
STOCHASTIC SHORTEST PATH PROBLEM
WITH UNCERTAIN DELAYS

Jianqiang Cheng1, Stefanie Kosuch2 and Abdel Lisser1
1Laboratoire de Recherche en Informatique (LRI), Université Paris Sud - XI, Bât. 490, 91405 Orsay Cedex, France

2Institutionen för datavetenskap (IDA), Linköpings Universitet, 58183 Linköping, Sweden

Keywords: Stochastic programming, Shortest path, Projected gradient algorithm, Active set methods, Branch-and-bound.

Abstract: This paper considers a stochastic version of the shortest path problem, the Stochastic Shortest Path Problem
with Delay Excess Penalty on directed, acyclic graphs. In this model, the arc costs are deterministic, while
each arc has a random delay, assumed normally distributed. A penalty occurs when the given delay constraint
is not satisfied. The objective is to minimize the sum of the path cost and the expected path delay penalty.
In order to solve the model, a Stochastic Projected Gradient method within a branch-and-bound framework
is proposed and numerical examples are given to illustrate its effectiveness. We also show that, within given
assumptions, the Stochastic Shortest Path Problem with Delay Excess Penalty can be reduced to the classic
shortest path problem.

1 INTRODUCTION

The Shortest Path (SP) problem is one of the best
known combinatorial optimization problems and has
been extensively studied for a long time ((Dijkstra,
1959), (Bellman, 1958), (Ford and Fulkerson, 1962)).
The objective of SP problem is to find a path with
minimum distance, time or cost between two speci-
fied vertices of a given graph. There is a surprising va-
riety of real life applications, including operations re-
search, robotics, transportation and communications,
e.g. figuring out how to direct packets to a destination
across a network.

In the deterministic SP problem, all the parame-
ters (distances, time or cost) are known. However in
real life, due to failure, maintenance or other reasons,
different kinds of uncertainties are frequently encoun-
tered and must be taken into account, e.g. the traffic
delay between two cities. In these cases, it is natu-
ral to model parameters by continuously or discretely
distributed random variables, which turns the under-
lying problem into a stochastic optimization problem
((Sahinidis, 2004)). Till now, there have been many
papers presenting the Stochastic Shortest Path Prob-
lem (SSPP). Hutsona and Shierb (Hutsona and Shierb,
2009), Mirchandani et al. (Mirchandani and Soroush,
1985) and Murthy et al. (Murthy and Sarkar, 1996)
considered the problem of selecting a path which
maximizes utility functions or minimizes cost func-

tions in a stochastic network, where arc lengths are
random. Ohtsubo (Ohtsubo, 2003; Ohtsubo, 2008)
selects a probability distribution over the set of suc-
cessor nodes and formulates such a problem as a
Markov decision process. Provan (Provan, 2003),
Polychronopoulos and Tsitsiklis (Polychronopoulos
and Tsitsiklis, 1996) studied expected shortest paths
in networks where information on arc cost values is
accumulated as the graph is being traversed, while
Nikolova (Nikolova et al., 2006) maximizes the prob-
ability that the path length does not exceed a given
threshold value.

In this paper, we study a special SSPP, the
Stochastic Shortest Path Problem with Delay Excess
Penalty (SSPD). In this model, each arc has a deter-
ministic cost and a random delay. Furthermore, we as-
sume that the arc delays are independently normally
distributed. The problem has a simple recourse for-
mulation. That means we deal with the delays of
the path by introducing a penalty which occurs in
the case where the delay constraint is not satisfied.
The objective is to minimize the sum of the cost and
the expected path delay penalty. As the determinis-
tic shortest path problem with delay is NP-hard ((Ver-
weij et al., 2003)), it follows that the SSPD with nor-
mally distributed delays is NP-hard by choosing all
variances of the arcs equal to 0.

SSPD has been previously studied (see (Verweij
et al., 2003)). In this paper, the authors give near-

256 Cheng J., Kosuch S. and Lisser A..
STOCHASTIC SHORTEST PATH PROBLEM WITH UNCERTAIN DELAYS.
DOI: 10.5220/0003725102560264
In Proceedings of the 1st International Conference on Operations Research and Enterprise Systems (ICORES-2012), pages 256-264
ISBN: 978-989-8425-97-3
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

optimal solutions with the Sample Average Approxi-
mation method. More precisely, the authors approx-
imate the initial SSPD (with arbitrary delay distribu-
tion) with an SSPD with jointly discretely distributed
delays.

We propose a Stochastic Projected Gradient
method within a branch-and-bound framework to
solve the SSPD on directed, acyclic graphs. The main
idea of this algorithm is to search the set of feasible
solutions (all directed paths from a source nodes to
a sink nodet) using a depth-first search method on
the given directed graph. In order to reject subspaces
of the search space, lower bounds are computed by
solving the corresponding relaxed problems with a
Stochastic Projected Gradient method. Furthermore,
we show that under a weak assumption, SSPD can be
simplified into the classic shortest path problem and
thus be solved in polynomial time.

