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Abstract: This paper considers a stochastic version of the shortest path problem, the Stochastic Shortest Path Problem

with Delay Excess Penalty on directed, acyclic graphs. In this model, the arc costs are deterministic, while
each arc has a random delay, assumed normally distributed. A penalty occurs when the given delay constraint
is not satisfied. The objective is to minimize the sum of the path cost and the expected path delay penalty.
In order to solve the model, a Stochastic Projected Gradient method within a branch-and-bound framework
is proposed and numerical examples are given to illustrate its effectiveness. We also show that, within given
assumptions, the Stochastic Shortest Path Problem with Delay Excess Penalty can be reduced to the classic

shortest path problem.

1 INTRODUCTION tions in a stochastic network, where arc lengths are
random. Ohtsubo (Ohtsubo, 2003; Ohtsubo, 2008)

The Shortest Path (SP) problem is one of the bestselects a probability distribution over the set of suc-
known combinatorial optimization problems and has cessor nodes and formulates such a problem as a
been extensively studied for a long time ((Dijkstra, Markov decision process. Provan (Provan, 2003),
1959), (Bellman, 1958), (Ford and Fulkerson, 1962)). Polychronopoulos and Tsitsiklis (Polychronopoulos
The objective of SP problem is to find a path with and Tsitsiklis, 1996) studied expected shortest paths
minimum distance, time or cost between two speci- in networks where information on arc cost values is
fied vertices of a given graph. There is a surprising va- accumulated as the graph is being traversed, while
riety of real life applications, including operations re- Nikolova (Nikolova et al., 2006) maximizes the prob-
search, robotics, transportation and communications,ability that the path length does not exceed a given
e.g. figuring out how to direct packets to a destination threshold value.
across a network. In this paper, we study a special SSPP, the
In the deterministic SP problem, all the parame- Stochastic Shortest Path Problem with Delay Excess
ters (distances, time or cost) are known. However in Penalty (SSPD). In this model, each arc has a deter-
real life, due to failure, maintenance or other reasons, ministic cost and arandom delay. Furthermore, we as-
different kinds of uncertainties are frequently encoun- sume that the arc delays are independently normally
tered and must be taken into account, e.g. the traffic distributed. The problem has a simple recourse for-
delay between two cities. In these cases, it is natu- mulation. That means we deal with the delays of
ral to model parameters by continuously or discretely the path by introducing a penalty which occurs in
distributed random variables, which turns the under- the case where the delay constraint is not satisfied.
lying problem into a stochastic optimization problem The objective is to minimize the sum of the cost and
((Sahinidis, 2004)). Till now, there have been many the expected path delay penalty. As the determinis-
papers presenting the Stochastic Shortest Path Probtic shortest path problem with delay is NP-hard ((Ver-
lem (SSPP). Hutsona and Shierb (Hutsona and Shierbweij et al., 2003)), it follows that the SSPD with nor-
2009), Mirchandani et al. (Mirchandani and Soroush, mally distributed delays is NP-hard by choosing all
1985) and Murthy et al. (Murthy and Sarkar, 1996) variances of the arcs equal to 0.
considered the problem of selecting a path which SSPD has been previously studied (see (Verweij
maximizes utility functions or minimizes cost func- et al., 2003)). In this paper, the authors give near-
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optimal solutions with the Sample Average Approxi- as follows:
mation method. More precisely, the authors approx-

imate the initial SSPD (with arbitrary delay distribu- min E[7(x.8)]:=Y c(a)xa+d -E[ Y 8(a)xa—D]*
tion) with an SSPD with jointly discretely distributed xe{0,1}A ach ach
delays. lifv=s

