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Abstract: The scenario of classification with imbalanced data-sets has supposed a serious challenge for researchers along
the last years. The main handicap is related to the large number of real applications in which one of the classes
of the problem has a few number of examples in comparison with the other class, making it harder to be cor-
rectly learnt and, what is most important, this minority class is usually the one with the highest interest.
In order to address this problem, two main methodologies have been proposed for stressing the significance of
the minority class and for achieving a good discrimination for both classes, namely preprocessing of instances
and cost-sensitive learning. The former rebalances the instances of both classes by replicating or creating new
instances of the minority class (oversampling) or by removing some instances of the majority class (undersam-
pling); whereas the latter assumes higher misclassification costs with samples in the minority class and seek
to minimize the high cost errors. Both solutions have shown to be valid for dealing with the class imbalance
problem but, to the best of our knowledge, no comparison between both approaches have ever been performed.
In this work, we carry out a full exhaustive analysis on this two methodologies, also including a hybrid pro-
cedure that tries to combine the best of these models. We will show, by means of a statistical comparative
analysis developed with a large collection of more than 60 imbalanced data-sets, that we cannot highlight an
unique approach among the rest, and we will discuss as a potential research line the use of hybridizations for
achieving better solutions to the imbalanced data-set problem.

1 INTRODUCTION

In many supervised learning applications, there is a
significant difference between the class prior rates,
that is the probability a particular example belongs
to a particular class. This situation is known as the
class imbalance problem (Chawla et al., 2004; Sun
et al., 2009; He and Garcia, 2009) and it is domi-
nant in a high number of real problems including, but
not limited to, telecommunications, WWW, finances,
ecology, biology, medicine and so on; for which it is
considered as one of the top problems in data min-
ing (Yang and Wu, 2006). Furthermore, it is worth to
point out that the positive or minority class is usually
the one that has the highest interest from the learning
point of view and it also implies a great cost when it
is not well classified (Elkan, 2001).

The hitch with imbalanced data-sets is that stan-
dard classification learning algorithms are often bi-

ased towards the majority classes and therefore there
is a higher misclassification rate in the minority class
instances. Therefore, throughout the last years, many
solutions have been proposed to deal with this prob-
lem, which can be categorized into two major groups:

1. Data Sampling: in which the training instances
are modified in such a way as to produce a more
balanced class distribution that allow classifiers to
perform in a similar manner to standard classifi-
cation (Batista et al., 2004; Chawla et al., 2002).

2. Algorithmic Modification : this procedure is ori-
ented towards the adaptation of base learning
methods to be more attuned to class imbalance is-
sues (Zadrozny and Elkan, 2001). We must also
stress in this case the use of cost-sensitive learning
solutions, which basically assume higher misclas-
sification costs with samples in the rare class and
seek to minimize the high cost errors (Domingos,
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1999; Zadrozny et al., 2003).

Works in imbalanced classification usually focus
on the development of new algorithms along one of
the categories previously mentioned. However, there
is not a study that exhaustively compares solutions
from one category to another making difficult the se-
lection of one kind of algorithm when classifying.
The aim of this contribution is to develop a thorough
experimental study to analyze the possible differences
between preprocessing techniques and cost-sensitive
learning for addressing classification with imbalanced
data. In addition, we also present in the comparison a
hybrid procedure that combines those two approaches
to check whether there is a synergy between them.

As baseline classifier, we will use the C4.5 deci-
sion tree generating algorithm (Quinlan, 1993); firstly
because it has been widely used to deal with imbal-
anced data-sets (Su and Hsiao, 2007; Drown et al.,
2009; Garcı́a et al., 2009), and secondly since it has
been included as one of the top-ten data-mining algo-
rithms (Wu and Kumar, 2009).

In order to analyze the oversampling and under-
sampling methodologies, we will focus on two of the
most robust approaches such as the “Synthetic Mi-
nority Over-sampling TEchnique” (SMOTE) (Chawla
et al., 2002) and its variant with the Wilson’s Edited
Nearest Neighbour (ENN) rule (Wilson, 1972), as
suggested by their performance among many differ-
ent situations (Batista et al., 2004; Fernández et al.,
2008). Regarding cost-sensitive methods, we have
selected the C4.5-CS algorithm (Ting, 2002), which
modifies the computation of the split criteria for C4.5
(normalized information gain) to take into account the
a priori probabilities according to the number of sam-
ples for each class.