The paper is organized as follows. SSPD is intro-
duced in section 2. In section 3, we prove that SSPD
can be significantly simplified into the classic shortest
path problem in the case of a positive linear depen-
dence between the arc costs and the means and vari-
ances of the arc delays. In section 4, the Stochastic
Projected Gradient algorithm is presented and a spe-
cific branch-and-bound algorithm is designed. In sec-
tion 5, some numerical examples are given to reveal
the effectiveness of the approach. The conclusions are
given in the last section.

2 SSPD FORMULATION

Let G = (V,A) be a simple and acyclic digraph, where
V = {1,2, ...,n} represents the set of the nodes and
A⊆{(v,w) : v,w∈V,v 6=w} represents the set of arcs.
Each arca∈ A has an associated costc(a)> 0 as well
as an independently normally distributed delay with
strictly positive mean represented by the random vari-
ableδ(a). We further assume for two distinct arcsa
anda′ thatδ(a) andδ(a′) are independent.

TheStochastic Shortest Path Problem with Delay
Excess Penalty (SSPD)consists in finding a directed
path between two given verticess andt such that the
sum of the cost and the expected delay cost is min-
imal. The delay cost is based on a penalty per time
unit d > 0 that has to be paid whenever the total delay
exceeds a given thresholdD > 0.

SSPD can be formulated as a stochastic combina-
torial optimization problem in the following way: Let
x∈ {0,1}|A| such that each componentxa of x repre-
sents an arca∈A. For a directed pathP, we define the
correspondingx= x(P) such thatxa = 1 if and only if
a∈P. Then, SSPD can be mathematically formulated

as follows:

min
x∈{0,1}|A|

E[J (x,δ)]:=∑
a∈A

c(a)xa+d ·E[∑
a∈A

δ(a)xa−D]+

s.t.∀v∈V : ∑
w∈V:

(v,w)∈A

x(v,w)− ∑
w∈V:

(w,v)∈A

x(w,v)=





1 if v= s,
−1 if v= t,
0 else.

where[·]+ = max{0, ·},E[X] denotes the expecta-
tion of a random variableX andδ ∈R|A| is the vector
consisting of the random variablesδ(a). Note that
the constraints of SSPD are the common shortest path
constraints.

SSPD can be compactly written as:

(SSPD) min
x∈{0,1}|A|

E[J (x,δ)] (1a)

s.t.Mx= b (1b)

whereM ∈ R
n×|A| is the node-arc incidence matrix

(see (Ahuja et al., 1993)) andb ∈ R
n, where all ele-

ments are 0 except thes-th andt-th element, which
are 1 and -1, respectively.

Remark that we can drop arbitrarily one of the
shortest path constraints of the SSPD in order to ob-
tain a full rank matrixM.

In the case of independently normally distributed
delays, the objective function of SSPD has a deter-
ministic equivalent formulation and can thus be eval-
uated exactly (see (Kosuch and Lisser, 2010)) :

min
x∈{0,1}|A|

∑
a∈A

c(a)xa+d · [σ̂ · f (
D− µ̂

σ̂
) (2)

+(µ̂−D)(1−F(
D− µ̂

σ̂
))]

whereµ̂ = ∑a∈Aµ(a)xa, σ̂ =
√

∑a∈A σ2(a)x2
a, in

which µ(a) andσ2(a) are the mean and the variance
of δ(a), respectively. f (·) andF(·) are density and
cumulative distribution function of the standard nor-
mal distribution.

3 SIMPLIFIED SSPD

In some cases, SSPD can be simplified significantly.
Here we introduce one special case, where, for each
arc, the mean and variance of the arc delay is posi-
tively proportional to the cost of the arc. For instance,
in a transportation network, it is often the case that the
traffic delay time is proportional to the length of the
road, i.e., the longer the road, the more traffic jams
and thus the longer the delay. For these graphs, we
can prove that the optimal solution of SSPD is the

STOCHASTIC SHORTEST PATH PROBLEM WITH UNCERTAIN DELAYS

257

same as the one of its corresponding classic shortest
path problem. More precisely, one just needs to de-
termine the path such that the sum of the costs is min-
imized, which can be done in polynomial time. This
can be used to obtain benchmarks for numerical tests.

First, we introduce the following lemma:

Lemma 1. Let Y := ∑
a∈A

δ(a)xa, then the objective

function of SSPD is a nondecreasing function of the
expectation and the variance of Y .

Proof. We suppose that the expectation and the stan-
dard deviation ofY areµ andσ. Let X = Y−µ

σ and we
have:

G(µ,σ) := E[[Y−D]+] = E[[σX+µ−D]+]

=

∫ ∞

D−µ
σ

(σx+µ−D) fX(x)dx

= σ
∫ ∞

D−µ
σ

x · fX(x)dx+(µ−D)
∫ ∞

D−µ
σ

fX(x)dx

where fX(·) is the probability density function of
X.