We propose a Stochastic Projected Gradient i\, cy - _ _J 1 :’t
method within a branch-and-bound framework to =~ 'W;; X(%w) WGZ/_ X(wv) Oeltsev ’
solve the SSPD on directed, acyclic graphs. The main (vw)eA (wv)eA '

idea of this algorithm is to search the set of feasible N
solutions (all directed paths from a source nede , where[ " = max{p, 2 E[X deno‘t;? the expecta-
a sink nodet) using a depth-first search method on tion of a random variablX andd € RN is the vector

the given directed graph. In order to reject subspacesConsisting of the random variabléa). Note that
of the search space, lower bounds are computed b the constraints of SSPD are the common shortest path

solving the corresponding relaxed problems with a constraints. , _
Stochastic Projected Gradient method. Furthermore, ~SSPD ¢an be compactly written as:

we show that under a weak assumption, SSPD can be (SSPD) min  E[7(x,8)] (1a)
simplified into the classic shortest path problem and x€{0,1}/A
thus be solved in polynomial time. st.Mx=b (1b)

The paper is organized as follows. SSPD is intro-
duced in section 2. In section 3, we prove that SSPD whereM ¢ R™Al'is the node-arc incidence matrix
can be significantly simplified into the classic shortest (see (Ahuja et al., 1993)) arimic R", where all ele-
path problem in the case of a positive linear depen- ments are O except theth andt-th element, which
dence between the arc costs and the means and variare 1 and -1, respectively.
ances of the arc delays. In section 4, the Stochastic = Remark that we can drop arbitrarily one of the
Projected Gradient algorithm is presented and a spe-shortest path constraints of the SSPD in order to ob-
cific branch-and-bound algorithm is designed. In sec- tain a full rank matrixvi.
tion 5, some numerical examples are given to reveal  In the case of independently normally distributed
the effectiveness of the approach. The conclusions aredelays, the objective function of SSPD has a deter-
given in the last section. ministic equivalent formulation and can thus be eval-

uated exactly (see (Kosuch and Lisser, 2010)) :

2 SSPD FORMULATION min zc(a)xa+d.[6-f(Df“) )
xe{0,1}A acA o

Let G = (V,A) be a simple and acyclic digraph, where +(i—D)(1—F(
V ={1,2,...,n} represents the set of the nodes and
AC {(v,w):v,weV,v£w} represents the set of arcs. R R s .
Each ar@ e A has an associated cag) > 0 as well Wwhere = zagA“(a)Xa' 0 = \/Yaca0%()x5, in
as an independently normally distributed delay with Which i(a) ando®(a) are the mean and the variance
strictly positive mean represented by the random vari- ©f 3(2), respectively. f(-) andF(.) are density and
able3(a). We further assume for two distinct aras cumu_latlye d_|str|but|on function of the standard nor-
anda’ thatd(a) and3(a') are independent. mal distribution.

The Stochastic Shortest Path Problem with Delay
Excess Penalty (SSPDpnsists in finding a directed
path between two given verticesandt such thatthe 3 SIMPLIFIED SSPD
sum of the cost and the expected delay cost is min-
imal. The delay cost is based on a penalty per time In some cases, SSPD can be simplified significantly.
unitd > O that has to be paid whenever the total delay Here we introduce one special case, where, for each
exceeds a given threshdid> 0. arc, the mean and variance of the arc delay is posi-

SSPD can be formulated as a stochastic combina-tively proportional to the cost of the arc. For instance,
torial optimization problem in the following way: Let  in a transportation network, it is often the case that the
x € {0,1}A such that each componentof x repre- traffic delay time is proportional to the length of the
sents an ara <€ A. For adirected patR, we definethe  road, i.e., the longer the road, the more traffic jams
corresponding = x(P) such thak, = 1 if and only if and thus the longer the delay. For these graphs, we
a€ P. Then, SSPD can be mathematically formulated can prove that the optimal solution of SSPD is the

D-f

)]
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same as the one of its corresponding classic shortest

path problem. More precisely, one just needs to de-
termine the path such that the sum of the costs is min-

WhenB > 0, we havefg x- fx(x)dx > 0.
As X = Y22 we haveE(x) = 0, ie., [Z,x-

imized, which can be done in polynomial time. This f, (x)dx = 0. WhenB < 0, and asf (x) > 0, we thus
can be used to obtain benchmarks for numerical tests. gt B

First, we introduce the following lemma:
Lemma 1. Let Y := Z 0(a)xa, then the objective

function of SSPD is a nondecreasmg function of the

expectation and the variance of Y.

