
AN ACTIVE APPROACH IN HEALTH MONITORING

Doan B. Hoang1, Nor Faizah Ahmad1 and Congduc Pham2
1Centre for Innovation in IT services and Applications(iNEXT), University of Technology, Sydney, Australia

2LIUPPA, University of Pau, 64012, Pau cedex, France

Keywords: Health monitoring, Active monitoring architecture, Active database, Active care application.

Abstract: Specific-purpose hardware or software modules are often designed to provide timely response to conditions
or events that required attention. However, these application-specific mechanisms are not flexible and often
can not be reused or adapted to different situations and applications. This paper proposes an approach
whereby an active database with triggering mechanisms is deployed for surveillance and health monitoring
applications. The paper presents a comprehensive monitoring architecture and an application to demonstrate
its use in an Active Maternity Care system.

1 INTRODUCTION

We are surrounded by numerous events whereby our
response might or might not be expected promptly.
For example, an alarm has to be raised immediately
if an intruder or a critical health condition is
detected. Many hardware and software solutions are
readily available to deal with these situations. First,
a simple electronic circuit can be designed to deal
with a particular condition. However, the device can
not easily be modified nor reused in other different
conditions. Secondly, using a software approach, an
algorithm can be designed to handle the event where
it is more flexible in dealing with dynamic
circumstances and conditions as they can be
automated and programmed with little effort.
However, most software solutions suffer from a
time-consuming and constant polling loop for
monitoring the event of interest. They also introduce
delays and therefore can not always deal with the
event in a timely manner. In current practices,
database management system (DBMS) is deployed
to handle the events/data records systematically. The
DBMS is passive as its only responds to queries or
transactions explicitly submitted by users or
application programs. When monitoring events in
passive DBMS, an application program polls the
database by sending queries about the monitored
data (Paton, 1998), (Kotz-Dittrich, 1998). For
instance, in health monitoring systems, a server
agent is developed to monitor data inside the
database. The server agent needs to constantly poll

to the database to check the value of the health
parameter that is being monitored. The agent then
waits for the database to return the requested value.
If the returned value is less than a preset threshold,
the agent may trigger an alarm or send a notification.
The problem with this approach is that if the
frequency of polling is too high, resources for
handling polling are wasted without gaining new
information as the database will most likely return
the same previous value. In addition, the database
system will be overflowed by queries. However, if
the frequency of polling is too low, changes of data
in the database may not be detected in time. In a
health care environment, time is very critical and it
is not possible to predict the exact time of
complication occurrence. The ideal solution is that
once the complication occurs, the notification task
should commence automatically. This is where
active mechanisms are needed.

This paper presents an approach whereby an
active database is deployed at the core of the
solution. An active database provides mechanisms
for triggering an action if a certain event occurs
within a set of conditions that affect specific
elements of a data record within the database. A
conventional relational database is used to monitor
data. The active database inherits all the desirable
properties of a well-designed database including
data consistency and integrity. Active component is
designed to deal with triggering events. In particular
we propose a complete active database management
system (ADMBS) architecture that supports the

152 B. Hoang D., Faizah Ahmad N. and Pham C..
AN ACTIVE APPROACH IN HEALTH MONITORING.
DOI: 10.5220/0003728601520157
In Proceedings of the International Conference on Health Informatics (HEALTHINF-2012), pages 152-157
ISBN: 978-989-8425-88-1
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

implementation of a class of health monitoring and
surveillance applications. The active database
monitoring architecture consists of four main
modules: the event validation module, the active
engine module, the decision making module and the
interface module for user interaction.

The rest of the paper is organised as follows.
Section 2 discusses related work on active database
research and applications. Section 3 presents our
proposed active monitoring architecture and its
components. Section 4 describes an application that
we developed in the assistive healthcare and the
implementation of the active monitoring
architecture. Section 5 concludes the paper with
discussion on future research.

2 RELATED WORK

An AI approach with multi-agent systems is often
used to deal with health monitoring in several
domains. Health information access. Multi-agent is
used in providing ubiquitous health information
access of the patients. Using the system, the
patients’ record can be accessed and viewed by
clinicians at different towns (Moreno, 2002),
(Koutkias, 2005). Patient scheduling. Due to the
complexity of the medical appointment procedure
including different types of diagnostics and
treatments, a multi-agent approach is proposed to
schedule the patients’ appointment (Alamillo, 2003).
Internal hospital tasks. A multi-agent framework is
proposed for managing the patient care in the
hospital, which involves the transaction of workflow
processes within health departments. This includes
monitoring applications of medical protocols
(Alamillo, 2003) or controlling the usage of drugs
taken by the patients (Godo, 2003). In general,
multi-agent solutions consist of specific-purpose
agents such as server agent, provider agent,
information agent, client agent, etc. These systems
are usually implemented with passive DBMS. In this
paper, we focus on the active database approach.

