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Abstract: Contrast enhancement of color images can prove to be a difficult task because artifacts and unnatural colors
can appear after the process. In this paper we propose a wavelet-based variational framework in which contrast
enhancement is obtained through the minimization of a suitable energy functional of wavelet coefficients. We
will show that this new approach has certain advantages with respect to the usual spatial techniques sustained
by the fact that the wavelet representation is intrinsically local, multiscale and sparse. The Euler-Lagrange
equations of the model are implicit equations involving the detail wavelet coefficients of the image. These
equations can be quickly solved by Newton’s method, so that the algorithm can rapidly compute the enhanced
detail coefficients. We will discuss the influence of the parameters tests on natural images to show that the
method is artifact free within an ample range of variability of its parameters.

1 INTRODUCTION

Digital images can present poor contrast, globally or
locally, due to many factors: wrong camera exposi-
tion or aperture settings, back-light conditions, high
dynamic range of the scene, and so on. Contrast en-
hancement can help improving detail visibility and, in
general, the overall look of the image. When we deal
with color images, the issue of contrast enhancement
is quite complex because artifact and unnatural colors
can appear after the contrast modification.

Since humans are capable of a high-quality color
vision, it is quite natural to design algorithms that
try to mimic the Human Visual System (HVS) fea-
tures in order to reach an efficient enhancement.
The algorithms built in this way are usually called
perceptually-inspired and their use can be found in
research fields as computational photography, image
quality, interior design and robotic vision to cite but a
few.

In this paper we analyze the problem of percep-
tual contrast enhancement with variational techniques
from the point of view of wavelet theory. For this
purpose we propose a functional of detail coefficients
whose minimization induces a local and multiscale
improvement of contrast. We will show that the Euler-
Lagrange equations of the functional are implicit non-
linear equations which enhance the wavelet detail co-
efficients of the image. By using Newton’s method
those equations can be quickly solved, ensuring a

global computational complexity ofO (N), N being
the total number of image pixels. Moreover, the spar-
sity of the wavelet representation allows the algorithm
to be fast.

For the sake of clarity, it is worthwhile to in-
troduce here the notation that we are going to use
throughout the paper. Given a discrete RGB im-
age, we will denote byI ⊂ Z

2 its spatial domain
and byx ≡ (x1,x2) and y ≡ (y1,y2) the coordinates
of two arbitrary pixels inI. We will always con-
sider a normalized dynamic range in[0,1], so that a
color image function will be~I : I → [0,1]3, ~I(x) =
(IR(x), IG(x), IB(x)), whereIk(x) is the intensity level
of the pixel x ∈ I in the chromatic channelk ∈
{R,G,B}. We stress that every computation will be
performed on the scalar components of the image,
thus treating independently each chromatic compo-
nent as in Retinex-like algorithms (Land and Mc-
Cann, 1971). Therefore, we will avoid the subscript
k and write simplyI(x) to denote the intensity of the
pixel x in a given chromatic channel.

2 A PERCEPTUAL CONTRAST
FUNCTIONAL IN THE
WAVELET DOMAIN

In this section we shall motivate our choice for the
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contrast functional to be minimized in order to obtain
a perceptually-inspired contrast enhancement in the
wavelet domain.

In (Palma-Amestoy et al., 2009), the authors
proved that there exists only a type of contrast func-
tional that comply with a set of basic phenomenolog-
ical HVS properties:color constancy, i.e. the abil-
ity to perceive colors as (almost) the same indepen-
dently on the illumination conditions,locality of con-
trast enhancement, exhibited by well-known phenom-
ena as e.g. Mach bands or simultaneous contrast, and
Weber-Fechner’s law of contrast perception, i.e. the
logarithmic response of the HVS to changes of spot
light intensity. This functional is the following1:

Cw(I) = ∑
x∈I

∑
y∈I

w(x,y)
min{I(x), I(y)}
max{I(x), I(y)}

, (1)

wherew : I× I → (0,+∞) is a weight function that
induces locality. The full details about why this func-
tional complies with the basic HVS features listed
above can be found in the quoted paper, here we
briefly report why the minimization ofCw induces
contrast enhancement and how it is related to color
constancy. Regarding contrast enhancement, observe
that the functionc(I(x), I(y)) = min{I(x),I(y)}

max{I(x),I(y)} is mini-
mized when the minimum intensity value decreases
and the maximum increases, which of course cor-
responds to a contrast intensification. The relation
with color constancy comes from the observation that
c is a homogeneous function of degree zero, i.e.
c(λI(x),λI(y)) = c(I(x), I(y)) for all λ 6= 0; in image
formation modelsλ is interpreted as the ‘color tem-
perature’ of the light source that illuminates a scene,
thus the homogeneity property implies that the func-
tional Cw is able to automatically discard the color
cast induced by a global illuminant, coherently with
the HVS property of color constancy.