Proof. We suppose that the expectation and the stan-

dard deviation of arepando. LetX = %‘ and we
have:
G(k0) ‘= E[[Y —DJ*] = E[[0X +u—DJ*]

:/ (ox+p—D) fx (x)dx

G/Hx fx (X )dx+(u—D)/; fiy (x)dx

a

where fx(+) is the probability density function of
X.

The objective function is nondecreasingfppro-
vided that its partial derivative with respect fois
non-negative:

66((;:0) = 0-(71)D;ufx(D;u)(%l)
T
_ /;fx(x)dx

Since the density functiofi (x) is non-negative,
we have[p-, fx (x)dx> 0. ThereforeE[[Y —D]*] is

a nondecrgasing function pf
For o, we also prove that the partial derivative
with respect tay is non-negative:

66((;;0) _ /;x~fx(x)dx
R N
D-p. D-—
=D)L (B
_ /;x.fx(x)dx
LetB= - "
acsggo) _ /Bmx~fx(x)dx
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0 0
/ x-fx(x)dxg/ x- fx(X)dx< 0=
— o B

O:E(X):/iox- fx(x)dx+/o°°x- f(X)dx

0 00
g/ x-fx(x)dx+/ X- fx (x)dx
B 0

From above, we hangét‘,—‘O) > 0. ThereforeE[[Y —
D] "] is also a nondecreasing function of Corre-
spondingly,E[[Y — D]*| is a nondecreasing function
of @2, the variance oY. O

We formulate the following assumptions:

(Al) for each arc, the expectation and variance
of the delay are positively proportional to-the cost of
the arc
(A2) for two distinct arcs a and’athe delayd(a) and
delayd(a') are distributed independently

Remark: there is no need to assume that the delay
d(a) is normally distributed.

Theorem 1. Under assumption (A1) and assumption
(A2), the SSPD is equivalent to the classic shortest
path problem

min c(a
XE{Oﬁl}lAla; ( )Xa

s.t. Mx=b

Proof. We suppose that the proportions of the ex-

pectation and the variance to the cost @&k > 0

andC2 > 0, respectively. Lel = 3 d(a)Xa. As
acA

Xa € {0,1}, i.e., X2 = x4 and given assumption (A2),

we have
=E( ;5(a)xa) = Z\xalE@(a)) =C1 Z\C(a)xa
Var(Y) = Var( gé(a)xa) = zAxaVar(E)(a))
= C2 zAc(a)xa

By Lemma 1, we get the conclusion that the problem
min E[J(x,0)] has the same optimal solution as
xeSc{0,1}IA
min c(a)Xa. O
xesg{o,l}lAlagA @
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4 PROBLEM SOLVING METHOD 4.1.2 Projection and Update of

A specific branch-and-bound algorithm for SSPD is At iterationk > 1, let rk := [0,E[7(X<1,3)] be the
introduced in this section. The main idea of the al- estimator of the gradient. Its projection on the null
gorithm is as follows: on the one hand, in order to space oM is done by multiplying it with the projec-
get a lower bound to exclude some subsets of the so-tion matrix TM := I, — MT(MMT)~IM. Then,x is
lution space®P, we solve the corresponding relaxed, updated as follows:

i.e., continuous version of SSPD (see subsection 4.1) K kel kM K

with a Stochastic Projected Gradient method. On the XE= X0 = pf(TH 1)

other hand, instead of introducing a binary search tree K . : :

for the branch-and-bound procedure, we directly use \E\g;?re p1 's the step size given by a-sequence
the given graph to brows€ (i.e., the set of directed e

paths fromsto t (see subsection 4.2)). However, the predefined step s@gemight be too