Active DBMS (ADBMS) extends passive
DBMS’s functionality with active rules (Dayal,
1995). Active rules allow ADBMS to monitor the
stored data, to automatically respond to the events
and to execute defined actions in a timely manner.
According to Dittrich (Dittrich, 1995), most
researchers agree that ADBMS must detect event
occurrences (E), satisfy specified condition (C), and
perform defined actions (A). Active rule processing
syntax includes two models: knowledge model and
execution model. Knowledge model indicates what

can be said about active rules in that system while an
execution model specifies how a set of rules is
treated at runtime. There are five phases involved in
rules evaluation; signalling, triggering, evaluation,
scheduling and execution (Paton, 1999). Some
active databases have been developed by researchers
but their usage has not been reported (Hanson,
1996).

Commercial databases such as Oracle (Adams,
2003) and MySQL may support some active
features: triggers and events. Triggers in commercial
databases, however, impose restrictions on the
development of real applications. For instance, the
limitation of number of triggers per table restricts
the developer to build complex systems. Monitoring
and control tasks can be implemented through
ADBMS. In its simplest operation, all requests are
usually filtered by an application layer that performs
the monitoring tasks before they are sent to the
DBMS. The problem with this approach is that it
limits the way rule condition evaluation can be
optimized.

3 ARCHITECTURE

This section discusses the architecture and the
functional aspects of each component of the active
database framework.

For health monitoring systems, it is essential to
consider features such as reliability, security,
reusability, scalability, and interoperability.
Reliability is crucial so that the monitoring system
can serve its purpose and acceptable to its users.
Security is one of the primary design factors that has
to be integrated at the design stage. Reusability
allows the implemented system to be reconfigured,
reused and extended with desired functionality
appropriate for different monitoring/surveillance
applications in different settings, environmental
conditions and purposes. Scalability is necessary to
handle a large number of users and devices that are
geographically separated. Furthermore, the
architecture must facilitate the interoperability
whereby different types of sensor devices can be
dynamically plugged into the system when
necessary, or when the system has to interoperate
with other existing systems.

Our active database monitoring architecture, as
depicted in Figure 1 is divided into four main
modules: the validation module, the active engine
module, the decision making module and the user
interface module. The details of each module are
discussed in the following section.

AN ACTIVE APPROACH IN HEALTH MONITORING

153

Figure 1: Active Database Monitoring Architecture.

Figure 2: Event Validation Module.

3.1 The Event Validation Module

The Event Validation module serves as a pre-
processing module for any monitoring systems. It is
an essential component, however, often neglected. If
data from the sensors are not properly validated, it
will be difficult to build a reliable
monitoring/surveillance system for the intended
purposes such as detecting the correct digital
signature of a disease, raising a critical disaster alert
or delivering the right message to the intended user.

This module consists of an array of functions that
deal with validating data, checking for data accuracy
and selecting initial simple processing procedures
(Figure 2). As not all functions are needed, these
functions can be flexibly programmed or selected
according to the intended application. Figure 3
illustrates the use of this module for a specific
application where only relevant functions are
selected and configured.

The main function of this module is to produce
valid, accurate and summary data for further
processing. For example, on validity check, the
incoming data from the sensors are checked to make
sure that they are from the intended sensor, from the

intended users and are within the valid operational
range. Therefore this element will possess
mechanisms for device and user identification and
will validate the signals to ensure they are within
bounds and not altered by interferences including
security and identity interferences. For accuracy
check, this module aims to produce the best estimate
of the received data to an acceptable resolution level.
It will involve error detection, signal detection and
filtering and interference cancellation.

Figure 3: Example for Specific Application.

Furthermore, data properties such as numeral,
data type, data range, sample size of each sensor
data are assessed and checked at this module.
Moreover, the outliers among the sensed data are
detected and eliminated. For reliability check, this
module guarantees that data are reliable and not
spurious or transient ones. This module considers
appropriate selection processes such as sampling
frequency and simple data aggregation. Furthermore,
simple forms of transformations such as averaging
or selective filtering can be applied.

