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Abstract: As a result of terrorist attacks in the last years, new efforts have raised trying to solve challenges related to se-
curity task automation using robotic platforms. In this paper we present the results of a cooperative multi-robot
approach for infrastructure security applications at critical facilities. We formulate our problem using a Ms.
Pac-Mac like environment. In this implementation, multiple robotic agents define policies with the objective to
increase the number of explored states in a grid world. This is through the application of the off-policy learning
algorithm from reinforcement learning area, knownatearning We validate experimentally our approach
with a group of agents learning a patrol task and we present results obtained in simulated environments.

1 INTRODUCTION mulated our problem using a Ms. Pac-Mac like en-
vironment in which multiple agents define policies to

Recently, terrorist attacks around the world have explore states in a grid world, this adaptation differs
showed environments vulnerability. As a result of to other works trying to solve multi-robot patrolling
these events new efforts have arisen in research totasks (Chevaleyre, 2004), (Elmaliach et al., 2007). To
try to solve challenges related with security tasks Solve this problemwe have implemented an algorithm
automation. Robotics Securitys a consequence of from reinforcement learning known &3-learning
this research interest in security systems using mo- Reinforcement Learning yields machine learning sys-
bile robots. Actually, “intelligent” buildings security ~tems which appeals to many researchers due to its
depend upon Closed Circuit TeleVision for informa- generality. In these systems an agent learns how to
tion gathering to identify anomalous behaviors. How- achieve a goal by trial-and-error interactions with its
ever, these solutions are inflexible and human limi- €nvironment. Our approach is different to numerous
tations such as boredom, distraction or fatigue affect implementations on grid worlds @-learningworks,
their performance, moreover, in some environments Mainly in the objective and in the way in this objec-
people must deal with dangerous conditions. There-tive is reached. The rest of this paper is organized as
fore, it is important to improve Security elements uti- follows. Section 2 introduces the prOblem. Section
lized in these systems. Mobile robots characteristics 3 shows the methodology implemented to solve the
make it suitable for this purpose. There are numer- learning task. Section 4 gives the experimental result
ous advantages using mobile robotS, i_e', it does notand their evaluation. Fina“y, section 5 concludes the
experiment human limitations. However, some tasks Paper.
are too complex that a single robot cannot achieve
good results. To overcome these challenges we can
use Multi-Robot Systemwhich are defined as a set
of homogeneous or heterogeneous robots interacting2 PROBLEM DESCRIPTION
in the same environment using cooperative behaviors
(Everett, 2003), (Oates et al., 2009), (Luo and Lin, We have adapted Ms. Pac-Man game to represent in-
2009), (Roman-Ballesteros, 2006). frastructure environments. Namely, in this game a hu-
In this paper we present a collaborative multi- man steers Ms. Pac-Man throughout a maze to eat
robot approach for infrastructure security applications dots while avoid getting caught by four ghosts. De-
at critical facilities such as nuclear power plants, ur- spite our approach is based on this game, we have
ban transport installations and so forth. We have for- removed much of its complexity. First, we shape the
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maze structure into an infrastructure environment as 1994). Thus, the agent learns to perform actions that
a grid world with a set of paths where each cell rep- maximize the sum of the rewards received when start-
resents a state. Characteristics such as corridors, Ting from some initial state and proceeding to a ter-
junctions, interjections and L-turns remain. At each minal one. The reward function must be necessarily
step time an agent perceives a state and selects one afinalterable by the agent and it only serves as a basic
four actions: North, West, South or East. That brings for altering apolicy 1t In this implementation mainly
it to the next state. According to the orientation in dots values have been used as rewardhohicy is a
which each agent reaches a state it has four possiblenapping from each statec S, and actiona € A(s),
actions to select. Second, we consider the dots dis-to the probabilityr(s,a) of taking actiona when in
tributed around the environment. The agents must eatstates. An stationary policy 1t: S— M(A) defines a
all dots with fixed and variable values to begins a new probability distribution over actions. policy is the
episode. Finally, multiple agents that represent the core of the agent since it defines which action must
ghosts are the last adaptation of the game. be performed at each state. Thus, the objective of re-
The tasks that each agent can perform are: pa-inforcement learning is to develop a agent with a be-
trol, homing and avoiding.Patrol causes the agent havior policy to choose actions that tend to increase
to move throughout the environment following a path the long-run sum of values of tlreward

by taking decision to choose actiortdomingcauses We have implemented an off-policy temporal dif-
the agent to be resting to charge batteries energy. Fi-ference algorithm known &d-learningwhich learns
nally, Avoidingcauses the agent to avoid obstacles or directly from raw experience without a model of the
other robots. Each agent switches its internal task environment and updates estimations based in part
betweenPatrol and Homingconsidering battery life'  on other learned estimations without waiting for a
value. Therefore, the learning task consist of find- final outcome. A model consist of the state transi-
ing a mapping from states to actions for cooperative tion probability functionT (s,a,s) and the reinforce-
patrol where each agent learns how to select the ac-ment functionR(s,a). However, reinforcement learn-
tion with the highest value. Each agentimplements a ing is concerned with how to obtain an optimal policy
set of adaptation rules. Individually each agent has awhen such a model is not know in advanced (Watkins
map, whereas from a group perspective, the rules areand Dayan, 1992). The objective GF-learningis
triggered by pheromone like communication among to learn the action-value functio® applying the
robots, so that each time step they inform others the ryle Q(s,a) + Q(s, &) +afr + ymax Q(s1,a) —
state explored (Khamis et al., 2006). Q(s,&)], where< s, a,r,5+1 > is an experience tu-
ple. If each action is executed in each state an infinite
number of times on an infinite time run andis de-
3 REINFORCEMENT LEARNING cayed f_;l_ppropriately, th@yalueswill converge vyith
probability 1 to their optimal value®* (Kaelbling
. : . . et al., 1996). An action-value function for poliay
A relnforc_ement learning mod_el consist of a dllscrete defines the value of taking actianin states under
set of environment stateS, a discrete set of actions, policy Tt, denoted byQ"(s, a), as the expected reward

