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Abstract: This paper studies a municipal waste collection problem, whose ultimate goal is to find an assignment of
containers to service days and posterior routing so that the total distance covered by the waste collection
trucks is minimized. Due to the complexity of this problem, we divide it into several subproblems. The focus
of this paper is on the first problem, in which it must be decided which containers must be collected on each
service day so that the containers collected on the same day are as close to each other as possible. In a second
phase (out of the scope of this paper) the routes followed by the collection vehicles at each service day are
optimized. Such separation of the problem is needed as a result of the sheer size and complexity of the real
setting. Despite this separation into smaller subproblems, efficient procedures must be designed in order to
solve real-sized instances. A computational experience over a number of instances shows the applicability of
our methods.

1 INTRODUCTION

This paper shows the initial results obtained when
working on a problem proposed by a municipality re-
garding their waste management. More specifically,
the municipality wants a support system able to de-
cide when and how to collect their waste containers
so that the associated costs are minimized. Other re-
quirements are that such support system should be
based on free software and that a solution should be
given in less than five minutes.

Waste collection (WC) is an essential problem in
many cities. Due to the increasing concerns about
pollution, and the ever raising fuel prices, an effi-
cient planning is necessary for both saving money
and protecting the environment. WC can be seen as
part of the municipal solid waste (MSW) manage-
ment problem, in which several processes are consid-
ered: waste collection, transportation, treatment and
disposal, (Wilson, 1985). In the last decade, there has
been a trend to study the MSW management prob-
lem taking into account the uncertainty that some of
the involved parameters have, see for instance (Huang
et al., 2002; Li et al., 2008) and the references therein.

The WC problem can be defined over a road net-
work of a given city. On such network, the different
elements of the problem are coded:

• one or more depots, where vehicles are stationed.

• landfills and disposal plants, where waste has to
be brought.

• waste containers, which are usually specialized
for different types of waste.

• a fleet of waste collection vehicles, potentially
heterogeneous.

• service frequency.

• and many other side constraints.

The actual problem faced asks for designing the
routes of the available vehicles, in order to collect all
specified containers, satisfying capacity and container
compatibility constraints with the objective of mini-
mizing the total travel distance and costs. In (Golden
et al., 2002), the waste collection problem is consid-
ered as an application of the vehicle routing prob-
lem. (Maniezzo, 2004) goes a bit further and formu-
lates the WC problem as a capacitated vehicle rout-
ing problem. In (Angelilli and Speranza, 2002) it is
discussed the importance of good estimates for the
operating costs in the corresponding vehicle routing
problem, which is applied to model two case studies.
The authors also consider work shifts and other im-
portant constraints. More complicated models arise
when other constraints are taken into account, such as
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drivers’ lunch breaks, see e.g. (Kim et al., 2006; Ben-
jamin and Beasley, 2010) and many others. For exam-
ple, different types of waste might be present, some-
times collected with different trucks which employ
different technologies. Examples of different types
of waste are glass, plastic, containers, cardboard, dan-
gerous waste (such as fluorescent light bulbs, used oil,
batteries, etc.), organic waste, etc. Moreover, WC
complicates further if we consider the fact that the
waste truck, once full, has to do a potentially long
trip to the treatment plant or landfill and then it has
to go back to a potentially different point in the route
to continue with the collection. Additionally, all con-
straints typical to labor scheduling problems also ap-
pear, as the maximum driving time and working time
of the waste collection operators must be observed.
As a result of all of the above, the WC can be con-
sidered as a very complicated and difficult vehicle
routing problem, or better as a rich periodic vehi-
cle routing problem (PVRP). For early references on
PVRP and WC related problems the reader is referred
to (Beltrami and Bodin, 1974), who use the PVRP
to model a municipal waste collection problem, and
(Russell and Igo, 1979), who assign customer demand
points to days of the week so that a certain node rout-
ing problem is solved more efficiently. For a more
recent reference see for instance (Coene et al., 2010)
and the references therein.

Additionally, the company wanted us to study a
specific generalization of the WC problem. In this set-
ting, there are two types of waste that are collected si-
multaneously, typically cardboard and general waste,
as these two types of waste are the most frequent and
abundant. In order to do so, a special truck with two
compartments is employed. When the truck reaches a
location or node, it collects the cardboard container
(if present) and the general waste (usually always
present). From now on, following the usual nomen-
clature in WC problems, the two types of waste are
referred to asfractions.