3.2 The Active Engine Module

This module consists of a database, an event
processing and a triggering component. The pivotal
database is developed based on entities that are
identified in the application. Each of the entities
represents a passive table which stores all data
collected by the system. In our active database, the
database also contains active tables. An active table
stores the input which activates a trigger.
Consequently, every tuple in an active table can be
viewed as an expression of interest (EOI) of the
system and to be handled appropriately.

The triggering component is responsible for
assessing and evaluating the trigger and determines
whether or not it should be treated as alert. This
component and the event processing share the
responsibility of combining and integrating triggered
inputs with other relevant application parameters

Data Cleaning & Validation

Database

Event Handling

User Interaction

Event Processing

Event Validation

Active Engine

Decision Making

Sensor nodes

ACTIVE DATABASE

Users

Triggering

User Interface

Input

Identification
Check
Security Check

•Format check
•Data type check
•Limit check
•Range check
•Presence check
….

Sample size check
Frequency check
….

Output

Process Validating Validating and
Checking

Sampling
Quantization
Aggregation
Averaging

Sensor Id
Patient Id

Health parameter
value
(blood pressure, heart
rate, glucose rate, etc)

Health parameter
value
(blood pressure, heart
rate, glucose rate, etc)

Validity Accuracy/Reliability Preprocessing
Patient_id

…..

Sensor_id

systolic

ECG

diastolic

heart rate

glucose rate

…..

Health
parameter
discovery and
classification

Sensor ID
Patient ID
Recognition Validating

single input

Format check

Presence check

Data type check

Range check

Limit check
…..

sampling

median

mean

quantization

Pre- processing

Not recognized,
discarded

Not recognized,
discarded

aggregation

modeTEMP
STORAGE

frequency

sample size

Not recognized,
discarded

input

output

time interval

…..

…..

Data set

HEALTHINF 2012 - International Conference on Health Informatics

154

such as current and past data related to the targeted
event. As the monitoring/surveillance task can be
complex, each trigger invocation could convey
different contexts and scenarios in the monitoring
environment. For example, if the value of blood
pressure (BP) is high, it needs to be assessed first
before being treated as an alarm. This assessment is
done by checking corresponding parameters related
to the blood pressure. It is important to know the
current activity of the person because it bears some
effects on the interpretation of the BP value. For
example, high BP reading of a patient who is at rest
(the person is sitting or lying on the bed) or active
(the person is walking, jogging or running) should
be interpreted differently.

In our approach, active rules are constructed to
monitor specific data records in the database. An
active rule consists of three main components: event,
condition and action (ECA). The event defines a
rule-triggering occurrence. The condition is the set
of circumstances that must exist for the action of the
rule to be processed. The action is the task to be
carried out if the relevant event has taken place and
if the condition is fulfilled. Figure 4 shows a simple
example of the ECA rule that is written in our
implementation.

Figure 4: An Example of an ECA Rule.

Some existing database management systems do
support simple triggering mechanism but they only
allow simple ECA rules with single input, single
condition and simple action. Our active engine
module allows complex events to be constructed and
programmed from multiple simple events and
multiple conditions. This extension is required to
deal with complex situations and the intelligent level
of the application. Complex situations may involve
interrelated multiple events, multiple conditions,
current as well as past history of relevant data.
Examples of these are as follows:
a) An action is triggered only if an event occurs
over some specified conditions and when certain
relevant historical data are presented.
b) An action is triggered only if an event occurs
over some specified conditions and when certain
relevant multiple sets of historical data are
presented.

c) An action is only triggered if multiple events and
conditions are met.
d) An action is only triggered if multiple events and
conditions are met and when certain relevant
historical data are presented.
e) An action is only triggered if multiple events and
conditions are met and when certain relevant
multiple sets of historical data are presented.
f) An action is triggered as in (a) – (e) and some
condition on the immediate past actions.
Cases (e) and (f) are illustrated in Figure 5.

Figure 5: An action is triggered as resulted from events.