In this work, we focus on imbalanced binary clas-
sification problems, having selected a benchmark of
66 problems from KEEL data-set repository1 (Alcalá-
Fdez et al., 2011). We perform our experimental study
focusing on the precision of the models using the
Area Under the ROC curve (AUC) (Huang and Ling,
2005). This study is carried out using nonparamet-
ric tests to check whether there exist significant dif-
ferences among the obtained results (Demšar, 2006;
Garcı́a and Herrera, 2008).

This contribution is organized as follows: first,
Section 2 presents the problem of imbalanced data-
sets and the metric we have employed in this context
whereas Section 3 describes the main methodologies
to address the problem: the preprocessing methods
used, cost-sensitive classification and a wrapper ap-
proach to combine both. In Section 4 an analysis of

1http://www.keel.es/data-sets.php

preprocessing techniques versus cost-sensitive learn-
ing approaches can be found. Finally, the conclusions
of this work are commented in Section 5.

2 IMBALANCED DATA-SETS IN
CLASSIFICATION

In this section, we first introduce the problem of im-
balanced data-sets and then we present the evaluation
metrics for this type of classification problem which
differs from usual measures in classification.

2.1 The Problem of Imbalanced
Data-sets

In the classification problem field, the scenario of
imbalanced data-sets appears frequently. The main
property of this type of classification problem is that
the examples of one class outnumber the examples
of the other one (Japkowicz and Stephen, 2002; Guo
et al., 2008; Sun et al., 2009; He and Garcia, 2009).
The minority class usually represents the most impor-
tant concept to be learnt, since it might be associated
with exceptional and significant cases (Weiss, 2004),
or because the data acquisition of these examples is
costly (Weiss and Tian, 2008).

Since most of the standard learning algorithms
consider a balanced training set, this situation may
cause the obtention of suboptimal classification mod-
els, i.e. a good coverage of the majority exam-
ples whereas the minority ones are misclassified fre-
quently; therefore, those algorithms which obtains a
good behaviour in the framework of standard clas-
sification do not necessarily achieves the best per-
formance for imbalanced data-sets (Fernandez et al.,
2010). There are several reasons behind this be-
haviour which are enumerated below:

1. The use of global performance measures for guid-
ing the search process, such as standard accuracy
rate, may benefit the covering of the majority ex-
amples.

2. Classification rules that predict the positive class
are often highly specialized and thus their cover-
age is very low, hence they are discarded in favour
of more general rules, i.e. those that predict the
negative class.

3. It is always difficult to distinguish between noise
examples and minority class examples and they
can be completely ignored by the classifier.

In recent years, the imbalanced learning problem
has received a high attention in the machine learn-
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ing community. Specifically, regarding real world do-
mains the importance of the imbalance learning prob-
lem is growing, since it is a recurring problem in
many applications. As a few examples, we may find
very high resolution airbourne imagery (Chen et al.,
2011), face recognition (Kwak, 2008) and especially
medical diagnosis (Lo et al., 2008; Mazurowski et al.,
2008). It is important to remember that the minority
class usually represents the concept of interest and it
is the most difficult to obtain from real data, for ex-
ample patients with illnesses in a medical diagnosis
problem; whereas the other class represents the coun-
terpart of that concept (healthy patients).

2.2 Evaluation in Imbalanced Domains

The evaluation criteria is a key factor in both assess-
ing the classification performance and guiding the
classifier modelling. In a two-class problem, the con-
fusion matrix (shown in Table 1) records the results
of correctly and incorrectly recognized examples of
each class.

Table 1: Confusion matrix for a two-class problem.

Positive prediction Negative prediction

Positive class True Positive (TP) False Negative (FN)

Negative class False Positive (FP) True Negative (TN)

Traditionally, accuracy rate (Eq. (1)) has been the
most commonly used empirical measure. However, in
the framework of imbalanced data-sets, accuracy is no
longer a proper measure, since it does not distinguish
between the number of correctly classified examples
of different classes. Hence, it may lead to erroneous
conclusions, i.e., a classifier achieving an accuracy of
90% in a data-set with an IR value of 9, is not accurate
if it classifies all examples as negatives.

Acc=
TP+TN

TP+FN+FP+TN
(1)

According to the previous issue, in this work we
use the Area Under the Curve (AUC) metric (Huang
and Ling, 2005), which can be defined as

AUC=
1+TPrate−FPrate

2
(2)

whereTPrate is the percentage of positive cases cor-
rectly classified as belonging to the positive class and
FPrate is the percentage of negative cases misclassi-
fied as belonging to the positive class.