The objective function is nondecreasing forµ, pro-
vided that its partial derivative with respect toµ is
non-negative:

∂G(µ,σ)
∂µ

= σ · (−1)
D−µ

σ
fX(

D−µ
σ

)(
−1
σ

)

+

∫ ∞

D−µ
σ

fX(x)dx+(µ−D)(−1) fX (
D−µ

σ
)(
−1
σ

)

=
∫ ∞

D−µ
σ

fX(x)dx

Since the density functionfX(x) is non-negative,
we have

∫ ∞
D−µ

σ
fX(x)dx≥ 0. Therefore,E[[Y−D]+] is

a nondecreasing function ofµ.
For σ, we also prove that the partial derivative

with respect toσ is non-negative:

∂G(µ,σ)
∂σ

=
∫ ∞

D−µ
σ

x · fX(x)dx

+σ · (−1)
D−µ

σ
fX(

D−µ
σ

)(
D−µ

−σ2)

+(µ−D)(−1) fX(
D−µ

σ
)(

D−µ

−σ2)

=

∫ ∞

D−µ
σ

x · fX(x)dx

Let B=
D−µ

σ
,

∂G(µ,σ)
∂σ

=
∫ ∞

B
x · fX(x)dx

WhenB≥ 0, we have
∫ ∞

B x · fX(x)dx≥ 0.

As X = Y−µ
σ , we haveE(x) = 0, i.e.,

∫ ∞
−∞ x ·

fX(x)dx= 0. WhenB< 0, and asf (x) ≥ 0, we thus
get:
∫ 0

−∞
x · fX(x)dx≤

∫ 0

B
x · fX(x)dx≤ 0=⇒

0= E(X) =

∫ 0

−∞
x · fX(x)dx+

∫ ∞

0
x · fX(x)dx

≤

∫ 0

B
x · fX(x)dx+

∫ ∞

0
x · fX(x)dx

From above, we have∂G(µ,σ)
∂σ ≥ 0. ThereforeE[[Y−

D]+] is also a nondecreasing function ofσ. Corre-
spondingly,E[[Y−D]+] is a nondecreasing function
of σ2, the variance ofY.

We formulate the following assumptions:

(A1) for each arc, the expectation and variance
of the delay are positively proportional to the cost of
the arc.
(A2) for two distinct arcs a and a′, the delayδ(a) and
delayδ(a′) are distributed independently.

Remark: there is no need to assume that the delay
δ(a) is normally distributed.

Theorem 1. Under assumption (A1) and assumption
(A2), the SSPD is equivalent to the classic shortest
path problem

min
x∈{0,1}|A|

∑
a∈A

c(a)xa

s.t. Mx= b

Proof. We suppose that the proportions of the ex-
pectation and the variance to the cost areC1 > 0
and C2 > 0, respectively. LetY = ∑

a∈A
δ(a)xa. As

xa ∈ {0,1}, i.e.,x2
a = xa and given assumption (A2),

we have

E(Y) =E(∑
a∈A

δ(a)xa) = ∑
a∈A

xaE(δ(a)) =C1∑
a∈A

c(a)xa

Var(Y) = Var(∑
a∈A

δ(a)xa) = ∑
a∈A

xaVar(δ(a))

= C2∑
a∈A

c(a)xa

By Lemma 1, we get the conclusion that the problem
min

x∈S⊆{0,1}|A|
E[J (x,δ)] has the same optimal solution as

min
x∈S⊆{0,1}|A|

∑
a∈A

c(a)xa.

ICORES 2012 - 1st International Conference on Operations Research and Enterprise Systems

258

4 PROBLEM SOLVING METHOD

A specific branch-and-bound algorithm for SSPD is
introduced in this section. The main idea of the al-
gorithm is as follows: on the one hand, in order to
get a lower bound to exclude some subsets of the so-
lution spaceP , we solve the corresponding relaxed,
i.e., continuous version of SSPD (see subsection 4.1)
with a Stochastic Projected Gradient method. On the
other hand, instead of introducing a binary search tree
for the branch-and-bound procedure, we directly use
the given graph to browseP (i.e., the set of directed
paths froms to t (see subsection 4.2)).

4.1 Solving the Relaxed SSPD

Since the continuous relaxation of SSPD (wherex ∈
{0,1}|A| is replaced byx∈ [0,1]|A|) is a convex prob-
lem (see for example (Kosuch and Lisser, 2010)), we
can solve it by using a Stochastic Projected Gradient
method. The basic idea is as follows: at each iteration
k ≥ 1, we first estimate the gradient∇xE[J (xk−1,δ)]
by ∑N

j=1 ∇xJ (xk−1,δ
j
k)/N (wherexk−1 is the feasible

solution vector computed in the previous iteration and

δ
j
k , j = 1, . . . ,N, are N samples of the random vec-

tor δ, which are regenerated at thek-th iteration; see
subsection 4.1.1). This gradient estimator is projected
onto the null space of the matrixM. xk is then com-
puted as usual, i.e.,xk−1 minus the projected gradi-
ent times the step size. In case we obtain negative
components ofx, we adapt (i.e., shorten) the step size
(subsection 4.1.2).

