DESIGNING FOR INNOVATION BY APPLYING ORGANIZATIONAL

MODULARITY

Philip Huysmans

Department of Management Information Systems, University of Antwerp, Prinsstraat 13, Antwerp, Belgium

Keywords:

Abstract:

philip.huysmans @ua.ac.be

Enterprise Architectures, Business Innovation and Software Evolution, Business-IT Alignment and Traceabil-
ity.

In volatile and customer-driven markets, the ability to innovate is a key success factor. Innovations have to
be implemented at a steady pace to ensure business sustainability. However, the innovation process is only
poorly understood. Therefore, many organizations and governments have difficulties stimulating and manag-
ing innovation. Several authors have proposed organizational modularity as a theoretical basis to understand
and manage innovation. Their main argument is that a modular structure enables parallel evolution of different
organizational modules. Consequently, innovations can be implemented without being limited by implemen-
tation aspects of other organizational modules. Modularity has been applied by various authors on different
levels of the organization, such as products, processes, departments, and supporting IT systems. Moreover,
enterprise architecture frameworks allow the modeling of different viewpoints of an organization. However,
few organizations can be considered to have completely decoupled organizational layers. Consequently, de-
pendencies between organizational modules on different enterprise architecture layers can heavily impact the
ability to introduce innovations. In this paper, we demonstrate how modular dependencies impact enterprise
architecture projects in two case studies. We then present a case study to illustrate how a modular dependency

approach can be used to complement existing modeling approaches.

1 INTRODUCTION

Contemporary organizations are faced with rapidly
changing environments. As a result, innovations need
to be introduced in the organization in order to re-
main competitive in these markets. The introduction
of innovations often impacts many different aspects
of the organization. For example, Barjis and Wamba
describe the impact on organizations caused by the in-
troduction of RFID technology (Barjis and Wamba,
2010). Besides the adaptation of the business pro-
cesses through, for example, BPR, it can be expected
that other organizational artifacts need to be adapted
as well. Data management systems need to able to
handle “enormous” data volumes (Barjis and Wamba,
2010), hardware infrastructure and software applica-
tions need to be purchased to handle accurate track-
ing, and customer acceptance needs to be handled by
privacy commissions and marketing departments.
Enterprise architecture projects are frequently ini-
tiated to guide the change process needed to imple-

Huysmans P.
DESIGNING FOR INNOVATION BY APPLYING ORGANIZATIONAL MODULARITY.
DOI: 10.5220/0004458500510060

ment such innovations (Schekkerman, 2005). Enter-
prise architecture frameworks help to identify the dif-
ferent elements to which changes need to be applied.
In such frameworks, models are created from dif-
ferent perspectives or viewpoints. Complexity from
other viewpoints is abstracted away to be able to fo-
cus on the concerns of a specific viewpoint. While
this approach aids understandability of different as-
pects of the organization, it can lead to unexpected
results when artifacts from different viewpoints im-
pact each other. This can be observed in the case of
RFID, where changes to processes can be hindered by
the data structures on which they operate. When inno-
vative processes are designed using a BPR approach,
but data systems are unable to support the required
data types, implementation of the new processes will
be problematic. Possibly, the redesigned processes
will then need to be altered in order to be supportable.
Consequently, adapting processes can be impacted by
the concrete data implementation, which is not com-
pletely visible in the models which are created in a

51

In Proceedings of the First International Symposium on Business Modeling and Software Design (BMSD 2011), pages 51-60

ISBN: 978-989-8425-68-3

Copyright © 2011 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

BMSD 2011 - First International Symposium on Business Modeling and Software Design

process viewpoint. While aspects of this implemen-
tation are not visible in these models, they do impact
the way these models can be used, and therefore need
to be considered.

In this paper, we argue that modular dependen-
cies can be used to explicitly identify such impacts.
This approach can be applied complementary to ex-
isting enterprise architecture modeling. We introduce
relevant literature for this approach concerning mod-
ularity and enterprise architecture frameworks in Sec-
tion 2. We then present three case studies to illus-
trate the application of modular dependencies in or-
ganizations which are faced with innovations which
require changes in several viewpoints. In Section 3,
we present two case studies to demonstrate the impor-
tance of modular dependencies between layers in the
enterprise architecture. In the first case study, we de-
scribe how dependencies between enterprise architec-
ture layers limit the ability to react to market changes
in a public broadcasting company. In the second case,
we elaborate on a previously published case study to
show the importance of eliminating such dependen-
cies in order to design a structure which allows the im-
plementation of innovations. In Section 4, we demon-
strate in more detail how an approach using modu-
lar dependencies can be applied during an enterprise
architecture project. Finally, we present our conclu-
sions on these cases in Section 5.