Due to the high complexity of the WC problem,
a large variety of heuristics are present in the litera-
ture. In (Teixeira et al., 2004), a constructive heuris-
tic divided into three phases, namely definition of ge-
ographic zones, definition of the waste type to col-
lect each day, and definition of routes, is presented
to solve a urban recyclable waste collection problem.
A clustering-based waste collection algorithm is pre-
sented in (Kim et al., 2006). (Baustista et al., 2008)
model a WC problem as an capacitated arc routing
problem with some specific characteristics, which is
transformed into a node routing problem and solved
by means of an ant colony heuristic. Three meta-
heuristics are presented in (Benjamin and Beasley,

2010). The authors state that their algorithms perform
better in terms of quality of solutions than other algo-
rithms previously presented in the literature.

The company wanted this problem to be solved
(with around 1000 different collection sites) in less
than five minutes by means of free software. Time
constraints are due to the daily operations which
needed fast response times and free software was
needed due to budget limitations. Our experience
showed that it was impossible to do that (we could
solve to optimality instances consisting of 10 loca-
tions in around a minute by means of CPLEX, but
such computational time explodes as the number of
locations increases). Therefore, we had to propose
the following partition of the WC setting into two dif-
ferent problems:

1. Assignment: in a first step we would find an as-
signment of locations to service days so that all
locations collected on the same day are close to
each other and the amount of waste collected per
day is relatively constant.

2. Routing: the routing problem for each service day
would be solved on a second step. This problem
is not studied in this paper as it represents a very
complex vehicle routing problem. Additionally,
the problem may involve hundreds of nodes (up
to a thousand) and as much as 50 waste collection
trucks.

This paper shows the progress made on the first
step. In Section 2, this assignment problem is mod-
eled as a mixed integer linear programming problem.
Section 3 introduces procedures aiming at solving our
assignment part of the WC problem efficiently. Such
procedures are tested and compared in Section 4.
Some additional techniques, yet to be tested, are pre-
sented in Section 5. The paper closes with some con-
clusions and pointers to future work.

2 ASSIGNING LOCATIONS TO
SERVICE DAYS

In this section we propose a mixed integer linear pro-
gramming (MILP) model that decides which loca-
tions should be collected on each service day, so that
no container overflows, the amount of waste collected
per service day is relatively constant, and the loca-
tions visited on each service day are as close to each
other as possible, over a weekly planning horizon.
This last objective has been treated by minimizing
the sum of the diameters of each day, as we will ex-
plain later. A service day is defined as a day in which
some waste is collected. There are 7 days in a week
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but there does not need to be as many service days.
For example, busy streets with lots of population or
businesses nearby have their containers serviced ev-
ery day, potentially 7 days per week. Conversely,
sparsely populated areas might have containers ser-
viced twice or even just once per week. Note that the
problem also includes a given number of service days
per week.

Our problem has the following input data:

• Let i = 1, ..., I be the locations where the con-
tainers are placed,j = 1, ...,7 the possible ser-
vice days (Monday to Sunday), andk= 1,2 waste
types, from now on denoted by fraction 1 and frac-
tion 2, respectively.

• Let (αi ,βi) be the coordinates of locationi on the
plane,i = 1, ..., I .

• There arenk
i containers of fractionk at location

i, for all i = 1, ..., I , k = 1,2. In reality, there
are many more waste types (organic waste, pa-
per, plastic, hazardous, and others) but since the
collection technologies differ, the problems can
be solved separately in different runs. Therefore,
only two fractions are considered.

• Each container of fractionk receivesgk kilograms
of waste every day, and has a maximum capacity
of ck, k= 1,2.

• The company wants to collect fractionk sk days
per week,k = 1,2, with sk ∈ {1, ...,7}. These are
the desired service days.

• Each fractionk container must be collectedfk
days per week. Note thatfk ≤ sk. This parameter
is the so called frequency of service.

• If location i is visited to collect fraction 2, then
fraction 1 on locationi must be collected as well.
This implies that the actual number of service
days iss1.

The last point above is another specific constraint.
The company wants the “minor” fraction to be col-
lected each time the “major” fraction is collected. In
other words, when the general waste fraction is col-
lected by a truck in a given location, the cardboard
waste in the same location (if present) must be col-
lected as well.

It is also very important to note the difference be-
tween the service days of each fractionsk and the fre-
quency for each fractionfk. Let us advance an ex-
ample. The company wants to service an area with
maximum 4 service days in a week. This means that
s1 = s2 = 4. In other words, waste collection trucks
should operate only four days during the week. The
frequency for a different fraction is a different matter,
f1 = 3 means that the containers of the first fraction

have to be collected three times per week. Since not
all containers have to be collected in the same service
days, the problem is therefore to distribute contain-
ers in service days so that every container is collected
three times per week and that there are no more than
four days with service.