I:irge in the sense that we can obtain components of
. x¢ that are negative.
4.1 Solving the Relaxed SSPD In order to handle negative components, we pro-
ceed as follows: LettX be the index set of the strictly
negative components of. We then compute the
maximum step size that keeg$ in the feasible re-
gion by

Since the continuous relaxation of SSPD (where
{0,1}W is replaced by € [0,1]"") is a convex prob-
lem (see for example (Kosuch and Lisser, 2010)), we
can solve it by using a Stochastic Projected Gradient 1
method. The basic idea is as follows: at each iteration =k ; X

k> 1, we first estimate the gradienE[7 T(x1,9)] iclk { r; }

by Z | 0,7 (X1, 8,)) /N (wherex~1 is the feasible and update accordingly:

solu'uon vector computed in the previous iteration and

5k,j =1,...,N, areN samples of the random vec- X=X —pHTM Y
tor 8, which are regenerated at theh iteration; see
subsection 4.1.1). This gradient estimator is projected
onto the null space of the matrM. XX is then com-
puted as usual, i.ex"1 minus the projected gradi-
ent times the step size. In case we obtain negative
components ok, we adapt (i.e., shorten) the step size
(subsection 4.1.2).

Proposition 1. Let X be a feasible solution of the re-
laxed SSPD. Then, using the update procedure men-
tioned above, % remains feasible for the relaxed
SSPD for all k> 1.

Proof. Using the update procedure above,
o . Mxkzllekl— ™ . k). As ™™ =
The complete algorithm is given in Algorithm 1. MT(M(MT) 1Mp (we ha\zc)e MxK — Mx<1.

In the following subsection_s we define the_ used vari- So provided thax® is a feasible solutior\Ix< = bfor
ables and give further details on the algorithm. allk> 1.

By using the step sizg* we assure thaz(,k > 0for
alk={1,...,n}.
- . . DefineA := {ac A|x¥(a) # 0}. First of all remark
7 is differentiable everywhere except for those points that due to constraints (L&} defines a (positive) flow

X Whtere ZaeA”5( 1)('3 q D _tg 'I;)he se: Oi E:j” thtehse ongG = (V,A) with value 1. AsG contains no directed
points s anull setand can thus be neglected as the aim, ycles we can now partitiovi in disjunct vertex sets

of all stochastic gradient algorithms is to approximate Vi.... Vi such that
the gradient of the expectation gfvia a sampling «
procedure. Therefore, we define the gradienf afs 1. U =V

4.1.1 Estimating the Gradient ofj

follows: 2. Vi = {s} andv = {t}
c if [Yacad(@)%a—D < 0] 3. Leta=vwe A. Then there exist, j € {1,...,k}
OxI(%,8) = _ with h < j, s.t.v e Vi andw e ;.
c+d-d otherwise
] ) 1 ) Leta=vwe Aandv € W, h < k. Then there exists a
So the estimator of the gradief{E[ 7 (X +,d)] is CUtCy = Uihlei such thag € E(Cy,Ca), denoting the
1 s —
2 k—1 Z?‘:l ij(xk 176k) 1A o-sequence is a sequen¢pk)k A that satisfies
OcE[9 (X" ,08)] = ) . p <
N Mgy p“=0andyy ,p* — oo.
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set of the edges betwe€y andC,, andE(C,,C,) =
0. As

X(Cq,Ca) := Z xw=1 and X, >0vacA
vela
weCy

it follows thatxy < 1. This ends the proof. [

4.1.3 Active Set Methods

However, ifxik*1 =0 forak>1 and an index €
{1,...,n}, we get the step siz& = 0. In this case, we
are (and will keep) stuck on the current, probably non-
optimal solution. To prevent this, we use taetive
set methodsee (Luenberger and Ye, 2008)), which
introduces a set of additional equality constraints, the
so calledactive set4¥. As this set is continuously
updated, we use a superscript that indicates in which
iteration the sefg¥ is active.