2 RESEARCH BACKGROUND

In this section, we introduce a necessary background
of modularity and enterprise architecture research lit-
erature.

2.1 Modularity

Organizational modularity recently receives much at-
tention in both research and practice. Campagnolo
and Camuffo provide a literature overview of 125
management studies which use the modularity con-
cept (Campagnolo and Camuffo, 2010). They define
modularity as “an attribute of a complex system that
advocates designing structures based on minimizing
interdependence between modules and maximizing
interdependence within them” (Campagnolo and Ca-
muffo, 2010). They argue that organizational artifacts
such as products, production systems, and organiza-
tional structures can be regarded as modular struc-
tures. A characteristic of a perfect modular structure
is that it allows parallel evolution of different mod-
ules (Baldwin and Clark, 2000). However, dependen-
cies between the modules of such a structure limit

52

the autonomy of the individual modules. Baldwin
and Clark state that “[b]ecause of these dependencies,
there will be consequences and ramifications of any
choice” made during the design of the artifact (Bald-
win and Clark, 2000). A design choice for a given pa-
rameter can limit or affect the possible design choices
concerning other parameters. In traditional modular-
ity approaches (e.g., product modularity), dependen-
cies between and within modules are visualized by
Design Structure Matrices (DSM). In a DSM, an ar-
tifact is described by a set of design parameters. The
matrix is then filled by checking for each parameter
by which other parameters it is affected and which
parameters are affected by it. The result is a map of
dependencies that represent the detailed structure of
the artifact. An example design structure matrix is
shown in Figure 1. Dependencies are represented by

[T}

an “x”. The intersection of identical design options is
marked with a “.”. Consider the design dependency
which is represented by the “x” in the intersection of
the column of design option A2 and the row of de-
sign option Al. This signifies that design option A2
influences design option Al: the design decision for
design option Al will be dependent on the decision
taken for design option A2. This dependency does not
break the modular structure of the artifact, since de-
sign options A1 and A2 both belong to the same mod-
ule. Now consider the dependency of design option
B1 on design option A2. Since these design options
belong to different modules, it can be concluded that
these modules are directly dependent on each other.
Therefore, this dependency does violate the modular
structure. Indirect or chained dependencies can oc-
cur as well. While design option B2 does not seem to
affect any design options of module A, it does affect
design option B1. As we discussed before, design op-
tion B1 does affect design option Al. Therefore, a
so-called chained dependency exists between design
options B2 and A2.

Module A Module B
— (] ™ []
< < an) M
= = =] =
g g & 8
B & & &
o (@ @) o
Option Al| . X
Module A Option A2 . X
Option B1 . X
Module B Option B2

Figure 1: An example Design Structure Matrix.

Originally, DSMs were used to model modular
products. In later publications, a DSM was also ap-
plied to model organizational departments (Baldwin

DESIGNING FOR INNOVATION BY APPLYING ORGANIZATIONAL MODULARITY

and Clark, 2003). This indicates that similar tools can
be used for analyzing modularity on various levels. In
this paper, we will focus on modularity on the orga-
nizational and software levels. Organizational modu-
larity focuses on other artifacts than product modular-
ity within the same organization. Research on this
level has been performed by, for example, Galunic
and Eisenhardt (Galunic and Eisenhardt, 2001). Galu-
nic and Eisenhardt consider organizational divisions
as modular organizational building blocks. These di-
visions, which have independent decision power, cost
structures and profit responsibility, are a combination
of capabilities and charters. Charters represent the
task, market and customer a division is concerned
with. Charters need to be able to change as mar-
kets evolve. By dynamically attributing these charters
to organizational divisions, a flexible organization is
created which can adapt to changing market condi-
tions. This kind of modularity therefore enables the
flexibility required on a business level. On the soft-
ware level, modularity is used to achieve a flexible
structure as well. For example, Parnas argued that
a modular decomposition in software systems should
be made to isolate the impact of changes (Parnas,
1972). When the impact of a change remains within
a module, changes can be applied to individual mod-
ules without requiring changes in the rest of the sys-
tem. While modularity is applied to both the orga-
nizational and IT level by various researchers, most
research project focus on a single level. However, in-
teractions between a modular approach on the orga-
nizational and the software level remain an important
issue. Given the high dependence on IT systems, it
is important that a change on the organizational level
(e.g., changing chapters) can be handled by the sup-
porting IT systems as well. Otherwise, the inability
to change the IT systems will restrict the ability to
change organizational modules. Indeed, modularity
needs to be considered as a relative attribute of com-
plex systems (such as organizations), meaning that
within a single artifact, different levels of modularity
can exist (Simon, 1962).