2.1 Preprocessing: Timetables

First, given thefk values, the set of feasible timeta-
bles is calculated for a given collection site. Each
timetable determines on which days a location is vis-
ited, and they will be assigned to collection sites.
From this information, and from the amount of waste
that arrives at each container per day (given by pa-
rametergk), the amount of waste collected each day
can be easily calculated. A timetable is defined as a
matrix p∈R

7×4 such that:

• p j ,k = 1 if timetablep determines that on dayj,
fractionk must be collected,j = 1, ...,7,k = 1,2,
zero otherwise.

• p j ,k+2 is the amount of fractionk collected on day
j if the timetablep is followed, j = 1, ...,7,k =
1,2. Note that, ifp j ,k = 0, thenp j ,k+2 = 0 too.
Note as well thatp j ,k+2 only depends ongk and on
the last day beforej that fractionk was collected.

Each feasible timetablep must satisfy:

1. p j ,2 ≤ p j ,1, j = 1, ...,7 (if fraction 2 is collected
on day j, so should fraction 1).

2. ∑7
j=1 p j ,k = fk, k = 1,2 (for every collection site,

fractionk must be collectedfk times per week).

3. p j ,k+2 ≤ ck, j = 1, ...,7,k = 1,2 (containers can-
not overflow their capacity).

Note that the list of feasible timetables only depends
on fk, and on the ratiock/gk, for k = 1,2. Besides,
the company may want to add some extra constraints,
such that no container must be collected on two con-
secutive days. We will consider that there arem fea-
sible timetables{p1, ..., pm}.

Example 1. As an example, consider a situation in
which s1 = s2 = 7, f1 = 2, f2 = 1,g1 = g2 = 10,c1 =
40,c2 = 80. Consider the following two timetables:

p=



















1 1 30 70
0 0 0 0
0 0 0 0
0 0 0 0
1 0 40 0
0 0 0 0
0 0 0 0



















, p′ =



















1 1 20 70
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 50 0
0 0 0 0



















Timetable p determines that the fraction 1 is to be col-
lected on Mondays and on Fridays, and fraction2 on
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Mondays. Timetable p′ determines that fraction1 is
to be collected on Mondays and on Saturdays, and
fraction 2 on Mondays. It is easy to see that p is
a feasible timetable, whereas p′ is not, since a frac-
tion 1 container will overflow on Saturdays before the
collection (amount of garbage to be collected is 50,
whereas the container’s maximum capacity for frac-
tion 1 is 40).

Timetables are enumerated, note that in principle
there are

( 7
f1

)( f1
f2

)

possible timetables. Nevertheless,
due to containers’ capacity and estimated amount of
waste received per day, many of these timetables are
unfeasible and therefore removed. Note that this pro-
cedure could be very well extended and generalized
so to work at each location, i.e., each location could
have a different capacity and a different generation of
garbage. However, the company did not have as much
precise and detailed data for such an extension.

2.2 Variables

Given the feasible timetables, all that is left to do is to
assign one timetable to each location so that the given
objective is optimized. For this assignment problem,
we employ the following variables:

• xℓi = 1 if locationi is assigned to timetablepℓ, zero
otherwise.

• yk
j = 1 if on day j fractionk is collected, zero oth-

erwise.

• v is an internal variable, which is used to balance
the amount of waste collected per day.

• a j ,b j are the first and second coordinates of the
center of dayj, respectively.

• r j ≥ 0 is the radius of dayj.

2.3 Constraints

The constraints of our model are:

• Exactly one timetable for each location:
m

∑
ℓ=1

xℓi = 1; i = 1, ..., I . (1)

• The following constraints force the number of ser-
vice days in which fractionk is collected to besk:

7

∑
j=1

yk
j = sk; k= 1,2. (2)

yk
j ≤

I

∑
i=1

m

∑
ℓ=1

xℓi pℓj ,k; j = 1, ...,7;k= 1,2. (3)

xℓi pℓj ,k ≤ yk
j ; i = 1, ..., I ; j = 1, ...,7;

ℓ= 1, ...,m;k= 1,2. (4)

Note that Equations (3) and (4) force thatyk
j = 1

if and only if at least one collection site is visited
to collect fractionk on day j.

• Since the company wants the amount of waste col-
lected per day to be relatively constant, we have to
add:

−(1−y1
j )M+(1− ε)v≤

I

∑
i=1

m

∑
ℓ=1

2

∑
k=1

xℓi pℓj,k+2nk
i ,

j = 1, . . . ,7, (5)
I

∑
i=1

m

∑
ℓ=1

2

∑
k=1

xℓi pℓj,k+2nk
i ≤ (1+ ε)v+(1−y1

j )M,

j = 1, . . . ,7, (6)
where ε ∈ [0,1] is a small tolerance, andM is
a large enough positive number. These two sets
of constraints force that the amount of collected
waste on a service day (wheny1

j = 1) is in the in-
terval[(1− ε)v,(1+ ε)v].