In this framework the functionc plays the role of
basic perceptual contrast variable, a concept that in-
terested also E. Peli in (Peli, 1990). Peli generalized
the pioneering work (Hess et al., 1983) and studied
the perceptual contrast through a multiscale approach
in which, at each given scalej, he defined thepercep-
tual contrast of x with respect to a neighborhoodU(x)
as a ratio, precisely

1In the quoted paper the definition ofCw allows an in-
creasing diffeomorphismϕ to act on the fraction inside the
integral and the caseϕ ≡ id, id being the identity map used
here, is studied as a subcase. Sinceϕ will not have any
prominent role in the present paper, we have omitted its
presence since the beginning to simplify the notation as
much as possible.

cPeli
j ,U(x) =

g j ∗ I(x)
h j ∗ I(x)

(2)

whereg andh are a band-pass and a low-pass filter,
respectively, of a filter bank with support inU(x) and
∗ denotes the convolution as usual. Peli’s ideas were
then embedded in the wavelet framework and used by
(Bradley, 1999) to build a wavelet-based visible dif-
ference predictor and by (Vandergheynst et al., 2000)
to implement digital watermarking. The details on the
considerations that led Peli to this definition can be
found in the previously quoted paper.

We are now going to show that the similarity be-
tween the two approaches to perceptual contrast just
described becomes even stronger if we recast the vari-
ational framework of (Palma-Amestoy et al., 2009)
into the wavelet domain.

For this purpose, let us start recalling that, fol-
lowing the classical reference book (Mallat, 2008),
an orthogonal wavelet multi-resolution analysis of
an image between two scales 2L and 2J, L,J ∈ Z,
L < J, is given by three sets of detail coefficients
{dH

j ,k,d
V
j ,k,d

D
j ,k}k∈I, j=L,...,J, which correspond to the

horizontal, vertical and diagonal detail coefficients,
respectively, completed by{aJ,k}k∈I, the approxima-
tion coefficients at the coarser scale. If the image
is in color, then each chromatic channel has its own
set of detail and approximation coefficients. The set
{aJ,k}k∈I gives a coarse description of the image at
the scaleJ and it is obtained by convolution between
the image and a low pass filter. The set{d j ,k}k∈I is
obtained by convolution between the image and a spa-
tially localized band pass filter, so that the{d j ,k}k∈I
give a measure oflocal contrastin the image at the
scale 2j .

Our proposal for a perceptual contrast functional
in the wavelet domain is

C p j ,{a j,k}({d j ,k}) = ∑
k∈I

p j
a j ,k

d j ,k
, (3)

wherep j are positive coefficients that permits to mod-
ulate the strength of contrast enhancement. This def-
inition makes sense if the detail coefficients are dif-
ferent from zero, for this reason we fix a threshold
Tj > 0 for each scale and consider only thosed j ,k sat-
isfying |d j ,k| > Tj ; the other coefficients will be left
unchanged.

Thanks to the locality of the wavelet representa-
tion, the functionalC p j ,{a j,k} is intrinsically local and
does not need the introduction of any further weight-
ing function, which it is instead essential in the spatial
variational framework to localize the computation.

If we keep the approximation coefficients fixed
and let the other free to vary, then the minimization of
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a j,k
d j,k

corresponds to the intensification of the detail co-

efficients and thus of local contrast. Observe also that
here the basic contrast variable is

a j,k
d j,k

, which is still

a homogeneous function of degree 0 as in the varia-
tional framework recalled above and that, at the same
time, it is in line with the multiscale contrast inter-
pretation of Peli, since the coefficientsa andd come
from low and band pass filters, respectively.