The complete algorithm is given in Algorithm 1.
In the following subsections we define the used vari-
ables and give further details on the algorithm.

4.1.1 Estimating the Gradient of j

J is differentiable everywhere except for those points
x where∑a∈A δ(a)xa −D = 0. The set of all these
points is a null set and can thus be neglected as the aim
of all stochastic gradient algorithms is to approximate
the gradient of the expectation ofJ via a sampling
procedure. Therefore, we define the gradient ofJ as
follows:

∇xJ (x,δ) =





c if [∑a∈Aδ(a)xa−D ≤ 0]

c+d ·δ otherwise

So the estimator of the gradient∇xE[J (xk−1,δ)] is

∇xÊ[J (x
k−1,δ)] =

∑N
j=1∇xJ (xk−1,δ

j
k)

N

4.1.2 Projection and Update ofx

At iteration k ≥ 1, let rk := ∇xÊ[J (xk−1,δ)] be the
estimator of the gradient. Its projection on the null
space ofM is done by multiplying it with the projec-
tion matrix TM := In −MT(MMT)−1M. Then,x is
updated as follows:

xk = xk−1−ρk(TM · rk)

where ρk is the step size given by aσ-sequence
(ρk)k∈N

1.

However, the predefined step sizeρk might be too
large in the sense that we can obtain components of
xk that are negative.

In order to handle negative components, we pro-
ceed as follows: LetIk

− be the index set of the strictly
negative components ofxk. We then compute the
maximum step size that keepsxk in the feasible re-
gion by

ρk = min
i∈Ik

−

{
xk−1

i

(TM · rk)i

}

and updatex accordingly:

xk = xk−1−ρk(TM · rk)

Proposition 1. Let x0 be a feasible solution of the re-
laxed SSPD. Then, using the update procedure men-
tioned above, xk remains feasible for the relaxed
SSPD for all k≥ 1.

Proof. Using the update procedure above,
Mxk = M(xk−1 − ρk(TM · rk)). As TM =
In − MT(MMT)−1M, we have: Mxk = Mxk−1.
So provided thatx0 is a feasible solution,Mxk = b for
all k≥ 1.

By using the step sizeρk we assure thatxk
i ≥ 0 for

all k= {1, . . . ,n}.
DefineA := {a∈ A|xk(a) 6= 0}. First of all remark

that due to constraints (1b)xk defines a (positive) flow
onG = (V,A) with value 1. AsG contains no directed
cycles, we can now partitionV in disjunct vertex sets
V1, . . . ,Vκ such that

1.
⋃κ

i=1Vi =V

2. V1 = {s} andVκ = {t}

3. Leta= vw∈ A. Then there existh, j ∈ {1, . . . ,κ}
with h< j, s.t.v∈Vh andw∈Vj .

Let a= vw∈ A andv∈Vh, h< κ. Then there exists a
cutCa =

⋃h
i=1Vi such thata∈ E(Ca,Ca), denoting the

1A σ-sequence is a sequence(ρk)k∈N that satisfies

limk→∞ ρk = 0 and∑∞
k=0ρk → ∞.

STOCHASTIC SHORTEST PATH PROBLEM WITH UNCERTAIN DELAYS

259

set of the edges betweenCa andCa, andE(Ca,Ca) =
/0. As

x(Ca,Ca) := ∑
v∈Ca
w∈Ca

xvw = 1 and xa > 0∀a∈ A

it follows thatxa ≤ 1. This ends the proof.

4.1.3 Active Set Methods

However, if xk−1
i = 0 for a k ≥ 1 and an indexi ∈

{1, . . . ,n}, we get the step sizeρk = 0. In this case, we
are (and will keep) stuck on the current, probably non-
optimal solution. To prevent this, we use theactive
set method(see (Luenberger and Ye, 2008)), which
introduces a set of additional equality constraints, the
so calledactive setAk. As this set is continuously
updated, we use a superscript that indicates in which
iteration the setAk is active.

Fork≥ 1 let Ik−1
0 := {i |xk−1

i = 0}. Then the active
set for iterationk is defined as:

Ak = { [xi = 0] |i ∈ Ik−1
0 }

Now, instead of projectingrk on the null space of the
matrix M, we project it on the null space of a matrix
Zk: This matrix consists of the matrixM enlarged by
|Ik−1

0 | rows that correspond to the equality constraints
in Ak:

Zk
i = Mi for i = 1, . . . ,n

Zk
i = eτk−1(n−i) for i = n+1, . . . ,n+ |Ik−1

0 |

where{τk−1(1), . . . ,τk−1(|Ik−1
0 |)}= Ik−1

0 andei is the
i-th row of the n-dimensional identity matrix. Re-
mark thatZk might have linearly dependent rows.
In this case the projection matrix can be computed
asTk = I − (Zk)T(Zk(Zk)T)+Zk where(Zk)+ is the
unique Moore-Penrose pseudoinverse ofZk.