A, and a set of scalar relnforce_ment S|gn_al. I_n this starting froms, taking actiora,and thereafter follow-
model, an agent learns a mapping from situations to ing policy Tt

actions by trial-and-error interactions with the envi- : .
0 hi | Thi : i tb The general form of th&Q-learning algorithm
ronment 1o achieve a goal. This environment must be 5 ngjst of nine step, as describe below.
at least partially observable. At each time stepT
each agent receives a current state indicagienS of 1initialize Qs,a) arbitrarily
the environment, then it chooses an actére A to 2 Repeat (for each episode):
generate an output which changes the state of the ens initialize s
vironment tog ;1 € Sand the value of this state tran- 4 Repeat (for each st ep of epi sode):
sition is indicated to the agent through an scafar 5  Choose a froms using policy derived fromQ
known ageward (Sutton and Barto, 1998). feward =~ °  Teke action a observer, s
. . . i 7 Apply equation X
defines the goal in a reinforcement learning problem. ;" "
It maps each. perceived state or state-acfcion. pgir t0 8y  Until s is terninal
single numerical value that indicates the intrinsic de-
sirability of that state. An importaméeward property In this implementation an episode terminates when
is known asMarkov Property A reward with this all dots are eaten and each step of episode consist of
property must include immediate sensation and re- choosing an actioa when in states, update<)(s,a)
tain all relevant information from the past (Puterman, and go tos'.
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4 EXPERIMENTSAND RESULT
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Figure 3: First 100 Steps of the Evolution af,
ymaxa Q(s+1,8) and Qvaluesin State 13 T-junction of
Map A.

Figure 1: Maps Utilized in Our Implementation.

We have used the maps depicted in figure 1 to de-
scribe important aspects of our approach.

Figure 4: First 100 Steps of the Evolution of,

) ' maXxg ,a) and Qvaluesin State 34 T-junction of
Figure 2: Evolution of West and EaQvaluesin State 34 K/'ap 59(5‘“ ) Q J

T-junction of Map B with four Different Initial Values.

o direction for state 13 of map A and 4 in both direc-
To initialize theQValueswe select values so that tions for state 34 of map B. As can be seen in the
north is chosen the first time a state is explored, then yq-:5 ofymaxQ(s..1,a), in figures 3 and 4, despite
west or east if north has been selected and south as th'ﬁwat the number of Jrr1e’xt étates of each stat’e is not the
last option. Since the algorithm performance changes g, me the difference does not affect proportionally the
with the multiplier of initial values, we have executed |, ,es ofymaxQ(s..1,a). This is a consequence of
experiments with four multipliersx. 10x, 100 and y value, the only appreciable difference is the reward

1000. Figure 2 shows the first 100 steps of the al- ,5; every 5 steps the agent receives when it explores
gorithm in state 34 of map B. As it can be seen in state 13 in these conditions.

the details, the multiplier affects the frequency of the The value of the shaped reinforcement signal
selection of west or east actions. The bigger th? fre- ysed in our approach is the result of the expression
guency, the better the p_erformancg of_the algorithm. - _ dot(s) + incrementalDots) + A, where) is the
Nevertheless, when a different action is selected ev- .o o401 petween the number of eaten dots and the

ery step, the performance decreases. Based on thig, ;mper of explored states. Finally, the value of the

results we have selected the multiplier 00 learning ratea that we have used in all experiments
To calculate the value of we have executed ex- 1

periments of one episode with values fronl Go in this work IS_ subject to the rng(Q(s,a)) — Nisay
0.9 and increments of.Q using map A. The results whereN(s,a) is the numbgr of times that the actian
show that the average gf= 0.9 gets the shortest has been selected when in state
path, however, it performs a high exploration in the
first episode, in contrast with= 0.1 in which explo-
rations take a number of steps similar to the short-
est path. Based on these results, we have selected
y = 0.1 which indicates that the agents are concerned
with maximizing immediate rewards.

Taking this indication into account, figures 3 and
4 show the evolution of the rewargmax, Q(s+1,a)
andQvaluedfor west and east options in states 13 and
34 of map A and B, respectively. Both states are T-
junctions, however, when each state is reached with
east orientation, the number of next states for each
one is different, i.e., 1 in west direction and 22 in east

Figure 5: A Team of Four Khepera Ill Robots Patrolling.
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Once we get a suitable performance with an agent, tor does not work or its performance is worse than
we use a team of four agents with different initial po- the smallest value. Moreover, these implementations
sition. Now each one must communicate to indicate seem to be off-line process instead of on-line as we
its current state and the next one, as a result of thisclaim in our implementation. It is on-line due to the
cooperation, each agent defines a policy that allows it fact that an agent can explore the environment mean-
to patrol in different areas of the environment and de- while it finds its optimal behavior policy. Finally, we
sign a special division of labor in which negotiationis validated our approach in a simulation environment to

not needed. show the ability of the method to define patrol paths.
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Figure 6: Behavior Policy of Agerfg.
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