3 ADDRESSING
CLASSIFICATION WITH
IMBALANCED DATA:
PREPROCESSING AND
COST-SENSITIVE LEARNING

A large number of approaches have been proposed
to deal with the class imbalance problem. These ap-
proaches can be categorized into two groups: the in-
ternal approaches that create new algorithms or mod-
ify existing ones to take the class-imbalance problem
into consideration (Barandela et al., 2003; Sun et al.,
2007; Ducange et al., 2010) and external approaches
that preprocess the data in order to diminish the ef-
fect of their class imbalance (Batista et al., 2004; Es-
tabrooks et al., 2004).

Regarding this, in this section we first intro-
duce the main features of preprocessing techniques,
focusing on SMOTE (Chawla et al., 2002) and
SMOTE+ENN (Batista et al., 2004), which will be
used along the experimental study. Next, we describe
cost-sensitive learning and the C4.5-CS methodology
(Ting, 2002). Finally, we present a framework to au-
tomatically detect a threshold for preprocessing using
an underlying algorithm, in this case, a cost-sensitive
approach.

3.1 Preprocessing Imbalanced
Data-sets: Resampling Techniques

In the specialized literature, we can find some pa-
pers about resampling techniques studying the effect
of changing the class distribution to deal with imbal-
anced data-sets.

Those works have proved empirically that, apply-
ing a preprocessing step in order to balance the class
distribution, is usually an useful solution (Batista
et al., 2004; Fernández et al., 2008; Fernández et al.,
2010). Furthermore, the main advantage of these
techniques is that they are independent of the under-
lying classifier.

Resampling techniques can be categorized into
three groups or families:

1. Undersampling Methods, which create a subset
of the original data-set by eliminating instances
(usually majority class instances).

2. Oversampling Methods, which create a superset
of the original data-set by replicating some in-
stances or creating new instances from existing
ones.

3. Hybrids Methods, which combine both sampling
approaches.
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Among these categories, there are several propos-
als where the simplest preprocessing are non heuristic
methods such as random undersampling and random
oversampling. In the first case, the major drawback is
that it can discard potentially useful data, that could
be important for the induction process. For random
oversampling, several authors agree that this method
can increase the likelihood of occurring overfitting,
since it makes exact copies of existing instances.

According to the previous facts, more sophisti-
cated methods have been proposed. Among them,
SMOTE (Chawla et al., 2002) has become one of the
most renowned approaches in this area. In brief, its
main idea is to create new minority class examples by
interpolating several minority class instances that lie
together for oversampling the training set.

With this technique, the positive class is over-
sampled by taking each minority class sample and in-
troducing synthetic examples along the line segments
joining any/all of thek minority class nearest neigh-
bours. Depending upon the amount of over-sampling
required, neighbours from thek nearest neighbours
are randomly chosen. This process is illustrated in
Figure 1, wherexi is the selected point,xi1 to xi4 are
some selected nearest neighbours andr1 to r4 the syn-
thetic data points created by the randomized interpo-
lation.

Figure 1: An illustration of how to create the synthetic data
points in the SMOTE algorithm.

However, in oversampling techniques, and espe-
cially for the SMOTE algorithm, the problem of over
generalization is largely attributed to the way in which
it creates synthetic samples. Specifically, SMOTE
generates the same number of synthetic data samples
for each original minority example and does so with-
out consideration to neighboring examples, which in-
creases the occurrence of overlapping between classes
(Wang and Japkowicz, 2004). For this reason we also
consider a hybrid approach in this work, “SMOTE +
ENN”, where the Wilson’s ENN Rule (Wilson, 1972)
is used after the SMOTE application to remove from
the training set any example misclassified by its three
nearest neighbours.

3.2 Cost-sensitive Learning

Cost-sensitive learning takes into account the vari-
able cost of a misclassification of the different classes
(Domingos, 1999; Zadrozny et al., 2003). In this case,
a cost matrix codifies the penaltiesC(i, j) of classify-
ing examples of one class as a different one; if we use
the notation 1 for minority and 0 for majority class,
C(i, i) = TN or TP. These misclassification cost val-
ues can be given by domain experts, or learned via
other approaches (Sun et al., 2009; Sun et al., 2007).
Specifically, when dealing with imbalanced problems
it is usually of most interest to recognize the posi-
tive instances rather than the negative ones and there-
fore, the cost when misclassifying a positive instance
is higher than the cost of misclassifying a negative
one.