If the computed projected gradient is zero, we
might have obtained a local optimum of the deter-
ministic variant of problem (1) with delay vectors

δ
j
k , j = 1...N and additional equality constraints given

by Ak. In this case we compute Lagrange multipliers
as follows:

λ =−(Zk(Zk)T)+Zkrk

If all the multipliers associated with the constraints
in Ak are positive, we have reached the optimal solu-
tion of the deterministic variant of problem (1) with

delay vectorsδ
j
k , j = 1...N. In this case we stop the

algorithm. Otherwise, we remove the constraint with
the most negative multiplier fromAk and start a new
iteration.

Algorithm 1: Stochastic Projected Gradient Algorithm.

• Initialization: Given constantsε, K1, K2 and aσ-
sequence(ρk)k∈N . Choosex0 feasible for SSPD
(1) (for example using depth-first search on the
graph). Setk= 1.

• For all a∈ A drawN samplesδ
j
k(a), j = 1, . . . ,N

of δ(a) according to its normal distribution.
• DetermineZk and letTk be the matrix for projec-

tion on the null space ofZk. Compute the approx-

imated gradientrk := ∑N
j=1 ∇xJ (xk−1,δ

j
k)/N.

If T k · r k = 0: Compute the Lagrange multipliers
of the current equality constraints.
– If all multipliers associated with the constraints

in Ak are positive, STOP.
– Else delete the constraint fromAk having the

most negative associated multiplier. Setk= k+
1 and start a new iteration.

Else: Updatexk as follows:xk = xk−1−ρk(Tk ·rk)
– If mini∈{1,...,n} xk

i < 0: Define Ik
− = {i |xk

i <

0} and compute a new step size:ρk =

mini∈Ik
−

{
xk−1
i

(Tk·rk)i

}
.

Updatexk as follows:xk = xk−1−ρk(Tk · rk)
– If k>K1 and|E[J (xk,δ)]−E[J (xk−K2,δ)]|< ε,

STOP.
Otherwise Setk = k+ 1 and start a new itera-
tion.

Clearly, as the algorithm is stochastic, it might take
some additional time to meet the stopping criterion
that multipliers are positive, even though the current
solution is (near) optimal. That is why we add an ad-
ditional stopping criterion: if there is no significant
improvement in the objective value, we stop the algo-
rithm.

4.2 Branch-and-bound Framework

Definition 1. Let P be a directed path. We say that an
arc a= (v,w) has its origin in P, if v∈ P but a 6∈ P.
For a path P we define the set of all arcs that have
their origin on P as OP.

The branch-and-bound algorithm can be stated
as follows: First we solve the relaxed version of
the overall problem, which gives us a solution ˜x
of the relaxation as well as a first lower bound
LB. We then begin to search for a feasible binary
solution by plunging the graph (see phase 4). The
obtained directed pathP from s to t together with the
corresponding lower boundLB(P) = LB are stored
in a pool of waitings-t-pathsL. In addition, we
store the value of ˜x for all arcsa ∈ OP in a variable

ICORES 2012 - 1st International Conference on Operations Research and Enterprise Systems

260

xP(a). The solution value of SSPD given byP is our
first upper bound and it is stored in the variableUB.
Then, each further iteration of our branch-and-bound
algorithm consists of (up to) five phases:

Phase 1: Selecting a Branch.
If L is empty, the algorithm terminates. OutputUB.
Otherwise, we select a pathP ∈ L such that
LB(P) = minQ∈L LB(Q).

Phase 2: Selecting an Arc.
If no arc in OP is left that has not already been
examined (i.e., max{xP(b)|b∈ OP} = −1, see phase
5), we deleteP from L, end the iteration and go to
phase 1. Otherwise, we go to the first vertexv on P
such that there still exists at least one arc(v,w) ∈ OP
that has not already be examined (i.e., such that
max{xP(b)|∃w ∈ A : b = (v,w)} 6= −1). We then
choose the arca such thatxP(a) = max{xP(b)|∃w ∈
A : b = (v,w)}. If adding a to the sub-paths-P-v
leads to a non-feasible solution, we rejecta (i.e.,
set xP(a) = −1) and choose another arc inOP by
repeating phase 2.

Phase 3: Calculating a Lower Bound.
Let a= (v,w) be the arc chosen in phase 2. Consider
the relaxed subproblem of SSPD obtained by fixing
the first part of thes-t-path to s-P-(v,w). Solving
this subproblem gives us a lower bound̃LB for the
corresponding binary solution and a solution vector
x̃. If L̃B<UB we go to phase 4. Otherwise, we reject
a (setxP(a) =−1) and choose a new arc (phase 2).