• The radius of a given dayj is defined as:

min
(a j ,b j )∈R2

max
i collected on dayj

d((a j ,b j), i),

whered((a j ,b j), i) is the distance from(a j ,b j) to
location i. The point(a j ,b j) defining the radius
of a given dayj is called thecenterof day j. In
order to keep the linearity of the problem we will
use the Manhattan distance. The following con-
straints force that all locations collected on dayj
are less thanr j far from the center(a j ,b j) of that
day, using the Manhattan distance:

−M(1−
m

∑
ℓ=1

xℓi pℓj ,1)+ |αi −a j |+ |βi −b j | ≤ r j ,

i = 1, ..., I , j = 1, ...,7.

These constraints can easily be made linear
by dividing them into the four possible cases.

−M(1−
m

∑
ℓ=1

xℓi pℓj,1)+ (αi −aj)+ (βi −bj)≤ r j , (7)

−M(1−
m

∑
ℓ=1

xℓi pℓj,1)+ (αi −aj)− (βi −bj)≤ r j , (8)

−M(1−
m

∑
ℓ=1

xℓi pℓj,1)− (αi −aj)+ (βi −bj)≤ r j , (9)

−M(1−
m

∑
ℓ=1

xℓi pℓj,1)− (αi −aj)− (βi −bj)≤ r j , (10)

i = 1, ..., I , j = 1, ...,7.

2.4 Objective

The objective is to minimize the average radius of
each day1

s1
∑7

j=1 rj, or equivalently:
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min z=
7

∑
j=1

r j . (11)

The presented MILP model that assigns collection
sites to service days so that the collection sites visited
on a given day are as close to each other as possible,
consists of minimizing (11) subject to (1)-(10), and
will be denoted by ASD (“Assigning Sites to Days”).

3 IMPROVEMENT PROCEDURES

Despite the considerable reduction in the amount
of variables and constraints of the previous assign-
ment models with respect to other waste collection
problems found in the literature, the proposed MILP
model was only capable of solving instances of mod-
erate size, very far away from the required 1000 loca-
tions of the company. Additionally, the fact that the
company wanted to solve this part of the problem in
less than five minutes by means of free software calls
for the application of some heuristic procedures.

3.1 Reducing the Number of Variables

In our efforts to reduce the complexity of the prob-
lem, a first attempt to solve ASD more efficiently was
to set variablev to be equal to the total amount of
waste to be collected per week divided by the num-
ber of service days (the arithmetic mean), that is,
v = 7(∑I

i=1 ∑2
k=1nk

i gk)/s1. This way ASD has one
variable less, and therefore a reduction in computa-
tional time was hoped for. The first we noted is that,
despite the intuitive idea that both problems should be
equivalent (v free andv equal to the mean), they are
not. Consider the following example.
Example 2. Consider a WC instance in which the to-
tal amount of waste to be collected is 4, over 3 ser-
vice days. Assume that the amounts collected per day
are w1 = w2 = 1,w3 = 2. Takeε = 1/3. It is easy
to see that, for v= 3/2, wj ∈ [(1− ε)v,(1+ ε)v] =
[1,2]. Nevertheless, if we fix v= 4/3, we have that
[(1−ε)v,(1+ε)v] = [8/9,16/9]and therefore w3 falls
out of the allowed interval. Therefore, withε = 1/3,
the previous instance would be infeasible if v is fixed
to be the mean, and it would be feasible if v is free.

In order to see whether or not the difference be-
tween the performance of both models (v free andv
fixed) is significant, we tested both models over 12
different-sized instances. The values ofI and the ob-
jective values obtained with CPLEX after 5 minutes
for each instance and each model are shown in Ta-
ble 1. The values ofsk, fk,ck,gk are the same as in
Example 1.

Table 1: Tests to fix variablev.

I 16 25 36 49 64 81
v free 9.5 15 17.5 22.5 29.5 35

v= mean 9.5 13 18 24.5 31 35
I 100 121 144 169 196 225

v free 47 50 61 68 73 83.5
v= mean 45.5 49 60 69.5 75 81

From these data, a hypothesis test with 95% con-
fidence interval does not reject that the objective val-
ues obtained with both models are equal (p-value =
0.93). In other words, fixing the value ofv does not
seem to improve the objective function value with the
allowed computation time. This, together with Exam-
ple 2, made us keep the ASD formulation described
before without fixing variablev.

3.2 Clustering

Solving a 1000 location problem is a real challenge.
However, a practical observation brings an important
venue for problem size reduction. Often, a relatively
short street has two container locations, spaced less
than a few meters away. Additionally, and specially in
road crossways, containers are located in the corners
of several roads. All these different locations can be
easily clustered into a single location with very little
expected degradation in the final solutions. Such sce-
narios are very likely in large cities which have thou-
sands of containers but these are always tightly placed
in streets. By following simple clustering approaches
(like K-nearest neighbor) we can reduce the size of
the original problem by a factor ofK in polynomial
time.