Fork>1letl§ 1:={i|x ' =0}. Thenthe active
set for iteratiork is defined as:

e

Now, instead of projecting® on the null space of the
matrix M, we project it on the null space of a matrix
ZK: This matrix consists of the matriM enlarged by
|I§*1| rows that correspond to the equality constraints

in 4%:
Zk =M
Zl = ewn )

where{t1(1),..., ™ Y15} =15 andg is the
i-th row of the n-dimensional identity matrix. Re-
mark thatZK might have linearly dependent rows.
In this case the projection matrix can be computed
asTK =1 — (Z9T(ZXZT)*Z* where(ZK)* is the
unique Moore-Penrose pseudoinvers@'of

If the computed projected gradient is zero, we
might have obtained a local optimum of the deter-
ministic variant of problem (1) with delay vectors

SQ, j = 1...N and additional equality constraints given
by 4. In this case we compute Lagrange multipliers
as follows:

for i=1,...,n

i=n+1,...,n+|l

for &

A= _(Zk(zk)T)+Zkrk

If all the multipliers associated with the constraints
in 4% are positive, we have reached the optimal solu-
tion of the deterministic variant of problem (1) with

delay vector?-_SﬂJ = 1...N. In this case we stop the
algorithm. Otherwise, we remove the constraint with
the most negative multiplier from¥ and start a new
iteration.
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Algorithm 1: Stochastic Projected Gradient Algorithm.

o Initialization: Given constants, K1, K; and ao-
sequencepk)keN. ChoosexX feasible for SSPD
(1) (for example using depth-first search on the
graph). Sek=1. _
For allac AdrawN samplesﬂi(a),j =1,...,N
of (a) according to its normal distribution.
DetermineZX and letT be the matrix for projec-
tion on the null space afX. Compute the approx-
imated gradient*:= 5N , 0,7 (X1, 3})/N.
If TK.rk = 0: Compute the Lagrange multipliers
of the current equality constraints.
— If all multipliers associated with the constraints
in 4% are positive, STOP.
— Else delete the constraint from having the
most negative associated multiplier. 8et k4
1 and start a new iteration.
Else: UpdatexX as follows:x< = X<~ 1 — pK(Tk.rK)
— If mincy mx€<0 Definel® = {i|x <
0} and compute a new step sizepX =

) 1
min; ¢k :

(Tiz-fz)i
UpdatexX as follows:xk = xk-1 —p¥(TX. r¥)
— If k> Ky and[E[7 (X<, 8)] — E[7 (X K2, 8)]| < g,
STOP.
Otherwise Sek = k+ 1 and start a new itera-
tion.

Clearly, as the algorithm is stochastic, it might take
some additional time to meet the stopping criterion
that multipliers are positive, even though the current
solution is (near) optimal. That is why we add an ad-
ditional stopping criterion: if there is no significant
improvement in the objective value, we stop the algo-
rithm.

4.2 Branch-and-bound Framework

Definition 1. Let P be a directed path. We say that an
arc a= (v,w) has its origin in P, if ve P but a¢ P.
For a path P we define the set of all arcs that have
their originon P as @.

The branch-and-bound algorithm can be stated
as follows: First we solve the relaxed version of
the overall problem, which gives us a solutien ~
of the relaxation as well as a first lower bound
LB. We then begin to search for a feasible binary
solution by plunging the graph (see phase 4). The
obtained directed path from stot together with the
corresponding lower bountdB(P) = LB are stored
in a pool of waitingst-pathsZ. In addition, we
store the value ok for all arcsa € Op in a variable
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xp(a). The solution value of SSPD given I&is our Matlab and all tests ran on a Pentium(R)D @ 3.00
first upper bound and it is stored in the variablB. GHz with 2.0 GB RAM.
Then, each further iteration of our branch-and-bound  We considered five directed, acyclic graphs for

algorithm consists of (up to) five phases: our tests with(|V|,|A|) equal to(23,40), (50,167),
(75,215, (100351 and (100,573), respectively.