Given the cost matrix, an example should be clas-
sified into the class that has the minimum expected
cost. This is the minimum expected cost principle.
The expected costR(i|x) of classifying an instancex
into classi (by a classifier) can be expressed as:

R(i|x) = ∑
j

P( j|x) ·C(i, j) (3)

whereP( j|x) is the probability estimation of classify-
ing an instance into classj. That is, the classifier will
classify an instancex into positive class if and only if:

P(0|x)·(C(1,0)−C(0,0))≤P(1|x)(C(0,1)−C(1,1))

Therefore, any given cost-matrix can be converted
to one withC(0,0) =C(1,1) = 0. Under this assump-
tion, the classifier will classify an instancex into pos-
itive class if and only if:

P(0|x) ·C(1,0)≤ P(1|x) ·C(0,1)

As P(0|x) = 1−P(1|x), we can obtain a thresh-
old p∗ for the classifier to classify an instancex into
positive if P(1|x)≥ p∗, where

p∗ =
C(1,0)

C(1,0)−C(0,1)
=

FP
FP+FN

(4)

Another possibility is to “rebalance” the original
training examples the ratio of:

p(1)FN : p(0)FP (5)

wherep(1) and p(0) are the prior probability of the
positive and negative examples in the original training
set.

In summary, two main general approaches have
been proposed to deal with cost-sensitive problems:
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1. Direct Methods: The main idea of building a di-
rect cost-sensitive learning algorithm is to directly
introduce and utilize misclassification costs into
the learning algorithms.
For example, in the context of decision tree in-
duction, the tree-building strategies are adapted
to minimize the misclassification costs. The cost
information is used to: (1) choose the best at-
tribute to split the data (Ling et al., 2004; Riddle
et al., 1994); and (2) determine whether a sub-
tree should be pruned (Bradford et al., 1998). On
the other hand, other approaches based on genetic
algorithms can incorporate misclassification costs
in the fitness function (Turney, 1995).

2. Meta-learning: This methodology implies the in-
tegration of a “preprocessing” mechanism for the
training data or a “postprocessing” of the out-
put, in such a way that the original learning al-
gorithm is not modified. Cost-sensitive meta-
learning can be further classified into two main
categories:thresholdingandsampling, which are
based on expressions (4) and (5) respectively:

• Thresholding is based on the Bayes decision
theory that assign instances to the class with
minimum expected cost, as introduced above.
For example, a typical decision tree for a binary
classification problem assigns the class label of
a leaf node depending on the majority class of
the training samples that reach the node. A
cost-sensitive algorithm assigns the class label
to the node that minimizes the classification
cost (Domingos, 1999; Zadrozny and Elkan,
2001).

• Sampling is based on modifying the train-
ing data-set. The most popular technique
lies in resampling the original class distribu-
tion of the training data-set according to the
cost decision matrix by means of undersam-
pling/oversampling (Zadrozny et al., 2003) or
assigning instance weights (Ting, 2002). These
modifications have shown to be effective and
can also be applied to any cost insensitive learn-
ing algorithm (Zhou and Liu, 2006).

In this work, we will make use of the cost-
sensitive C4.5 decision tree (C4.5-CS) proposed in
(Ting, 2002). This method changes the class distri-
bution such that the tree induced is in favor of the
class with high weight/cost and is less likely to com-
mit errors with high cost. Specifically, the computa-
tion of the split criteria for C4.5 (normalized informa-
tion gain) is modified to take into account the a priori
probabilities according to the number of samples for
each class.

The standard greedy divide-and-conquer proce-
dure for inducing minimum error trees can then be
used without modification, except thatWj(t) (6) is
used instead ofNj(t) (number of instances of class
j) in the computation of the test selection criterion in
the tree growing process and the error estimation in
the pruning process.

W( j) =C( j)
N

∑i C(i)Ni
(6)

C4.5-CS also introduces another optional modifi-
cation that alters the usual classification process after
creating the decision tree. Instead of classifying us-
ing the minimum error criteria, it is advisable to clas-
sify using the expected misclassification cost in the
last part of the classification procedure. The expected
misclassification cost for predicting classi with re-
spect to the instancex is given by

ECi(x) ∝ ∑
j

Wj(t(x))cost(i, j) (7)

wheret(x) is the leaf of the tree that instancex
falls into andWj(t) is the total weight of classj train-
ing instances in nodet.

3.3 Hybridization. Automatically
Countering Imbalance

The different solutions used to deal with the imbal-
anced problem have been presented in the previous
subsections. So the question now is “Can we use both
techniques together and achieve better results?”.

In this section we describe a procedure to inte-
grate the cost-sensitive learning and preprocessing ap-
proaches into one, quite similar to the one proposed
in (Chawla et al., 2008), which consists in a wrap-
per paradigm that discovers the amount of resampling
needed for a data-set based on optimizing evaluation
functions which can include the cost associated to
the classification. This wrapper infrastructure applies
cross-validation to first discover the best amounts of
undersampling and oversampling, applies the prepro-
cessing algorithms with the amounts estimated and fi-
nally runs the algorithm used over the preprocessed
data-set. Figure 2 shows the algorithm procedure.