These simple clustering approaches were fast and
easy to implement but we applied a different ap-
proach. Instead of applying aK-nearest neighbor we
employ effective Traveling Salesman Problem (TSP)
heuristics. The Lin-Kernighan heuristic (Lin and
Kernighan, 1973) is one of the most well known and
powerful heuristics. More specifically, an effective
implementation (Helsgaun, 2000) is employed. This
Helsgaun heuristic is regarded as the most effective
method for solving the TSP which can yield close to
optimal solutions in very short computational times
with problems with hundreds or even thousands of
nodes. The procedure is the following: We construct
a TSP problem with all the locations and run the Hels-
gaun heuristic. The result is the shortest TSP tour that
traverses all locations, starting and finishing at a given
one. Then we apply aK clustering procedure. We
start from the first location in the tour and create a
new virtual location with this one and the following
K −1 locations. LocationK +1 is clustered with lo-
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Table 2: Instances tested and their characteristics.

Instance Locations (I ) s1 f1 s2 f2 g1 c1 g2 c2 Feasible time tables ε value
1 40 6 2 6 2 10 45 5 25 7 0.2
2 40 6 3 6 2 10 35 5 25 35 0.05
3 70 6 2 6 2 10 45 5 25 7 0.2
4 70 6 3 6 2 10 35 5 25 35 0.05
5 100 6 2 6 2 10 45 5 25 7 0.2
6 100 6 3 6 2 10 35 5 25 35 0.05
7 130 6 2 6 2 10 45 5 25 7 0.2
8 130 6 3 6 2 10 35 5 25 35 0.05
9 260 6 2 6 2 10 45 5 25 7 0.2
10 260 6 3 6 2 10 35 5 25 35 0.05
11 520 6 2 6 2 10 45 5 25 7 0.2
12 520 6 3 6 2 10 35 5 25 35 0.05

cationsK +2, . . . ,2K and so on. This procedure con-
tinues until the last location of the tour is considered.
The result is aI/K location problem in which each
virtual location containsK original locations.

We expect the deterioration in the solution to be
very small. Note that after applying the Helsgaun
heuristic, the locations at each clustered virtual loca-
tion are most of the time very close to each other.
Note that many other clustering methods and algo-
rithms are possible.

4 INITIAL COMPUTATIONAL
RESULTS

In the following we present the results of the simple
ASD method when run with real instances. Some re-
sults with the application of the clustering procedure
will be given as well.

We employ a set of 12 real instances with data ob-
tained from the company. These range from 40 to 520
locations in size. While still deemed as “medium”,
they serve as a good benchmark of what can be done
with the ASD method alone. All instances contain
two fractions, whose full parameters are given in Ta-
ble 2.

As we can see, the mix of configurations yield two
cases with either 7 possible timetables per location or
35. Note that in the largest case of 520 locations and
35 possible timetables, the total number ofxℓi vari-
ables is 520×35= 18,200 which is a really big num-
ber of binary variables considering the maximum al-
lowed computational time (5 minutes) with free soft-
ware (in all tested instances this time limit is reached,
i.e., no solution found is guaranteed to be optimal).

All tests are carried out in a high performance
computing cluster with 30 blades, each one contain-
ing 16 GBytes of RAM memory and two Intel XEON
E5420 processors running at 2.5 GHz. Note that
each processor has 4 physical computing cores (8

per blade). There is no parallel computing. The
30 blade servers are just used in order to divide the
workload and experiments. Experiments are carried
out in virtualized Windows XP machines, each one
with one virtualized processor and 2 GB of RAM
memory. We solve all 8 instances first using IBM
ILOG CPLEX 12.2 with a single thread with a max-
imum CPU time limit of 5 minutes. Later, results in
the same conditions with the freely available 2.7 ver-
sion of COIN-OR Branch-and-cut MIP solver, also
referred to as CBC (https://projects.coin-or.org/Cbc)
will be given. We also employed LP-Solve 5.5
(http://sourceforge.net/projects/lpsolve/). However,
this free solver has a much inferior performance and
in these initial experiments, results are reported with
just CPLEX 12.2 and CBC 2.7.

We show the final results using CPLEX after the
assignment carried out by ASD both in total radii and
radii per day of the week (both measured as the Eu-
clidean distance between latitude-longitude like coor-
dinates) in Table 3 as well as in total collected waste
(in kilograms) in Table 4.

The results with CBC are presented in Tables 5
and 6.

It is observed that CPLEX provides smaller radii
than CBC for all instances except 6 and 8.