Phase 1: Selecting a Branch. Among the five networks, the first is taken from an-

If £ is empty, the algorithm terminates. OutphliB. other paper (see (Ji, 2005)), while the other four

Otherwise, we select a patR € £ such that are modified graphs of the OR-library (see (Beasley,

LB(P) = minge . LB(Q). 2010)).

Phase 2: Selecting an Arc. 5.1 The Continuous SSPD

If no arc in Op is left that has not already been
examined (i.e., majp(b)|b € Op} = —1, see phase
5), we deleteP from L, end the iteration and go to
phase 1. Otherwise, we go to the first verntean P
such that there still exists at least one @rav) € Op
that has not already be examined (i.e., such that
max{xp(b)|3w € A: b= (vw)} # —1). We then
choose the ara such thatxp(a) = max{xp(b)|3w €
A:b=(vw)}. If addinga to the sub-patts-P-v
leads to a non-feasible solution, we reject(i.e.,
setxp(a) = —1) and choose another arc @p by
repeating phase 2.

We compare our Stochastic Projected Gradient
method with Matlab’s optimization toolbox: To solve
the convex, deterministic reformulation of SSPD (2),
we use Matlab’s fmincon function and set, as in our
algorithm, an active set method as optimization algo-
rithm. Note that Matlab uses a deterministic gradient
strategy while we use a stochastic one.

As test instances, we generated the parameters for
the five networks as follows: the penattys 10,D is
set to the mean of the delay of the shortest path, the
expectationu(a) and the variance?(a) are generated
uniformly on the interval&, 2¢] (Cis the median of all
the costs) anfb?(c), 4« a2(c)] (o%(c) is the variance
of all the costs), respectively. We run our algorithm
as well as Matlab 10 times on each instance. The re-
. . sults are shown in Table 1, where we compare our
this subproplem.gwes us a lower boubB f_or the Stochastic Projected Gradient method with Matlab’s
correspondlng binary solution and a solution vector optimization toolbox in terms of average CPU time in

% If LB < UBwe go to phase 4. Otherwise, we reject seconds and the mean of best solution value found.
a(setxp(a) = —1) and choose a new arc (phase 2). e also give the relative performance ratio computed
as

Phase 3: Calculating a Lower Bound.

Leta = (v,w) be the arc chosen in phase 2. Consider
the relaxed subproblem of SSPD obtained by fixing
the first part of thest-path tos-P-(v,w). Solving

Phase 4: Plunging. PR_ VsGrad— VMatlab
Find a new st-path P' containing the sub-path - VSGrad
s-P-(v,w): Starting from vertexv, we always add the

outgoing arc with the highest value xf - wherevsgrag is the mean of the best solution values

obtained with the Stochastic Projected Gradient al-
gorithm andvyatian the mean of the ones obtained
with Matlab. As SSPD is a minimization problem
and both methods give a feasible solution, negative ra-
tios indicate that our algorithm found a better solution
while positive ones show that Matlab performed bet-
ter. To give detailed information about the numerical
. .__tests, we list the percentage of all 10 runs where the
rest of the outqomg arcs, we store the CorreSpondIngStochastic Projected Gradient algorithm finds a better
component Ook™xp(vw) is set to—l_. . solution than Matlab’s optimization algorithm. Note
If the solution value of SSPD given by is lower that for the test of graphl00,573), there are 4 runs
than the current upper bouitB, we updatéJ B. out of 10 where Matlab did not finish in 20 minutes.
However, with our method it took at most 140 sec-
onds to get a solution. These instances are omitted in
5 NUMERICAL EXAMPLES the computation of the average values given in Table
1.
The Stochastic Projected Gradient method as well as  From Table 1, we observe that our algorithm is
the branch-and-boundalgorithm were implemented in better than Matlab’s optimization toolbox in terms of

Phase 5: Storage and Update.