We cannot determine the enhanced detail coeffi-
cients solely by minimizing the functionalC p j ,{a j,k}

because that could lead to an uncontrollable over-
enhancement of contrast, thus we have to introduce
a dispersion control term,D d0

j,k
, that balances the ef-

fect of C p j with a conservative action that tends to
maintain the detail coefficients to their original values
{d0

j ,k}. In (Palma-Amestoy et al., 2009) it has been
proven that a suitable choice for the dispersion term
to preserve dimensional coherence when the contrast
is a homogeneous functional of degree 0 is theen-
tropic dispersion, which in the present problem can
be written as:

D d0
j ,k
({d j,k}) = ∑

k∈I

[

d0
j,k log

d0
j,k

d j,k
−
(

d0
j,k−d j,k

)

]

. (4)

We then define the wavelet-based perceptually-
inspired contrast-enhancement energy as the sum of
the two previous functionals, i.e.

E p j ,{a j,k},d
0
j,k
({d j ,k}) =

(

C p j ,{a j,k}+D d0
j,k

)

({d j ,k}).

(5)
By setting to zero the first variation of this energy

we find its Euler-Lagrange equations, as we show in
the following proposition. Its proof is postponed to
the Appendix for the sake of a better readability of
the paper.

Proposition 2.1. The minimization ofE p j ,{a j,k},d
0
j,k

gives rise to the following Euler-Lagrange equations
for the detail coefficients:

∂E p j ,{a j,k},d
0
j,k

∂{d j ,k}
= 0 =⇒ d j ,k = d0

j ,k+ p j
a j ,k

d j ,k
. (6)

We can now summarize the steps of the variational
wavelet-based algorithm for perceptual contrast en-
hancement as follows: 1) Consider the three chro-
matic components of an image independently2 and
use the discrete wavelet transform to obtain a mul-
tiresolution analysis of each component over a cer-
tain number of scales; 2) Compute, for each scale,

2Process color images by performing operations sepa-
rately on the three chromatic channels is common in all
Retinex-like algorithms.

the new detail coefficients (horizontal, vertical and di-
agonal) as prescribed by eq. (6) and substitute the
original with these new ones; 3) Apply the inverse
wavelet transform to obtain the filtered image. In ad-
dition to these steps, we operate a linear stretching of
the coarser approximation coefficientsaJ,k in order to
maximize the dynamic range reproduced.

The wavelet algorithm previously described has
computational complexityO (N), N being the number
of image pixels, and we implemented it in MATLAB
using the ‘wavelet toolbox’.

Besides the direct and inverse wavelet transfor-
mations, the operation that requires more time is the
iterative computation of the enhanced detail coeffi-
cients, i.e. the resolution of the implicit equation
(6). An efficient way to do that is using Newton’s
method (Fausett, 2007), initialized with the original
valuesd0

j ,k. Our algorithm stops when the relative
error between two subsequent iterations is smaller
than 10−3 and typically convergence is reached in
just two, or at maximum three, iterations. Thanks
to the quadratic convergence of Newton’s algorithm
and to the low computational cost of the discrete
wavelet transform, the wavelet algorithm is consid-
erably faster than the spatial variational algorithm of
(Palma-Amestoy et al., 2009). To have an idea about
the speed up, we report that it took only 4.98 seconds
with the MATLAB code to filter a quite large image
of dimension 922×691 over five scales, while it took
391.35 seconds to filter it with the C++ implemen-
tation of the algorithm presented in (Palma-Amestoy
et al., 2009) on the same computer. We also stress
that MATLAB is an interpreted language, so that an
optimized code for graphic card can further speed up
the wavelet algorithm in order to reach real-time per-
formances.

In the next section we shall discuss the effect of
parameters on the wavelet algorithm and its perfor-
mances on natural images.

3 TESTS

As it was presented above, the wavelet algorithm has
4 different types of parameters: 1) the thresholdTj
beyond which the wavelet coefficients are considered
significantly above 0 at the scale 2j ; 2) the number
of scales over which the computation is performed;
3) the coefficientsp j , 2L ≤ 2 j ≤ 2J, that express how
much we permit to change the original wavelet de-
tail coefficients in each scale; 4) the mother wavelet
ψ. In the next subsections we shall discuss how the
algorithm performances are influenced by these pa-
rameters, but before that we would like to show the
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Figure 1: Images on the left: Original ones. Images on
the right: enhanced versions after the wavelet algorithm:
details appear in originally underexposed and overexposed
areas, and the pink color cast in the ‘Lena’ image is re-
moved. The filtering parameters are the following: the
mother wavelet is the Daubechies wavelet with two vanish-
ing moments, the computation is performed over the maxi-
mum number of scales allowed for each image (see Subsec-

tion 3.2 for more details),p j = 0.5, andTj =
maxk∈I{dj ,k}

10
for each scale 2j .

efficiency of the wavelet algorithm on three images
affected by distinct problems: under-exposure, color
cast and over-exposure; as can be seen in Figure 1 the
wavelet algorithm is able to perform a radiometric ad-
justment of the non-optimally exposed pictures and to
strongly reduce the color cast.