As regards the total collected waste we can see
that it is fairly constant throughout the days for all in-
stances. The observed fluctuations are often seen at
days before and/or after the “break”. Note that all in-
stances have 6 service days in the week and therefore,
after the day without service, a larger amount of waste
needs to be collected. When comparing CPLEX and
CBC we have added a column with the standard de-
viation of the collected waste through the days. It
appears that CBC has the upper hand. Although the
small number of tested instances precludes us from
drawing strong conclusions, it seems that CPLEX is
not performing alarmingly better than CBC. There-
fore, our objective of employing a freely available

ICORES 2012 - 1st International Conference on Operations Research and Enterprise Systems

288



Table 3: CPLEX Radii results for the instances (∗no feasible solution obtained for instance 12 in 5 minutes, the reported
solution was obtained after 14 minutes and 37 seconds).

Radii
Instance Monday Tuesday Wednesday Thursday Friday Saturday Sunday Radii sum

1 69.5 96.5 31.5 69.5 96.5 28.5 392
2 91 89 84.5 89 80 96,5 530
3 82.5 88 95 82.5 88 88.5 524.5
4 77 162 109 179.5 78 179.5 785
5 68 66.5 179.5 57 63 179.5 613.5
6 150 179.5 126 174.5 139 175.5 944.5
7 69 70.5 202 78 112 177 708.5
8 158.5 196 172 158.5 186 202 1073
9 101.5 294 187.5 90.5 241.5 240.5 1155.5
10 286.5 268.5 286.5 285.5 250 278.5 1656
11 274 294 148.5 244 294 155.5 1410.5
12* 280 298 285.5 298.5 298.5 276 1736.5

Table 4: CPLEX total collected waste at each day for the instances (∗no feasible solution obtained for instance 12 in 5 minutes,
the reported solution was obtained after 14 minutes and 37 seconds).

Total collected waste
Instance Monday Tuesday Wednesday Thursday Friday Saturday Sunday St. Dev

1 1560 1605 1545 2080 2275 1820 304.59
2 1720 1875 1875 1885 1760 1770 72.35
3 3760 2670 2655 2820 3965 2820 586.89
4 3065 3240 3015 3010 3050 3310 127.59
5 3625 5385 5259 3740 3600 4290 819.10
6 4200 4575 4490 4250 4215 4205 165.79
7 4275 4260 6375 6150 6320 5940 1007.50
8 5770 5740 5280 5305 5410 5815 274.65
9 7245 9590 8700 6460 6405 6575 1342.33
10 7865 7875 7855 7125 7125 7130 404.46
11 19315 19135 12900 12900 15360 12895 3100.07
12* 14795 14790 15035 16315 16320 15250 717.72

Table 5: CBC Radii results for the instances.

Radii
Instance Monday Tuesday Wednesday Thursday Friday Saturday Sunday Radii sum

1 83.5 42 89 83.5 50.5 100.5 449
2 112.5 103 89 98 139.5 105.5 647.5
3 136.5 158.5 61 136.5 158.5 73.5 724.5
4 174.5 113 110.5 179.5 84.5 179.5 841.5
5 119.5 99.5 179.5 119.5 97 179.5 794.5
6 162 175.5 162 69.5 187 170 926
7 196 148.5 92.5 196 148.5 92.5 874
8 202 107.5 170.5 166 172 194 1012
9 185.3 154.8 294.2 185.3 158.3 294.2 1272.2
10 285.6 256.4 269.4 275.0 294.2 286.5 1667.2
11 229.6 283.9 289.1 229.6 283.9 289.1 1605.1
12 298.3 263.7 290.6 283.9 298.3 280.1 1714.9

solver is satisfied.
We now take the four largest instances: 7-12, and

apply the clustering procedure prior to the resolution
of the ASD model by CBC.K = 2, meaning that the

clustering process reduces the original locations by a
factor of two. The results are given in Tables 7 and 8.

As can be seen, in almost all cases both the to-
tal radii as well as the standard deviation of col-

EFFICIENT WASTE COLLECTION BY MEANS OF ASSIGNMENT PROBLEMS

289



Table 6: CBC total collected waste at each day for the instances.

Total collected waste
Instance Monday Tuesday Wednesday Thursday Friday Saturday Sunday St. Dev

1 2010 2025 2000 1395 1415 2040 317.29
2 1800 1795 1780 1810 1810 1890 38.78
3 3885 3775 2780 2745 2760 2745 555.08
4 3265 3195 2955 3050 2980 3245 137.00
5 4700 4805 4920 3300 3340 4870 780.11
6 4460 4195 4140 4110 4500 4530 194.00
7 7040 6570 5000 4965 4835 4910 982.44
8 5870 5335 5400 5885 5385 5445 253.59
9 8625 8410 8600 6390 6380 6570 1153.69
10 7840 7845 7160 7160 7275 7695 332.98
11 17535 17640 17500 13050 13095 13685 2356.30
12 16010 15980 14595 14495 15535 15890 697.43

Table 7: CBC radii results for the instances 7 - 12 after applying the clustering procedure.