Path P’ is stored together with the corresponding
lower boundLB(P') = LB in the pool of waiting
paths£. In addition, we define for all arca € Op
the valuexp/(a) as follows: For all arcsa that have
their origin ons-P-v x(a) is set to—1. For the
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Table 1: Results of solving the Continuous SSPD. Notice that the number of sampléshas no signif-
(Nodes, Algor, CPU Best PR Perc- icant influence on the CPU time, although the com-
Arcs) ' ' time(s) Val. (%) entage Rlutatic())rcu) l'?had is ilﬁﬁrly Qe?_\'ner at each |t(|e|r?g|otntxwth
= an withN = 1. However, recall that the

82283 Ill\lz_llo 8ig gég jiggg 8(;; stopping criterion is not a fixed number of iterations.

(23’40) N=100 0'40 205 13.66 0% but m.erely based on a measure of convergence. This

(23’40) Matlab 1'50 177 ) ~ expla_ms, that on some instances the algorlth_m tal_<es
! ' less time when considering 100 samples per iteration

than when considering only one.

(50,167) N=1 2.72 13135 17.88 0% _ _
(50,167) N=10 2.72 13302 1891 0% 5.2 The Combinatorial SSPD

(50,167) N=100 2.78 13155 18.01 0%

(50,167) Matlab 47.54 10786 - - In this section, we present our numerical results of the
above mentioned branch-and-bound algorithm. For
the five networks, we run two cases: in the first

(75,215) N=1 6.62 14461 17.76 30% one, the expectation and the variance of the delay

(75,215) N=10 6.42 14363 17.20 20%  are directly proportional to the cost of the arc (in-

(75,215) N=100 6.52 13446 11.55 40%  stances SSPDla - SSPD5a); in the second one, they

(75,215) Matlab 156.60 11893 - - are not proportional to the cost (instances SSPD1b -
SSPD5b). For the first case, by Theorem 1 in section
3, we get the conclusion that the optimal solution of

(100,351) N=1 30.08 7464 -36.90 70%  SSPD can be obtained in polynomial time by solving

(100,351) N=10 30.02 7471 -36.77 70% aclassic shortest path problem. This provides us with

(100,351) N=100 30.34 7488 -36.46 70%  abenchmark for the solution given by our algorithm.

(100,351) Matlab 133.26 10218 - . However, this doesn't suit to the second case.

Based on the numerical results for the continu-
ous relaxation of SSPD, we set the sample number

(100,573) N=1 129.02 13241 10.90 50% N to 10 for both cases. The other parameters are

(100,573) N=10 138.72 10847 -8.77 83% generated as follows: for the first case, the penalty

(100,573) N=100 140.26 10021 -17.73 100% ( (the delay penalty per time unit) is 10, the expec-

(100,573) Matlab 200.70 11798 - - tation and the variance of the delay for each arc
arep(a) = 10« c(a) ando?(a) = p(a)/9, respectively,