Phase 4: Plunging.
Find a new s-t-path P′ containing the sub-path
s-P-(v,w): Starting from vertexw, we always add the
outgoing arc with the highest value of ˜x.

Phase 5: Storage and Update.
Path P′ is stored together with the corresponding
lower boundLB(P′) = L̃B in the pool of waiting
pathsL. In addition, we define for all arcsa ∈ OP′

the valuexP′(a) as follows: For all arcsa that have
their origin on s-P-v xP′(a) is set to−1. For the
rest of the outgoing arcs, we store the corresponding
component of ˜x. xP(vw) is set to−1.
If the solution value of SSPD given byP′ is lower
than the current upper boundUB, we updateUB.

5 NUMERICAL EXAMPLES

The Stochastic Projected Gradient method as well as
the branch-and-boundalgorithm were implemented in

Matlab and all tests ran on a Pentium(R)D @ 3.00
GHz with 2.0 GB RAM.

We considered five directed, acyclic graphs for
our tests with(|V|, |A|) equal to(23,40), (50,167),
(75,215), (100,351) and (100,573), respectively.
Among the five networks, the first is taken from an-
other paper (see (Ji, 2005)), while the other four
are modified graphs of the OR-library (see (Beasley,
2010)).

5.1 The Continuous SSPD

We compare our Stochastic Projected Gradient
method with Matlab’s optimization toolbox: To solve
the convex, deterministic reformulation of SSPD (2),
we use Matlab’s fmincon function and set, as in our
algorithm, an active set method as optimization algo-
rithm. Note that Matlab uses a deterministic gradient
strategy while we use a stochastic one.

As test instances, we generated the parameters for
the five networks as follows: the penaltyd is 10,D is
set to the mean of the delay of the shortest path, the
expectationµ(a) and the varianceσ2(a) are generated
uniformly on the intervals[c̄,2c̄] (c̄ is the median of all
the costs) and[σ2(c),4∗σ2(c)] (σ2(c) is the variance
of all the costs), respectively. We run our algorithm
as well as Matlab 10 times on each instance. The re-
sults are shown in Table 1, where we compare our
Stochastic Projected Gradient method with Matlab’s
optimization toolbox in terms of average CPU time in
seconds and the mean of best solution value found.
We also give the relative performance ratio computed
as

PR=
vSGrad− vMatlab

vSGrad

wherevSGrad is the mean of the best solution values
obtained with the Stochastic Projected Gradient al-
gorithm andvMatlab the mean of the ones obtained
with Matlab. As SSPD is a minimization problem
and both methods give a feasible solution, negative ra-
tios indicate that our algorithm found a better solution
while positive ones show that Matlab performed bet-
ter. To give detailed information about the numerical
tests, we list the percentage of all 10 runs where the
Stochastic Projected Gradient algorithm finds a better
solution than Matlab’s optimization algorithm. Note
that for the test of graph(100,573), there are 4 runs
out of 10 where Matlab did not finish in 20 minutes.
However, with our method it took at most 140 sec-
onds to get a solution. These instances are omitted in
the computation of the average values given in Table
1.

From Table 1, we observe that our algorithm is
better than Matlab’s optimization toolbox in terms of

STOCHASTIC SHORTEST PATH PROBLEM WITH UNCERTAIN DELAYS

261

Table 1: Results of solving the Continuous SSPD.

(Nodes, Algor. CPU Best PR Perc-
Arcs) time (s) Val. (%) entage

(23,40) N=1 0.36 216 18.06 0%
(23,40) N=10 0.42 205 13.66 0%
(23,40) N=100 0.40 205 13.66 0%
(23,40) Matlab 1.50 177 - -

(50,167) N=1 2.72 13135 17.88 0%
(50,167) N=10 2.72 13302 18.91 0%
(50,167) N=100 2.78 13155 18.01 0%
(50,167) Matlab 47.54 10786 - -

(75,215) N=1 6.62 14461 17.76 30%
(75,215) N=10 6.42 14363 17.20 20%
(75,215) N=100 6.52 13446 11.55 40%
(75,215) Matlab 156.60 11893 - -

(100,351) N=1 30.08 7464 -36.90 70%
(100,351) N=10 30.02 7471 -36.77 70%
(100,351) N=100 30.34 7488 -36.46 70%
(100,351) Matlab 133.26 10218 - -

(100,573) N=1 129.02 13241 10.90 50%
(100,573) N=10 138.72 10847 -8.77 83%
(100,573) N=100 140.26 10021 -17.73 100%
(100,573) Matlab 200.70 11798 - -

CPU time. Moreover, the CPU time of our algorithm
does not exceed 70% of the CPU time Matlab takes.
With respect to the produced solutions, for the two
large graphs (n= 100), the Stochastic Projected Gra-
dient algorithm finds the best solutions, while Matlab
performs better on the small graphs withn <= 75.
Moreover, withN = 100 samples our algorithm pro-
duces better solutions than Matlab in 81% of the runs
on the graphs with 100 vertices. To resume, for the
instances above, the Stochastic Projected Gradient al-
gorithm performs better than Matlab’s optimization
toolbox when graph sizes are large, both in terms
of CPU time and produced solutions. For the small
graphs, Matlab gives better solutions but takes 3 times
more CPU time than the Stochastic Projected Gradi-
ent algorithm.