3.1 The Threshold ParameterTj

In the computational algorithm we have set the thresh-

old parameter to beTj ≡
maxk∈I{d j,k}

K , K > 1, for all the
scales 2j . Of course selectingK ≃ 1 we deal only with
the largest detail coefficients, while if we setK ≫ 1
we introduce in the computation also the smaller ones.
Our tests have shown that an optimal value forK is 10
for every scale, in fact, selecting values ofK bigger
then 10 the algorithm does not introduce significant
improvement in detail rendition but it may have the
unwanted effect to intensify the noise corresponding
to small detail coefficients. Thus, we have set once

Figure 2:From left to right: ‘Lena’ image filtered with the
wavelet algorithm with decreasing values of the threshold

Tj =
maxk∈I{dj ,k}

K corresponding toK =10 and 50, respec-
tively. We can see that whenK = 50 the resulting image
is affected by noise due to the intensification of small de-
tail coefficients corresponding to noise. The other param-
eters are maintained fixed: the computation is performed
over the maximum number of scales allowed for each im-
age (see Subsection 3.2 for more details),p j = 0.5 for each
scale, and the mother wavelet is ‘Sym8’, the Symlet with
support a with of 15 pixels (arbitrary chosen).

and for allTj =
maxk∈I{d j,k}

10 for all the scales 2j , which
means that we only deal with the detail coefficients
that lie in the same decimal order of magnitude of the
biggest ones. In Figure 2 we show the effect of de-
creasing too much the thresholdTj .

3.2 The Number of Scales

Thenumber of scales J−L that can be used depends
on the image dimension and the widthW ψ of the
mother wavelet support. In fact, the maximum num-
ber of meaningful scales is the highest value ofJ−L
such that the following inequality holds: 2J−L

W ψ ≤
min{width(I),height(I)}. This value can be auto-
matically computed with the command ‘wmaxlev’ in
the MATLAB wavelet toolbox. Our tests have shown
that the best contrast enhancement performances of
the wavelet algorithm in terms of detail rendition and
elimination of color cast corresponds to the highest
number of scales allowed. For this reason we have
used the command ‘wmaxlev’ to automatically set the
number of scales over which carry on the computation
of the enhanced detail coefficients, thus eliminating
the variability of this parameter.

3.3 The Contrast Enhancement
Coefficientsp j

From eq. (6) it follows that, if we increase the value of
the coefficientsp j , the effect of contrast enhancement
becomes more intense. However, if we increase them
too much, contrast can be over-enhanced, resulting
in unpleasant images with unnaturally high contrast.
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Figure 3: From left to right: effect of increasing the coef-
ficients p j from 0.5 to 5, respectively. The images filtered
with p j = 10 have unnatural high contrast. In all the compu-
tations the other parameters are maintained fixed: the com-
putation is performed over the maximum number of scales

allowed, Tj =
maxk∈I{dj ,k}

10 for each scale and the mother
wavelet is the ‘Sym8’ (arbitrarily chosen).

This effect is shown in Figure 3, where we show the
difference produced by increasing the coefficientsp j
of one order of magnitude.

In general, settingp j = 0.5 corresponds to over-
all good performances of the wavelet algorithm, thus
0.5 can be considered as a ‘reference value’ for the
coefficientsp j . However, since their setting is very
intuitive, they can also be easily tuned around this
reference value by a user that may want more or less
contrast enhancement.

3.4 The Mother Waveletψ

Different mother waveletsψ have, in general, differ-
ent support and symmetry properties3. As a conse-
quence, different mother wavelets induce different lo-
cal contrast enhancement, as can be seen in Figure 4.
How to properly choose the family of wavelet is still
an open problem that we would like to address in the
future.