The undersampling estimation starts with no un-
dersampling for all majority classes and obtains base-
line results on the training data. Then it traverses
through the search space of undersampling percent-
ages in decrements of Sample Decrement (in this case
10%), in a greedy iterative fashion, to increase perfor-
mance over the minority classes without sacrificing
performance on the majority class.
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Figure 2: Illustration on the Wrapper Undersample SMOTE Algorithm. Dashed lines means resampling actions, black boxes
represent the parameters estimation and the final result is in grey.

The oversampling algorithm evaluates different
amounts of SMOTE at steps of 100% (the num-
ber of examples from the minority class). This is
a greedy search, and at each step the new perfor-
mance estimates become the new baseline. That is,
the initial baseline is the performance obtained via the
Wrapper Undersample. If SMOTE=100% improves
the performance over that baseline by some mar-
gin Increment Min, then the performance achieved
at SMOTE=100% becomes the new baseline. The
amount of SMOTE is then incremented by Sample In-
crement, and another evaluation is performed to check
if the performance increase at new SMOTE amount
is at least greater than Increment Min. This process
repeats, greedily, until no performance gains are ob-
served.

However, there is an important caveat to the search
to avoid being trapped in a local maximum. If the av-
erage does not improve by 5% we have to verify that
we have not settled on a local maximum. In order
to do so, we look ahead two more steps at increas-
ing amounts of SMOTE. If the look-ahead does not
result in an improvement in performance, then the
amount of SMOTE is reset to the value discovered
prior to the look-ahead. This is done to allow SMOTE
to introduce additional examples with the aim of im-
proving performance. However, if the addition of ex-
amples does not help, then we go back to using the
lesser amount of SMOTE discovered prior to the look-
ahead.

We can use different measures to evaluate the per-
formance of the classifier to estimate the sampling pa-
rameters. In our case, different from (Chawla et al.,
2008), we use cost-sensitive learning algorithms as
base classifiers, and therefore a logical evaluation cri-
teria is the cost itself. Cost is calculated as shown in
Equation 8 when we assumeC(+|+) = C(−|−) = 0
(as it is usual in imbalanced classification).

cost= FNrate·C(−|+)+FPrate×C(+|−) (8)

4 EXPERIMENTAL STUDY

In this section, we will perform an analysis to de-
termine the performance of the different alternatives
used for imbalanced classification. Our aim is to ana-
lyze three different issues:

1. The improvement obtained by preprocessing data-
sets and cost-sensitive learning over the original
algorithm.

2. The possible differences between the rebalancing
techniques versus cost-sensitive learning and in
which cases.

3. Whether a hybrid methodology that combines a
preprocessing approach and a cost-sensitive learn-
ing algorithm supposes a positive synergy and en-
ables the achievement of more accurate results.

First, we present our experimental framework
with the data-set employed in our analysis and the
statistical tests that will allow us to support the ex-
tracted findings. Then, we will show the results from
our study and we will discuss the main issues that will
arise from the aforementioned analysis.

4.1 Experimental Framework

In order to analyze the preprocessing approach
against the cost-sensitive learning strategy, we have
selected 66 data-sets from the KEEL data-set reposi-
tory2 (Alcalá-Fdez et al., 2011). These data-sets are
summarized in Table 2, where we denote the num-
ber of examples (#Ex.), number of attributes (#Atts.),
class name of each class (positive and negative), class
distribution and IR.

To develop the different experiments we consider
a 5-folder cross-validation model, i.e., five random
partitions of data with a 20% and the combination of

2http://www.keel.es/data-sets.php
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Table 2: Summary of imbalanced data-sets.