Regarding the number of samplesN, we observe
no big difference between taking 10 samples and 100.
However, in general, taking 100 samples gives better
results than taking 1 sample: for instances 1, 3 and
5, better solutions are found with 100 samples, while
the results are comparable for the other two instances.

Notice that the number of samplesN has no signif-
icant influence on the CPU time, although the com-
putation load is clearly heavier at each iteration with
N = 100 than withN = 1. However, recall that the
stopping criterion is not a fixed number of iterations
but merely based on a measure of convergence. This
explains, that on some instances the algorithm takes
less time when considering 100 samples per iteration
than when considering only one.

5.2 The Combinatorial SSPD

In this section, we present our numerical results of the
above mentioned branch-and-bound algorithm. For
the five networks, we run two cases: in the first
one, the expectation and the variance of the delay
are directly proportional to the cost of the arc (in-
stances SSPD1a - SSPD5a); in the second one, they
are not proportional to the cost (instances SSPD1b -
SSPD5b). For the first case, by Theorem 1 in section
3, we get the conclusion that the optimal solution of
SSPD can be obtained in polynomial time by solving
a classic shortest path problem. This provides us with
a benchmark for the solution given by our algorithm.
However, this doesn’t suit to the second case.

Based on the numerical results for the continu-
ous relaxation of SSPD, we set the sample number
N to 10 for both cases. The other parameters are
generated as follows: for the first case, the penalty
d (the delay penalty per time unit) is 10, the expec-
tation and the variance of the delay for each arca
areµ(a) = 10∗c(a) andσ2(a) = µ(a)/9, respectively,
and the delay thresholdD is set to the mean of the de-
lay of the shortest path. For the second case, we use
the same instances as the continuous SSPD, i.e., the
parameters are the same as the parameters in the con-
tinuous one. In our numerical tests, we run each in-
stance ten times. The results are shown in Table 2 and
Table 3, respectively. For each of the 10 instances,
Table 2 gives the mean of the solution value obtained
with the branch-and-bound algorithm, the benchmark
(the optimal value), the average number of considered
nodes, i.e., the number of times a lower bound is cal-
culated during the algorithm, the average CPU time
in seconds and the gap, i.e., the relative difference be-
tween the solution value of the best solution provided
by our algorithm and the benchmark; while Table 3
gives the mean of the solution value obtained with the
branch-and-bound algorithm, the average number of
considered nodes, the average CPU time in seconds.

From Table 2 and Table 3, we observe that for the
first four instances the CPU time of our branch-and-
bound algorithm does not exceed 400 seconds. Given
theNP-hardness of the problem, the size of the graphs

ICORES 2012 - 1st International Conference on Operations Research and Enterprise Systems

262

and number ofs-t-paths (47, 88828, 810631 and up
to more than 276 million for the graph with 100 ver-
tices) the CPU times are very small compared to other
branch-and-bound approaches (see e.g. (Kosuch and
Lisser, 2010)). This is of course due to the quite high
number of pruned subspaces that can be seen from
the low number of considered nodes (that, on aver-
age, does not exceed 20 for all instances). Although,
due to the approximative nature of the Stochastic Pro-
jected Gradient algorithm, it is theoretically possi-
ble that our branch-and-bound algorithm prunes sub-
spaces that contain an optimal solution, the solutions
we get are optimal for the first case, where the optimal
solutions are known (i.e., all gaps are 0).

Comparing the performance of our algorithm on
the instances of the first case (Table 2) with that on the
instances for the second case (Table 3), we see that the
algorithm considers slightly more nodes in the second
case. We think that this is due to the initial plung-
ing that, for instances where the delays are positively
proportional, produces a ”relatively better” solution.
This allows the algorithm to prune even more sub-
spaces. On the other hand, the arverage of caculating
of the lower bound, i.e., the ratio between the time and
the nodes, are nearly same for the same graphs with
|V| > 50 in both cases, the proportional and general
case, which indicates a sort of robustness.

Table 2: Computational results for instances with propor-
tional delays.

Instances (Nodes, Best Opt. No.of CPU Gap
Arcs) Val. Val. nodes time (s) (%)

SSPD1a (23,40) 41 41 6 1.54 0.00

SSPD2a (50,167) 530 530 5 13.79 0.00

SSPD3a (75,215) 625 625 15 146.85 0.00

SSPD4a (100,351) 231 231 9 274.54 0.00

SSPD5a (100,573) 110 110 15 2066.30 0.00

6 CONCLUSIONS

In this paper, we study and solve a stochastic version
of the shortest path problem with a penalty for ex-
ceeded delay. The underlying graph is assumed to be
directed and acyclic. We prove that in some cases the

Table 3: Computational results for instances.

