simple and straightforward derivation to implement active contours for tracking distributions
(Freedman and Zhang, 2004) and its improvement, i.e., distribution tracking through background mismatch
(Zhang and Freedman, 2005). In the original work, two steps are performed in order to derive the tracking
evolution equations. In the first step, curve flows are derived using Green’s Theorem, and in the second
step level set method is used to implement the curve flows, which seems to be somewhat complex. In our
implementation, tracking evolution equations are derived directly by using variational theory. This is useful
to understand the tracking method better. The final tracking evolution equations are identical to the previous
work (Freedman and Zhang, 2004; Zhang and Freedman, 2005).

1 INTRODUCTION

Determining the location of an object contour is an
important research topic in the field of object track-
ing. Tracking methods based on level set theory have
received extensive attention (Freedman and Zhang,
2004; Zhang and Freedman, 2005; Bibby and Reid,
2008; Zhou et al., 2007; Prisacariu and Reid, 2011;
Cremers, 2006; Fussenegger et al., 2006; Allili and
Ziou, 2007) because level set method can implicitly
represent almost any kind of contour and evolve an
active contour naturally.

In the paper (Freedman and Zhang, 2004), authors
devise trackers using distribution distances with three
criteria, Kullback-Leibler distance, Bhattacharyya
measure, and self-developed “simple criterion”. To
extremize distribution distances, first, they propose a
proposition by converting a distribution distance from
an area integral to a parameterized curve integral us-
ing Green’s Theorem and calculus of variations which
is very sophisticated. The representation of a parame-
terized curve is in a two dimensional space. So knowl-
edge of differential geometry is required in this de-
duction. After the first step, a curve evolution equa-
tion is attained using the gradient method. Finally,
implementation of the curve evolution function uses
the level set method to attain the tracking evolution
function. So the curve evolution is just an intermedi-
ate product and a tool for deduction. But this makes
the deduction hard to be understood by readers. In

the paper (Zhang and Freedman, 2005), a background
density mismatching term is added to the original
equation (Freedman and Zhang, 2004). Although the
principle of background density mismatching term is
similar to that of foreground density matching term, it
allows the algorithm utilise more information so that
it increases the robustness further.

In this paper, we present a new way to deduce a
level set evolution equation without introduction of
the curve flow. This is a really simple method since
it only uses the knowledge of variational theory. Fur-
thermore, this method can calculate a tracking evo-
lution equation directly which reduces the difficulty
of understanding the algorithm of tracking distribu-
tions. Although the derivation methods of Daniel
Freedman’s and ours are different, the final tracking
evolution equations are the same.

2 BRIEF INTRODUCTION TO
TRACKING DISTRIBUTIONS

2.1 Density Matching Criteria

In (Freedman and Zhang, 2004), Daniel Freedman
et al. propose a new level set based tracking algo-
rithm which finds the object of interest using fore-
ground match. The tracker aims at finding the region
ω in a given image such that the sample distribution
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(sample probability density)Pω most closely matches
the corresponding model distribution (model proba-
bility density)Pstd. Daniel Freedman (Freedman and
Zhang, 2004) verifies three criteria. In the follow-
ing text, we introduce the algorithm (Freedman and
Zhang, 2004) with Kullback-Leibler distance since
this criterion is the simplest one to implement track-
ing distributions and this criterion is also used in the
paper (Zhang and Freedman, 2005).

Consider a given imageI to be a mapping from
Ω⊆R2 in a plane coordinates system toywhich could
be an intensity, color vector and so on. The current
sample probability density (e.g., RGB histogram) of
a region of interest is denoted byPω (y) whereω ⊆ Ω
denotes the region of interest in the image.

Thus, a sample probability densityPω (y) is given
by

Pω (y) =

∫
ω K (y− I (x))dx∫

ω dx
=

N(y;ω)
A(ω)

(1)

where K (·) is an n-dimensional function, e.g., for
RGB histogram,n= 3 (RGB vector).

K (a) =

{

1 a=
−→
0

−→
0 otherwise

(2)

A(ω) is the area of the regionω andN(y,ω) de-
notes the number of pixels ofy in the regionω.