Data-sets #Ex. #Atts. Class (-,+) %Class(-; +) IR

Glass1 214 9 (build-win-nonfloat-proc; remainder) (35.51, 64.49) 1.82

Ecoli0vs1 220 7 (im; cp) (35.00, 65.00) 1.86

Wisconsin 683 9 (malignant; benign) (35.00, 65.00) 1.86

Pima 768 8 (tested-positive; tested-negative) (34.84, 66.16) 1.90

Iris0 150 4 (Iris-Setosa; remainder) (33.33, 66.67) 2.00

Glass0 214 9 (build-win-float-proc; remainder) (32.71, 67.29) 2.06

Yeast1 1484 8 (nuc; remainder) (28.91, 71.09) 2.46

Vehicle1 846 18 (Saab; remainder) (28.37, 71.63) 2.52

Vehicle2 846 18 (Bus; remainder) (28.37, 71.63) 2.52

Vehicle3 846 18 (Opel; remainder) (28.37, 71.63) 2.52

Haberman 306 3 (Die; Survive) (27.42, 73.58) 2.68

Glass0123vs456 214 9 (non-window glass; remainder) (23.83, 76.17) 3.19

Vehicle0 846 18 (Van; remainder) (23.64, 76.36) 3.23

Ecoli1 336 7 (im; remainder) (22.92, 77.08) 3.36

New-thyroid2 215 5 (hypo; remainder) (16.89, 83.11) 4.92

New-thyroid1 215 5 (hyper; remainder) (16.28, 83.72) 5.14

Ecoli2 336 7 (pp; remainder) (15.48, 84.52) 5.46

Segment0 2308 19 (brickface; remainder) (14.26, 85.74) 6.01

Glass6 214 9 (headlamps; remainder) (13.55, 86.45) 6.38

Yeast3 1484 8 (me3; remainder) (10.98, 89.02) 8.11

Ecoli3 336 7 (imU; remainder) (10.88, 89.12) 8.19

Page-blocks0 5472 10 (remainder; text) (10.23, 89.77) 8.77

Ecoli034vs5 200 7 (p,imL,imU; om) (10.00, 90.00) 9.00

Yeast2vs4 514 8 (cyt; me2) (9.92, 90.08) 9.08

Ecoli067vs35 222 7 (cp,omL,pp; imL,om) (9.91, 90.09) 9.09

Ecoli0234vs5 202 7 (cp,imS,imL,imU; om) (9.90, 90.10) 9.10

Glass015vs2 172 9 (build-win-nonfloat-proc,tableware, (9.88, 90.12) 9.12

build-win-float-proc; ve-win-float-proc)

Yeast0359vs78 506 8 (mit,me1,me3,erl; vac,pox) (9.88, 90.12) 9.12

Yeast02579vs368 1004 8 (mit,cyt,me3,vac,erl; me1,exc,pox) (9.86, 90.14) 9.14

Yeast0256vs3789 1004 8 (mit,cyt,me3,exc; me1,vac,pox,erl) (9.86, 90.14) 9.14

Ecoli046vs5 203 6 (cp,imU,omL; om) (9.85, 90.15) 9.15

Ecoli01vs235 244 7 (cp,im; imS,imL,om) (9.83, 90.17) 9.17

Ecoli0267vs35 224 7 (cp,imS,omL,pp; imL,om) (9.82, 90.18) 9.18

Glass04vs5 92 9 (build-win-float-proc,containers; tableware) (9.78, 90.22) 9.22

Ecoli0346vs5 205 7 (cp,imL,imU,omL; om) (9.76, 90.24) 9.25

Ecoli0347vs56 257 7 (cp,imL,imU,pp; om,omL) (9.73, 90.27) 9.28

Yeast05679vs4 528 8 (me2; mit,me3,exc,vac,erl) (9.66, 90.34) 9.35

Ecoli067vs5 220 6 (cp,omL,pp; om) (9.09, 90.91) 10.00

Vowel0 988 13 (hid; remainder) (9.01, 90.99) 10.10

Glass016vs2 192 9 (ve-win-float-proc; build-win-float-proc, (8.89, 91.11) 10.29

build-win-non float-proc,headlamps)

Glass2 214 9 (Ve-win-float-proc; remainder) (8.78, 91.22) 10.39

Ecoli0147vs2356 336 7 (cp,im,imU,pp; imS,imL,om,omL) (8.63, 91.37) 10.59

Led7digit02456789vs1 443 7 (0,2,4,5,6,7,8,9; 1) (8.35, 91.65) 10.97

Glass06vs5 108 9 (build-win-float-proc,headlamps; tableware) (8.33, 91.67) 11.00

Ecoli01vs5 240 6 (cp,im; om) (8.33, 91.67) 11.00

Glass0146vs2 205 9 (build-win-float-proc,containers,headlamps, (8.29, 91.71) 11.06

build-win-non float-proc;ve-win-float-proc)

Ecoli0147vs56 332 6 (cp,im,imU,pp; om,omL) (7.53, 92.47) 12.28

Cleveland0vs4 177 13 (0; 4) (7.34, 92.66) 12.62

Ecoli0146vs5 280 6 (cp,im,imU,omL; om) (7.14, 92.86) 13.00

Ecoli4 336 7 (om; remainder) (6.74, 93.26) 13.84

Yeast1vs7 459 8 (nuc; vac) (6.72, 93.28) 13.87

Shuttle0vs4 1829 9 (Rad Flow; Bypass) (6.72, 93.28) 13.87

Glass4 214 9 (containers; remainder) (6.07, 93.93) 15.47

Page-blocks13vs2 472 10 (graphic; horiz.line,picture) (5.93, 94.07) 15.85

Abalone9vs18 731 8 (18; 9) (5.65, 94.25) 16.68

Glass016vs5 184 9 (tableware; build-win-float-proc, (4.89, 95.11) 19.44

build-win-non float-proc,headlamps)