Instances (Nodes, Best No.of CPU
Arcs) Val. nodes time (s)

SSPD1b (23,40) 250 18 7.00

SSPD2b (50,167) 16182 16 65.34

SSPD3b (75,215) 15909 15 127.96

SSPD4b (100,351) 9842 13 372.43

SSPD5b (100,573) 10795 39 5464.30

obtained Stochastic Shortest Path Problem with Delay
Excess Penalty can be greatly simplified by reformu-
lating it as the classic shortest path problem, which
can be solved in polynomial time.

To solve the problem in general we propose to use
a branch-and-bound framework to search the set of
feasible paths. Lower bounds are obtained by solv-
ing the corresponding linear relaxation which in turn
is done using a Stochastic Projected Gradient algo-
rithm involving an active set method. Numerical ex-
amples are given to illustrate the effectiveness of the
obtained algorithm. Concerning the resolution of the
continuous relaxation, our Stochastic Projected Gra-
dient algorithm clearly outperforms the Matlab op-
timization toolbox on large graphs. Moreover, for
instances where the cost of an arc is positively pro-
portional to the mean and variance of its delay, our
branch-and-bound algorithm indeed finds the optimal
solution.

For the future work, we can generalize the as-
sumption on the distribution and our approach should
be easily extendable to more general distributions,
and maybe also to more general graphs. Concerning
the special case for which we have shown the Stochas-
tic Shortest Path Problem with Delay Excess Penalty
to be equivalent to the classic shortest path problem, it
might be possible to weaken the underlying assump-
tions in order to obtain this same result for a larger
class of instances.

REFERENCES

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993).Net-
work Flows: Theory, Algorithms and Applications.
Prentice Hall, New Jersey.

STOCHASTIC SHORTEST PATH PROBLEM WITH UNCERTAIN DELAYS

263

Beasley, J. E. (2010). Or-library. http://people.brunel.ac.uk/
∼mastjjb/jeb/info.html.

Bellman, R. E. (1958). On a routing problem.Quarterly of
Applied Mathematic, 16(87-90).

Dijkstra, E. W. (1959). A note on two problems in con-
nection with graphs.Numerische Mathematik, 1(269-
271).

Ford, L. R. and Fulkerson, D. R. (1962).Flows in Networks.
Princeton University Press, Princeton.

Hutsona, K. R. and Shierb, D. R. (2009). Extended dom-
inance and a stochastic shortest path problem.Com-
puters and Operations Research, 36(584-596).

Ji, X. (2005). Models and algorithm for stochastic shortest
path problem. Applied Mathematics and Computa-
tion, 170(503-514).

Kosuch, S. and Lisser, A. (2010). Upper bounds for the 0-
1 stochastic knapsack problem and a b&b algorithm.
Annals of Operations Research, 176(77-93).

Luenberger, D. G. and Ye, Y. (2008).Linear and Nonlinear
Programming. Springer, New York, 3rd edition.

Mirchandani, P. B. and Soroush, H. (1985). Optimal
paths in probabilistic networks: a case with temporary
preferences. Computers and Operations Research,
12(365-381).

Murthy, I. and Sarkar, S. (1996). A relaxation-based prun-
ing technique for a class of stochastic shortest path
problems.Transportation Science, 30(220-236).

Nikolova, E., Kelner, J., Brand, M., and Mitzenmacher, M.
(2006). Stochastic shortest paths via quasi-convex
maximization. InProceedings of European Sympo-
sium of Algorithms, pages 552–563. Springer.

Ohtsubo, Y. (2003). Minimization risk models in stochas-
tic shortest path problems.Mathematical Methods of
Operations Research, 57(79-88).

Ohtsubo, Y. (2008). Stochastic shortest path problems with
associative accumulative criteria.Applied Mathemat-
ics and Computation, 198(1)(198-208).

Polychronopoulos, G. H. and Tsitsiklis, J. N. (1996).
Stochastic shortest path problems with recourse.Net-
works, 27(133-143).

Provan, J. S. (2003). A polynomial-time algorithm to find
shortest paths with recourse.Networks, 41(115-125).

Sahinidis, N. V. (2004). Optimization under uncertainty:
state-of-the-art and opportunities.Computers and
Chemical Engineering, 28(971-983).

Verweij, B., Ahmed, S., Kleywegt, A. J., Nemhauser, G.,
and Shapiro, A. (2003). The sample average approxi-
mation method applied to stochastic routing problems:
A computational study.Computational Optimization
and Applications, 24(2-3)(289-333).

ICORES 2012 - 1st International Conference on Operations Research and Enterprise Systems

264