Radii
Instance Monday Tuesday Wednesday Thursday Friday Saturday Sunday Radii sum

7 151 134 124.5 151 124 124.5 809
8 188.5 136 187 136.5 188.5 136 972.5
9 120.5 234.6 219.2 120.5 234.6 219.2 1148.57
10 217.9 294.2 161.6 294.2 150.8 294.2 1412.95
11 241.7 243.9 208.6 241.7 243.9 208.6 1388.49
12 271.2 280.1 205.1 298.3 183.3 298.3 1536.41

Table 8: CBC total collected waste at each day for the instances 7 - 12 after applying the clustering procedure.

Total collected waste
Instance Monday Tuesday Wednesday Thursday Friday Saturday Sunday St. Dev

7 6595 5840 6220 4575 4545 5545 846.83
8 5790 5490 5765 5245 5725 5305 241.26
9 8620 8500 8580 6465 6375 6435 1174.03
10 7940 7225 7305 7485 7235 7785 302.93
11 17520 17700 17640 13140 13275 13230 2413.81
12 15870 16020 14600 15120 14850 16045 638.81

lected waste are significantly smaller once the clus-
tering procedure is applied, i.e., applying clustering
first, optimization with CBC second, and declustering
third, performs better than directly optimizing with
CPLEX or CBC without clustering/declustering. The
explanation is the following: in five minutes solving
time, larger models have very little time to converge.
Once the clustering procedure is applied, the size of
the model is largely reduced and the final results are
better. This means that far from deteriorating results,
the clustering procedure improves performance.

All instances and results were checked by the
company and results have exceeded their expecta-
tions. Considering that the results are only prelimi-
nary, this is a good outcome. We have achieved, using
CBC and for instances of up to 130 locations, to form
packed groups of locations that satisfy all constraints:
the number of service days is not exceeded, all col-

lection frequencies for both waste fractions are ob-
served, radii for each service day are minimized and
the amount of waste collected at each day is much
more stable than currently observed by the company.

5 FURTHER IMPROVEMENTS:
FEASIBLE SOLUTION FIRST,
GREEDY LOCAL SEARCH
SECOND

The procedure we propose in this section is based on
the following idea: Once a feasible solution has been
found by means of the previous integer linear pro-
gramming problem, we later try to improve the ob-
jective function by moving the collection day of the
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sites located furthest away from their day’s center to
either the previous day or the following day, provided
that such a movement does not make the containers
in this site to overflow. An interchange with another
collection site will be done in such a way that none
of the containers overflow, the amount collected each
day remains within the allowed interval, and the sum
of radii decreases. This is justified by the fact that
ASD can find a feasible solution relatively quickly,
but the improvements in the objective function are
found very slowly. For instance, a 400-collection-site
example found a feasible solution in around 1 sec-
ond, with objective value equal to 127, but after 5
minutes the value of the objective function had de-
creased eight units only. A 625-collection-site exam-
ple, found a feasible solution in 11 seconds, with ob-
jective function equal to 163.5, and after 5 minutes the
improvement in the objective function was also quite
marginal.

Therefore, we propose to run the ASD until a fea-
sible solution has been found and then to run a local
search procedure. The pseudocode of this procedure
is as follows:

For a given dayj, let Fj , r̄ j , t̄ j , w̄j be the collection
sites visited, the radius, the center, and the amount of
collected waste, respectively. For the sake of notation,
we letu(i, j1, j2) be the amount of waste collected at
site i on day j2 if its collection day has been moved
from j1 to j2 and the rest of its schedule remains un-
changed. Letei be the amount collected at sitei if no
changes in its schedule have been done.

1. SetE = /0. For eachj, find i j : maxi∈Fj d(i, t̄ j) =

d(i j , t̄ j). Let t ′j andr ′j be the center and the radius
of the new setF ′

j = Fj \ {i j}. Let q j = r̄ j − r ′j .

2. Let j∗ : q j∗ = maxj /∈E q j . If i j∗ cannot be moved
neither to the previous day nor to the following,
go to step 3. Otherwise, seth1 = h2 =−1 and go
to step 4.