Shuttle2vs4 129 9 (Fpv Open; Bypass) (4.65, 95.35) 20.5

Yeast1458vs7 693 8 (vac; nuc,me2,me3,pox) (4.33, 95.67) 22.10

Glass5 214 9 (tableware; remainder) (4.20, 95.80) 22.81

Yeast2vs8 482 8 (pox; cyt) (4.15, 95.85) 23.10

Yeast4 1484 8 (me2; remainder) (3.43, 96.57) 28.41

Yeast1289vs7 947 8 (vac; nuc,cyt,pox,erl) (3.17, 96.83) 30.56

Yeast5 1484 8 (me1; remainder) (2.96, 97.04) 32.78

Ecoli0137vs26 281 7 (pp,imL; cp,im,imU,imS) (2.49, 97.51) 39.15

Yeast6 1484 8 (exc; remainder) (2.49, 97.51) 39.15

Abalone19 4174 8 (19; remainder) (0.77, 99.23) 128.87

4 of them (80%) as training and test. For each data-set
we consider the average results of the five partitions.
The data-sets used in this study use the partitions pro-
vided by the repository in the imbalanced classifica-
tion data-set section3.

Furthermore, we have to identify the misclassifi-
cation costs associated to the positive and negative
class for the cost-sensitive learning versions. If we
misclassify a positive sample as a negative one the
associated misclassification cost is the IR of the data-
set (C(+,−) = IR) whereas if we misclassify a nega-
tive sample as a positive one the associated cost is 1

3http://www.keel.es/imbalanced.php

(C(−,+) = 1). The cost of classifying correctly is 0
(C(+,+) = C(−,−) = 0) because guessing the cor-
rect class should not penalize the built model.

Finally, statistical analysis needs to be carried out
in order to find significant differences among the re-
sults obtained by the studied methods (Demšar, 2006;
Garcı́a et al., 2009; Garcı́a et al., 2010). Since
the study is split in parts comparing a group of al-
gorithms, we use non-parametric statistical tests for
multiple comparisons. Specifically, we use the Iman-
Davenport test (Sheskin, 2006) to detect statistical
differences among a group of results and the Shaf-
fer post-hoc test (Shaffer, 1986) in order to find out
which algorithms are distinctive among ann×n com-
parison.

Furthermore, we consider the average ranking of
the algorithms in order to show graphically how good
a method is with respect to its partners. This rank-
ing is obtained by assigning a position to each algo-
rithm depending on its performance for each data-set.
The algorithm which achieves the best accuracy in a
specific data-set will have the first ranking (value 1);
then, the algorithm with the second best accuracy is
assigned rank 2, and so forth. This task is carried out
for all data-sets and finally an average ranking is com-
puted as the mean value of all rankings.

4.2 Contrasting Preprocessing and
Cost-sensitive Learning in
Imbalanced Data-sets

Table 3 shows the average results in training and test
together with the corresponding standard deviation
for the seven versions of the C4.5 algorithm used in
the study: the base classifier, the base classifier used
over the preprocessed data-sets, the cost-sensitive ver-
sion of the algorithm and the hybrid versions of it. We
stress inboldfacethe best results achieved for the pre-
diction ability of the different techniques.

Table 3: Average table of results using the AUC measure
for the C4.5 variety of algorithms.

Algorithm AUCtr AUCtst

C4.5 0.8774± 0.0392 0.7902± 0.0804
C4.5 SMOTE 0.9606± 0.0142 0.8324± 0.0728
C4.5 SENN 0.9471± 0.0154 0.8390± 0.0772
C4.5CS 0.9679± 0.0103 0.8294± 0.0758
C4.5 Wr SMOTE 0.9679± 0.0103 0.8296± 0.0763
C4.5 Wr US 0.9635± 0.0139 0.8245± 0.0760
C4.5 Wr SENN 0.9083± 0.0377 0.8145± 0.0712

From this table of results it can be observed that
the highest average value corresponds to preprocess-
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Table 4: Shaffer test for the C4.5 variety of algorithms using the AUC measure.