Let us suppose that a give wavelet class is chosen,
then one has a further degree of freedom given by the
number of vanishing moments. These ones have a
strong relation with local contrast: it can be proved
(see (Mallat, 2008)) that the bigger is the number of
vanishing moments ofψ, the higher must be the im-
age contrast detected in the support ofψ to get de-
tail coefficients appreciably different from zero. So,
the rationale for choosing the number of moments of
a mother wavelet within the wavelet-based algorithm
discussed in this paper is the following: if a user is
interested in highlighting only high contrast regions,
then a wavelet with a high number of vanishing mo-

3For an extensive discussion about mother wavelet prop-
erties, the interested reader is referred to chapter 7 of the
standard book (Daubechies, 1992). Moreover, MATLAB
provides information about symmetry, size of the support
and number of vanishing moments of every wavelet family
with the command ‘waveinfo’.

Figure 4:From left to right: output of the wavelet algorithm
obtained with the Daubechies and Coiflet wavelet, respec-
tively, with 4 vanishing moments. The other parameters are
maintained fixed: the computation is performed over the

maximum number of scales allowed,Tj =
maxk∈I{dj ,k}

10 and
p j = 0.5 for each scale.

Figure 5: From left to right: output of the wavelet algo-
rithm obtained with the Daubechies wavelet with 3 and 8
vanishing moments, respectively. The other parameters are
maintained fixed: the computation is performed over the

maximum number of scales allowed,Tj =
maxk∈I{dj ,k}

10 and
p j = 0.5 for each scale.

ments should be selected; viceversa, if one is also in-
terested in enhancing lower contrast regions, then a
smaller number of vanishing moments must be pre-
ferred. This fact is best shown in dark image zones,
as in Figure 5, where we show the effect of changing
the number of vanishing moments of the Daubechies
wavelet from 3 to 8. Coherently with what stated
above, it can be seen that the contrast enhancement
on low contrast areas provided by a wavelet with a
smaller number of vanishing moments is better since
a greater number of detail coefficients appreciably
greater than zero can be enhanced.

4 CONCLUSIONS AND
PERSPECTIVES

We have proposed a variational model of
perceptually-inspired contrast enhancement of
color images based on the wavelet representation.
The wavelet framework underlines the similarities
between the interpretation of perceptual contrast
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given by (Palma-Amestoy et al., 2009) and by (Peli,
1990). The new definition of perceptual contrast in
the wavelet domain proposed here permits to con-
struct a fast algorithm that can be used to intensify
contrast in color images without introducing artifacts
or unnatural colors.

The wavelet algorithm is intrinsically local and
has computational complexityO (N), N being the
number of image pixels, and it can be parallelized
in order to achieve real-time performances even for
large images, thus it could be also used to efficiently
process video sequences (e.g. to reduce flickering
or remove color cast due to film ageing). This im-
provement with respect to the variational algorithm
presented in (Palma-Amestoy et al., 2009) is pro-
vided by the sparsity of the wavelet representation and
by quadratic convergence of the Newton algorithm,
which is used to solve the implicit equations that give
the enhanced detail coefficients.

Qualitative and quantitative tests about the
wavelet-based algorithm shows that it is able to en-
hance both under and over exposed images and to re-
move color cast, as the spatial variational method of
(Palma-Amestoy et al., 2009).

The wavelet framework points out new issues
whose discussion is beyond the scope of this paper,
but that we consider interesting for future investiga-
tion: 1) What is the relation between the intrinsic
features of the mother waveletψ, i.e. shape, sup-
port width and symmetry, and the color normalization
abilities of the wavelet algorithm? 2) Can we devise
an analogue model by suitably apply the windowed
Fourier transform to the spatial variational algorithm
presented in (Palma-Amestoy et al., 2009)? If so, how
does that model relates to the one described in this
paper? 3) Which is the optimal selection of the coef-
ficients p j for contrast enhancement? 4) Can neuro-
science models of vision provide insights to properly
choose the mother waveletψ and the coefficientsp j
or to guide towards a more complete model?
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APPENDIX

The computation of the first variation ofD d0
j,k

with

respect to{d j ,k} gives:

∂D d0
j,k

∂{d j ,k}
= 1−

d0
j ,k

d j ,k
. (7)

The first variation ofC p j ,{a j,k} with respect to{d j ,k}

gives
∂C p j ,{a j,k}

∂{d j ,k}
=−p j

a j ,k

(d j ,k)2 . (8)

Summing (7) and (8) we get

1−
d0

j ,k

d j ,k
− p j

a j ,k

(d j ,k)2 = 0, (9)

multiplying by d j ,k and simplifying the algebraic ex-
pression, we arrive to the result stated in Proposition
2.1. �

VISAPP 2012 - International Conference on Computer Vision Theory and Applications

322