For Kullback-Leibler distance:

D(ω) =
∫

Pstd(y) log

(

Pstd(y)
Pω (y)

)

dy (3)

For Bhattacharyya measure:

D(w) =
∫

√

pstd(y) pω (y)dy (4)

It is clear to see that the more closely they match,
the smaller the Kullback-Leibler distance is and the
bigger the Bhattacharyya measure is. So the object of
tracking turns to extremizingD.

2.2 Curve flow

In order to attain the extremal, how to evolve the ac-
tive contours is taken into account. First, a proposi-
tion is proposed as follows:

Proposition: Letω be an elementary region ofR2,
let c= ∂ω be its boundary, and letΓ(ω) =

∫
ω µ(x)dx,

where µ is C1. Additionally, let δΓ
δc be a 2-vector

whoseith component is the variational derivativeδΓ
δci

,

assuming a particular parameterization for c. Then
there exists a parameterization of c for which

δΓ
δc

∝ µ(c)~n (5)

where~n is the normal toc.
This proposition is used to calculate curve flows.

Taking the Kullback-Leibler Flow for example,use
the above proposition to calculateδD

δc :

δD
δc

=
Pω (I (c))−Pstd(I (c))

N (I (c))
~n (6)

Attain the gradient descent flow using the method
of steepest descent:

∂c
∂t

=−
δD
δc

=
Pstd(I (c))−Pω (I (c))

N(I (c))
~n (7)

For Bhattacharyya measure, tracking turns to
maximising D(ω). In a similar way, attain Bhat-
tacharyya gradient ascent flow:

∂c
∂t

=
δD
δc

=
1

2A(ω)

[

√

Pstd(I (c))
√

Pω (I (c))
−D(ω)

]

~n (8)

To increase robustness, background density mis-
matching is introduced (Zhang and Freedman, 2005).
Background density mismatching is to maximise the
disparity of probability density between the region
of interest and the backgroundΩ\ω. Therefore, a
curve flow becomes a combination flow based on both
background-mismatching and foreground-matching.

2.3 Implementation with Level Set

Then these flows are implemented using the level set
framework (Osher and Sethian, 1988) for its unparal-
leled advantages in topology.

3 OUR METHOD

In this part, we take Kullback-Leibler distance for ex-
ample to present our deduction.

3.1 Implementation of Energy with
Level Set

In level set theory, the boundary of a region of inter-
est is a curvec which is represented in 3-dimension
space. One more dimension ingeniously allows au-
tomatically topological changes, such as merging and
breaking.
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Let ω⊆R2 be a region of interest in a given image.
Then the curvec (the boundary ofω, i.e., c= ∂ω) is
represented as the zero level set of a scalar Lipschitz
continuous functionφ : R2 →R. The level set function
φ is usually defined as a signed distance function for
the sake of stability.

φ(x) =











> 0 in ω
< 0 in Ω\ω
= 0 on∂ω

(9)

wherex∈ Ω ⊆ R2 in a plane coordinates system of a
given image.

In order to represent above equations by the level
set function, we need to introduce the Heaviside func-
tion H:

H {z} =

{

1 z≥ 0
0 z< 0

(10)

Thus the level set formulation of equation (1) is:

Pω (y) =

∫
Ω K (y− I (x))H (φ)dx∫

Ω H (φ)dx
(11)

In our method, equation (3) is referred to as an
energy functional. Minimising this energy is equiv-
alent to finding a region which represents the closest
distribution as the model distribution (i.e., prior dis-
tribution). Then equation (3) can be implemented by
level set framework:

E (φ) = ∑
y

Pstd(y) log





Pstd(y)∫
Ω K(y−I(x))H(φ)dx∫

Ω H(φ)dx



 (12)

Equation (12) is a fraction-type energy functional
for level set which is different from classic equations
(Chan and Vese, 2001; Vese and Chan, 2002; Li et al.,
2007; Zhang et al., 2010).