3. SetE = E∪{ j∗}. If E is the complete set, STOP.
Otherwise, go to Step 2.

4. If i j∗ could be moved to the previous day, find
a collection sitei1 ∈ Fj∗−1 that can be moved
to Fj∗ such thatr1

j∗−1 + r1
j∗ < r̄ j∗−1 + r̄ j∗ , and

w1
j∗ = wj∗ − ei j∗

+ u(i1, j∗ − 1, j∗) and w1
j∗−1 =

wj∗−1−ei1 +u(i j∗ , j∗, j∗−1) (the amount of col-
lected waste) are in the allowed intervals.r1

j∗−1

andt1
j∗−1 are the radius and the center ofF1

j∗−1 =

(Fj∗−1 \ {i1})∪ {i j∗}, r1
j∗ and t1

j∗ are the radius

and the center ofF1
j∗ = (Fj∗ \ {i j∗})∪ {i1}. Set

h1 = (r̄ j∗−1+ r̄ j∗)− (r1
j∗−1+ r1

j∗).

5. If i j∗ could be moved to the next day, find a col-

lection sitei2 ∈ Fj∗+1 that can be moved toFj∗

such thatr2
j∗+1 + r2

j∗ < r̄ j∗+1 + r̄ j∗ , and w2
j∗ =

wj∗ −ei j∗
+u(i2, j∗+1, j∗) andw2

j∗+1 = wj∗+1−

ei2 + u(i j∗ , j∗, j∗ + 1) (the amount of collected
waste) are in the allowed intervals.r2

j∗+1 and

t2
j∗+1 are the radius and the center ofF2

j∗+1 =

(Fj∗+1 \ {i2})∪ {i j∗}, r2
j∗ and t2

j∗ are the radius

and the center ofF2
j∗ = (Fj∗ \ {i j∗})∪ {i2}. Set

h2 = (r̄ j∗+1+ r̄ j∗)− (r2
j∗+1+ r2

j∗).

6. If h1 ≥ h2, move i j∗ to day j∗ − 1, and i1 to
day j∗. SetFj∗ = F1

j∗ , Fj∗−1 = F1
j∗−1, r̄ j∗ = r1

j∗ ,

r̄ j∗−1 = r1
j∗−1, t̄ j∗ = t1

j∗ , t̄ j∗−1 = t1
j∗−1, w̄j∗ = w1

j∗

andw̄j∗−1 = w1
j∗−1. Go to Step 1. The objective

function has improvedh1.

7. If h2 > h1, movei j∗ to day j∗ + 1, andi2 to day
j∗. SetFj∗ = F2

j∗ , F2
j∗+1, r̄ j∗ = r2

j∗ , r̄ j∗+1 = r2
j∗+1,

t̄ j∗ = t2
j∗ , t̄ j∗+1 = t2

j∗+1, w̄j∗ = w2
j∗ and w̄j∗+1 =

w2
j∗+1. Go to Step 1. The objective function has

improvedh2.

We note that the complexity of this algorithm is
given by the calculation of the radii and centers of a
set ofO(I) points, for at mostO(I) times. From the
algorithms in (Megiddo, 1983), who showed that the
minimum enclosing circle could be found inO(I), we
derive that this step can be done inO(I2), and there-
fore the complexity of one movement of the previous
local search algorithm isO(I2) as well.

An important aspect of the local search procedure
is that it can be safely applied after a de-clustering
procedure, i.e., the ASD is applied to a clustered prob-
lem. We carry out a de-clustering after an initial feasi-
ble solution has been found and later we can apply the
local search. In this way, much of the precision lost
in the clustering is later regained in the local search
stage.

With the proposed local search procedure there
are four possible algorithms: Simple ASD (no local
search, no clustering), ASD with clustering, ASD un-
til feasibility with local search, and ASD until feasi-
bility with clustering, de-clustering and local search.
We are currently testing this proposed local search
and other variants and will present the results at the
conference.

6 CONCLUSIONS AND FUTURE
WORK

In this short paper we have studied a realistic waste
collection problem that we have divided into two sub-
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problems. In the first subproblem, the only one stud-
ied in this initial research, collection locations are as-
signed to service days in a complex assignment mixed
integer linear programming model. In a foreseen sec-
ond subproblem, each service day is solved separately
as a complex vehicle routing problem. This is needed
in order to solve the real problem, which involves the
collection of up to a thousand nodes each day during
the whole week with a fleet of more than 50 waste
collection trucks. Although not fully tested, we have
proposed several techniques aimed at speeding up the
solution of the first subproblem. More specifically, we
have presented some variable reduction techniques,
a clustering approach and a local search technique.
Initial results using commercial and freely available
solvers indicate that the solution for the first sub-
problem is near and viable within short computational
times. Initial assessments by the company also indi-
cate that our results are already better than the manual
solutions currently employed.

In the next weeks we intend to test the local search
procedure. These results will be compared with the
previous ones. The desired goal is to reduce com-
putational time and at the same time to improve the
quality of the solutions. We also intend to test more
real instances and not just 12. Finally, a full fledged
comparison with the current status quo at the com-
pany will be provided.
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