C4.5 None SMOTE SENN CS WrSMOTE Wr US Wr SENN

None x -(6.404E-6) -(4.058E-8) -(6.404E-6) -(7.904E-6) -(.00341) =(.37846)
SMOTE +(6.404E-6) x =(1.0) =(1.0) =(1.0) =(1.0) +(.04903)
SENN +(4.058E-8) =(1.0) x =(1.0) =(1.0) =(.22569) +(.00152)
CS +(6.404E-6) =(1.0) =(1.0) x =(1.0) =(1.0) +(.04903)
Wr SMOTE +(7.904E-6) =(1.0) =(1.0) =(1.0) x =(1.0) +(.04903)
Wr US +(.00341) =(1.0) =(.22569) =(1.0) =(1.0) x =(1.0)
Wr SENN =(.37846) -(.04903) -(.00152) -(.04903) -(.04903) =(1.0) x

ing approaches closely followed by the cost-sensitive
learning approach and one version of the wrapper rou-
tine. This suggests the goodness of the preprocessing
and cost-sensitive learning approaches.

In order to compare the results, a multiple com-
parison test is used to find the performance relation-
ship between the different versions studied. The re-
sults of the statistical analysis of the C4.5 family are
as follows. For the sake of a visual comparison, Fig-
ure 3 shows the average ranking for these approaches.
Under the AUC measure, the Iman-Davenport test
detects significant differences among the algorithms,
since thep-value returned (1.88673E-10) is lower
than ourα-value (0.05). The differences found are
analyzed with a Shaffer test, shown in Table 4. In this
table, a “+” symbol implies that the algorithm in the
row is statistically better than the one in the column,
whereas “-” implies the contrary; “=” means that the
two algorithms compared have no significant differ-
ences. In brackets, the adjustedp-value associated to
each comparison is shown.

Figure 3: Average rankings using the AUC measure for the
C4.5 variety of algorithms.

Observing the results from Tables 3 and 4, we
conclude that the standard C4.5 approach is out-
performed by most of the methodologies that deal
with imbalanced data. All methodologies, the hy-
brid version that uses only an oversampling step with
SMOTE+ENN, have significant differences versus
the base C4.5 classifier. This analysis answers our
first question of the study, that is, the classification

performance is degraded in an imbalance scenario
having a bias towards the majority class examples and
the use of the aforementioned techniques (preprocess-
ing and cost-sensitive learning) allow us to obtain a
better discrimination of the examples of both classes
resulting in an overall good classification for all con-
cepts of the problem (positive and negative classes).

Comparing the results when applying preprocess-
ing we can see that the performance of these meth-
ods is not statistically different for any of its ver-
sions. In addition, the performance of those pre-
processing methods is also not different to the cost-
sensitive learning version of C4.5. This second part
of the study has reflected that the two employed so-
lutions are quite similar between them and it was not
possible to highlight one of them as the most adequate
one for classification. For that reason, the question on
which approach is preferable for addressing classifi-
cation with imbalanced data-sets is still unresolved.

Finally, regarding the hybridization of cost-
sensitive learning and preprocessing by using a wrap-
per routine, it can be seen that there are significant
differences both between the different hybrid versions
and with the other alternatives. The hybrid version
that uses an oversampling step with SMOTE+ENN
is outperformed by all the other versions except the
base version. The rest of the hybrid versions are not
statistically different from the performance of usual
approaches for imbalanced classification. Therefore,
we cannot state that the hybridization in decision trees
produces a positive synergy between the two tech-
niques. According to these results, the preliminary
version of the hybrid technique can be further im-
proved both applying a finest combination of the indi-
vidual approaches or by using more specific methods
with a better synergy between them.

5 CONCLUSIONS

In this work we have analyzed the behaviour of pre-
processing and cost-sensitive learning in the frame-
work of imbalanced data-sets in order to determine
whether there are any significant differences between
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both approaches and therefore which one of them is
preferred and in which cases. Additionally, we have
proposed a hybrid approach that integrates both ap-
proaches together.

First of all, we have determined that both method-
ologies improve the overall performance for the clas-
sification with imbalanced data, which was the ex-
pected behaviour. Next, the comparison between pre-
processing techniques against cost-sensitive learning
hints that there are no differences among the differ-
ent preprocessing techniques. The statistical study,
supported by a large collection of more than 60 im-
balanced data-sets, lets us say that both preprocess-
ing and cost-sensitive learning are good and equiva-
lent approaches to address the imbalance problem.

Finally, we have shown that our preliminary ver-
sions of hybridization techniques are truly competi-
tive with the standard methodologies. We must stress
that this is a very interesting trend for research as there
is still room for improvement regarding hybridization
between preprocessing and cost-sensitive learning.
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