3.2 Euler-Lagrange Differential
Equation

Calculus of variations (Wei-chang, 1980) is a com-
mon tool to search for a function that minimizes a
certain functional. The Euler-Lagrange differential
equation is the fundamental equation of calculus of
variations.

E (φ) is a functional and we want to find theφ min-
imizing E (φ). WhenE (φ) reaches its extreme, the
segmentation gets the ideal result ( The probability
density of the regionφ ≥ 0 is the same as the model
probability density ). A necessary condition forφ to

yield the minimum ofE is : δE = 0, whereδ is the
first variation ofE. In terms of the algorithms of cal-
culus of variations, we have:

δE =−∑
y

Pstd(y)
Pω

δPω (y) (13)

δPω (y) =
A(ω)δN(y;ω)−N(y;ω)δA(ω)

A(ω)2 (14)

So, we attain:

δE=−∑
y

Pstd(y)
N (y;ω)

δN (y;ω)−
Pstd(y)
A(ω)

δA(ω) (15)

where

δN(y;ω) =
∫

Ω
K (y− I (x))δ(φ)δφdx (16)

δA(ω) =
∫

Ω
δ(φ)δφdx (17)

andδ(φ) is the Dirac delta functionδ(z) = d
dzH (z) ,

δφ is the first variation ofφ.
Combine these equations (13)-(17) above and take

account of the arbitrariness ofδφ, then we get the
Euler-Lagrange differential equation:

Pω (I (x))−Pstd(I (x))
N(I (x) ,ω)

δ(φ(x)) = 0 (18)

So gradient descent with respect to the Euler-
Lagrange differential yields the following evolution:

∂φ(x)
∂t

=
Pstd(I (x))−Pω (I (x))

N (I (x) ,ω)
δ(φ(x)) (19)

We also calculate the evolution equation of the en-
ergy model using Bhattacharyya measure which is the
same as the results of the work (Freedman and Zhang,
2004; Zhang and Freedman, 2005).

In Bhattacharyya criterion-based model, we attain
the Euler-Lagrange differential equation as follows:

1
2A(ω)

[
√

pstd(I (x))
pω (I (x))

−D(ω)

]

δ(φ(x)) = 0 (20)

and its tracking evolution equation is:

∂φ
∂t

=
1

2A(ω)

[
√

pstd(I (x))
pω (I (x))

−D(ω)

]

δ(φ(x)) (21)

So comparing the equations above, equations (18)
and (20) correspond to equations (7) and (8). Af-
ter equations (7) and (8) is implemented by level set
method, two deductions get the same results as equa-
tion (19) and equation (21).
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Figure 1: Left: Tracking results of bird sequence with
Kullback-Leibler criterion. Frame 20, 40, 60, 80, 100
and 120 are displayed.(resolution of 320x240, 25 FPS)
Rright: Tracking results of player sequence with Kullback-
Leibler criterion. Frame 2, 13, 24, 35, 46 and 79 are dis-
played.(resolution of 512x380, 25 FPS)

4 EXPERIMENTAL RESULTS

We used an Intel Core2 E7300 (2.66GHz) machine
to run all our experiments using the algorithm of
distribution tracking through background mismatch
(Zhang and Freedman, 2005). The model distribu-
tions are built as 8-bin RGB histograms out of the bird
and out of the player taken from the first frame respec-
tively. We show 2 experimental results in Fig.1. The
results show that this algorithm can evolve the bound-
ary of the tracking object correctly although there ex-
ist large non-rigid deformations.

5 CONCLUSIONS

In this paper, we present a simple way of deduction to
implement two important tracking algorithms (Freed-
man and Zhang, 2004; Zhang and Freedman, 2005)
based on level set theory. Our deduction results are
identical to the previous work (Freedman and Zhang,
2004; Zhang and Freedman, 2005). Further, our evo-
lution equations for level set are deduced in a straight-
forward and direct way. This way of deriving an evo-
lution equation can provide readers with an intuitive
explanation of the foreground density matching algo-
rithm and the background density mismatching algo-
rithm, which helps understand and uses these two al-
gorithms better.
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