CPU time. Moreover, the CPU time of our algorithm and the delay thresholdlis set to the mean of the de-
does not exceed 70% of the CPU time Matlab takes. lay of the shortest path. For the second case, we use
With respect to the produced solutions, for the two the same instances as the continuous SSPD, i.e., the
large graphsr(= 100), the Stochastic Projected Gra- parameters are the same as the parameters in the con-
dient algorithm finds the best solutions, while Matlab tinuous one. In our numerical tests, we run each in-
performs better on the small graphs with<= 75. stance ten times. The results are shown in Table 2 and
Moreover, withN = 100 samples our algorithm pro- Table 3, respectively. For each of the 10 instances,
duces better solutions than Matlab in 81% of the runs Table 2 gives the mean of the solution value obtained
on the graphs with 100 vertices. To resume, for the with the branch-and-bound algorithm, the benchmark
instances above, the Stochastic Projected Gradient al{the optimal value), the average number of considered
gorithm performs better than Matlab’s optimization nodes, i.e., the number of times a lower bound is cal-
toolbox when graph sizes are large, both in terms culated during the algorithm, the average CPU time
of CPU time and produced solutions. For the small in seconds and the gap, i.e., the relative difference be-
graphs, Matlab gives better solutions but takes 3 timestween the solution value of the best solution provided
more CPU time than the Stochastic Projected Gradi- by our algorithm and the benchmark; while Table 3
ent algorithm. gives the mean of the solution value obtained with the
Regarding the number of samplds we observe  branch-and-bound algorithm, the average number of
no big difference between taking 10 samples and 100. considered nodes, the average CPU time in seconds.
However, in general, taking 100 samples gives better  From Table 2 and Table 3, we observe that for the
results than taking 1 sample: for instances 1, 3 and first four instances the CPU time of our branch-and-
5, better solutions are found with 100 samples, while bound algorithm does not exceed 400 seconds. Given
the results are comparable for the other two instances.theNP-hardness of the problem, the size of the graphs
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and number of-t-paths (47, 88828, 810631 and up Table 3: Computational results for instances.
to more than 2?6 million for the graph with 100 ver- instances (Nodes, Best No.of CPU
tices) the CPU times are very small compared to other Arcs) Val. nodes time (s)
branch-and-bound approaches (see e.g. (Kosuch and SSPDIb  (23.40) 250 18 =00
Lisser, 2010)). This is of course due to the quite high ' '
number of pruned subspaces that can be seen from
the low number of considered nodes (that, on aver-
age, does not exceed 20 for all instances). Although,
due to the approximative nature of the Stochastic Pro-
jected Gradient algorithm, it is theoretically possi-
ble that our branch-and-bound algorithm prunes sub-
spaces that contain an optimal solution, the solutions
we get are optimal for the first case, where the optimal
solutions are known (i.e., all gaps are 0).
Comparing the performance of our algorithm on
the instances of the first case (Table 2) with that on the
instances for the second case (Table 3), we see that the SSPD5b_(100,573) 10795 39 5464.30
algorithm considers slightly more nodes in the second
case. We think that this is due to the initial plung- obtained Stochastic Shortest Path Problem with Delay
ing that, for instances where the delays are positively Excess Penalty can be greatly simplified by reformu-
proportional, produces a "relatively better” solution. lating it as the classic shortest path problem, which
This allows the algorithm to prune even more sub- can be solved in polynomial time.
spaces. On the other hand, the arverage of caculating  To solve the problem in general we propose to use
of the lower bound, i.e., the ratio between the time and a branch-and-bound framework to search the set of
the nodes, are nearly same for the same graphs withfeasible paths. Lower bounds are obtained by solv-
IV| > 50 in both cases, the proportional and general ing the corresponding linear relaxation which in turn
case, which indicates a sort of robustness. is done using a Stochastic Projected Gradient algo-
rithm involving an active set method. Numerical ex-
Table 2: Computational results for instances with propor- amples are given to illustrate the effectiveness of the
tional delays. obtained algorithm. Concerning the resolution of the
Instances (Nodes, Best Opt. No.of CPU Gap continuous relaxation, our Stochastic Projected Gra-
Arcs) Val. Val. nodes time (s) (%)  dient algorithm clearly outperforms the Matlab op-
SSPDla (23,40) 41 41 6 154 0.00 timization toolbox on large graphs. Moreover, for
instances where the cost of an arc is positively pro-
portional to the mean and variance of its delay, our
SSPD2a (50,167) 530 530 5 13.79 0.00 branch-and-bound algorithm indeed finds the optimal
solution.
For the future work, we can generalize the as-
SSPD3a (75,215) 625 625 15 146.85 0.00 sumption on the distribution and our approach should
be easily extendable to more general distributions,
and maybe also to more general graphs. Concerning
SSPD4a (100,351) 231 231 9 274.54 0.00 the special case for which we have shown the Stochas-
tic Shortest Path Problem with Delay Excess Penalty
to be equivalent to the classic shortest path problem, it
SSPD5a (100,573) 110 110 15 2066.30 0.00 might be possible to weaken the underlying assump-
tions in order to obtain this same result for a larger
class of instances.

SSPD2b (50,167) 16182 16  65.34

SSPD3b (75,215) 15909 15 127.96

SSPD4b (100,351) 9842 13 372.43
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