3.3 Decision Making Module

This module analyzes relevant information to
produce a decision that must be acted upon in
response to the triggered event. For instance, it is
responsible for generating appropriate alert and
notification messages. Our system considers both
internal and external conditions for dynamic
handling of the event instead of statically defined
actions. We provide a comprehensive set of patterns
for handling the alert events:
 Actions only involve the local database. Some
value of a data record is deleted, altered.
 Actions may cause some external processes to be
invoked.
 Actions may cause some external processes to be
invoked and some internal data values are altered.
 Actions may involve a series of internal processes
and may invoke external processes and some
internal data values are altered.

This design allows developers to select the handling
pattern that is most appropriate for their application.

3.4 The User Interface Module

Lastly, the actions, alerts and/or notification
messages are communicated to the affected users or
the environment. The active database architecture,
however, does not deal with end user interaction. It
mainly provides an interface for accommodating
various sets of user interaction protocols. The active

CREATE TRIGGER ai_CheckBP_fer
AFTER INSERT on Visit

FOR EACH ROW BEGIN
IF (Condition 19) THEN
CALL Procedure 112;

END IF; END

Event

Condition

Action

Trigger

Cond 1 Hist.1

Event n

Cond2 Hist.2

Cond n Hist.n
Event 1

Event 2

(e)

Cond. Hist.

Trigger

Events

Feedback

(f)

AN ACTIVE APPROACH IN HEALTH MONITORING

155

database architecture is not concerned itself with the
effects of its action as far as the users are concerned,
however, the user interface facilitates user
interaction that is considered important to the design
of a complete monitoring/surveillance system.

4 AN ACTIVE MATERNITY
CARE APPLICATION

Based on our proposed active database architecture,
we have developed the Active Maternity Care
(AMC) system with a particular Assistive Pregnancy
Care Loop application. The system was tested in a
trial workshop setting with midwives and pregnant
women from a New South Wales Health area service
(Hoang, 2008).

Figure 6: AMC current implementation.

Figure 6 depicts the implementation set up. The
AMC system can be accessed using Internet browser
on laptop/desktop computers or Personal Data
Assistants (PDAs). In this implementation, Internet
connectivity through the HP iPAQ HW6960 PDA is
established using GPRS networks. The database
which maintains the health data was developed using
MySQL 5.0. We used Apache Tomcat 5.0 as the
web container and Internet Information Service (IIS)
as the web server. We adopted Nokia 6280 as GSM
modem connected to the health server via the
Bluetooth communication port. In an ideal scenario,
the system anticipates an input from the woman. The
woman then inserts the input to the system. Upon
receiving the input from the woman, the system will
send an acknowledgement to the woman. There
could be several issues such as loss of data while
transferring, sensor or woman does not respond to
the request, etc. Therefore, during the testing, we
developed three scenarios to test the functionality of
the AMC system. In the first scenario, the woman
failed to respond to the reminder message sent by
the system. After sending a maximum of three
reminder messages, the system will send alerts to the
responsible clinician. The second scenario was
when the value of the blood pressure (BP) was out

of range. The system responded with an assistive
advice and message to the woman as a reminder.
Consequently, the system requested for another BP
measurement. In the third scenario, a severe BP
reading was recorded. During this time the system
not only responded with a clear message to the
woman but also notified the responsible midwife
about the situation. The communication between the
pregnant woman and the midwife was done via SMS
and email, depending on the urgency of the
notification. We are currently extending the interface
to allow Bluetooth and Zigbee sensor nodes to send
vital health data wirelessly to the PDAs that then
relay the data to the pre-processing module of the
system. We simulated the value for the sensors and
forwarded it to the application.

At present, the event/data conditioning module
mainly performed simple error checking and data
validation. The active engine for the AMC system
was developed using MySQL triggers and events.

Our initial implementation was not an efficient
one because of a limitation of the MySQL database:
the trigger mechanism could not activate an external
procedure for processing. We have extended the
triggering mechanism with listening threads and
generating internal trigger information files. With
this extension, an automatic notice was received by
the application. However, without the ability to call
an external process, the system could not handle
multiple triggers and complex event processing.

Our current implementation has overcome this
limitation and allowed efficient external procedures
to be invoked. This is significant as the overall
system is more responsive and allows more complex
event handling mechanisms and intelligent decision
support algorithms. Figure 7 illustrates the logic of
the active engine of our system.

Figure 7: Active Database Implementation with MySQL.

Basically, an Event_Listener is waiting and
listening to a triggered event. When it receives a
trigger it forks another process to handle the
triggered event and comes back to listening.
Multiple triggered events hence can be handled
without being delayed or lost. The handling

Event_Listener

Handling_Procedure

Update_Trigger

Update_Viewer

Database
Access

Trigger_Information

MySQLDatabase

Data Calling a process for handling the event
and return to listening for new events

HEALTHINF 2012 - International Conference on Health Informatics

156

processes are external from the database and hence
sophisticated processing can be done without
degrading the performance of the database. Figure 7
illustrates a particular example where a new piece of
data was inserted in the “monitored record” and a
trigger was initiated. When the Event_Listener
caught this event, it forked the Handling_Procedure
to update the trigger information in the database.
The Update_Trigger and the Update_Viewer are
used to update and display the changes to the user.

5 CONCLUSIONS

This paper presented an approach whereby critical
events of interest can be automatically captured and
appropriate responses can be pushed timely to
affected users. The proposed active database
component may be deployed in many security
surveillance or monitoring vital health condition
applications. A simple application to the maternity
care is demonstrated. In the future, we plan to
enhance our implementation to handle more
complicated situations including i) new processing
algorithms that deal with a richer set of data and
events; ii) intelligent algorithms and new methods of
user/system interaction; c) efficient scheduling
algorithms to handle complicated situations that
demand coordination, synchronization of
arrangement. We will also explore the use of the
information provided by the database on relevant
history of the events to reliably determine the course
of action. We will also describe our mechanism for
dealing with critical events in mission-critical
surveillance applications.

REFERENCES

Adams D. and Paapanen, E., 2003. Part III-The Active
Database. In Oracle Database Application Developer's
Guide - Fundamentals, 10g Release 1 (10.1): Oracle
Corporation., 2003.

Alamillo, T., Alsinet, Bjar, R., Anstegui, J., Fernndez, C.
and Many, F., 2003. In Automated monitoring medical
protocols: a secure and distributed architecture,"
Artificial Intelligence in Medicine, vol. 27, pp. 367-
392, 2003.

Dayal, U., Hanson, E. N. and Widom, J., 1995. Active
Database Systems. In Modern Database Systems: The
Object Model, Interoperability, and Beyond, W. Kim,
Ed. Massachusetts: ACM Press and Addision-Wesley,
1995, pp. 434-456.

Dittrich, K. R., Gatziu, S. and Geppert, A., 1995. The
Active Database Management System Manifesto: A

Rulebase of ADBMS Features. In Proceedings of the
Second International Workshop on Rules in Database
Systems, Athens, Greece, 1995.

Godo, L., Puyol-Gruart, J., Sabater, J. and Torra, V., 2003.
A multi-agent system approach for monitoring the
prescription of restricted use antibiotics. In Artificial
Intelligence in Medicine, vol. 27, pp. 259-282, 2003.

Hanson, E. N., 1996. The design and implementation of
the Ariel active database rule system. In Knowledge
and Data Engineering, IEEE Transactions on, vol. 8,
pp. 157-172, 1996.

Hoang, D. B., Homer, C., Lawrence, E., Foureur, M.,
Ahmad, N. F. Balasubramanian, V. and Leap, N.,
2008. Assistive Care Loop with Electronic Maternity
Records. In 10th International Conference on e-Health
Networking, Applications and Services (Healthcom)
Singapore, 2008.

Kotz-Dittrich, A. and E. Simon, E., 1998. Active Database
Systems: Expectations, Commercial Experience, and
Beyond. In Active Rules in Database Systems, N. W.
Paton, Ed. New York: Springer-Verlag, 1998, pp. 367-
404.

Koutkias, V. G., Chouvarda, I. and Maglaveras, N., 2005.
A multiagent system enhancing home-care health
services for chronic disease management. Information
Technology in Biomedicine, IEEE Transactions on,
vol. 9, pp. 528-537, 2005.

Moreno A. and Isern, D., 2002. Accessing distributed
health care services through smart agents," in
Proceedings of the 4th IEEE International Workshop
on Enterprise Networking and Computing in the
Health Care Industry (HealthCom 2002), Nancy,
France, 2002, pp. 34-41.

Paton, N. W., 1998. Active Rules in Database Systems.
D. Gries and F. B. Schneider, Eds. New York:
Springer-Verlag, 1998.

Paton N. W. and Diaz, O., 1999. Active Database
Systems. In ACM Computing Surveys, vol. 31, pp. 63-
103, March, 1999.

AN ACTIVE APPROACH IN HEALTH MONITORING

157