2.2 Enterprise Architecture

Enterprise Architecture (EA) frameworks provide in-
sight to the structure of organizational goals, divi-
sions, and supporting IT systems. By specifying
separated viewpoints on organizational artifacts, an
overview is provided of specialized models created
by different stakeholders (The Open Group, 2009).
Most enterprise architecture frameworks use a top-
down perspective. They start by defining business
goals and a high-level artifacts to realize these goals

(e.g., an organizational structure). Based on these ar-
tifacts, lower-level artifacts are defined which offer
services to support the business level. The following
architectural levels are usually identified (Schoenherr,
2008):

e Business layer

e Functional layer

e Information layer
e Infrastructure layer

For example, TOGAF suggests to use an iterative pro-
cess consisting of eight phases to develop an enter-
prise architecture. Based on the business goals which
are defined in the first phase, different architectures
need to be developed in the following order: business
architecture (second phase), information systems ar-
chitecture (third phase), and technology architecture
(fourth phase). These architecture correspond to the
defined layers. The business architecture is defined
on the business layer. The information systems ar-
chitecture consist of both the functional and informa-
tion layer. The technology architecture is addressed
on the infrastructure layer. This approach assumes
that supporting services can be created straightfor-
wardly based on business requirements. However,
when implementation-focused approaches are de-
scribed (e.g., Service-Oriented Architecture), the ex-
isting infrastructure is often an important restriction
on the services which can be provided. Consequently,
the focus of such approaches is often on subjects such
as legacy integration. Approaches which explicitly
integrate an implementation approach with business
goals (e.g., SOMA) therefore use a middle-out ap-
proach (Arsanjani et al., 2008). Such an approach
takes into account the possibilities of the supporting
systems, and attempts to find the best solution for the
business requirements. Indeed, the use of additional
methods illustrates that a top-down approach in enter-
prise architectures needs complementary approaches
to deal with complex environments. In a literature re-
view on enterprise architectures, Lucke et al. identify
several issues which motivate this need (Lucke et al.,
2010). First, complexity is referred to as an under-
estimated issue. Not only the complexity of the mod-
els themselves, but also the dependencies between the
different layers remain problematic. Second, rapidly
changing conditions imply that a top-down specifi-
cation of an enterprise-wide architecture can become
out-dated before it is even implemented. Third, a top-
down specification of the architectural layers results
in issues regarding scoping of architecural descrip-
tions. Rather than being straightforward, the identifi-
cation of organizational and technical services to sup-
port business requirements is often considered to be

53

BMSD 2011 - First International Symposium on Business Modeling and Software Design

problematic. Therefore, a complementary approach
is required to represent the impact of lower-level lay-
ers on higher-level layers.

2.3 Modularity in Enterprise
Architectures

Several authors link the explicit decomposition of
viewpoints in enterprise architecture frameworks to
the ability to independently change artifacts. This
indicates how enterprise architecture frameworks can
be linked to the modularization of organizations. For
example, business modularity is considered to be the
highest level of enterprise architecture maturity (Ross
and Beath, 2006). On this maturity level, the role of
IT in an enterprise architecture is to “provide seamless
linkages between business process modules” (Ross
and Beath, 2006). Such business process modules al-
low “strategic experiments that respond to changing
market conditions” (Ross and Beath, 2006). Based
on a practitioners survey, it seems that many business
users indeed expect an enterprise architecture to en-
able their ability to change in response to market con-
ditions (Schekkerman, 2005). A modularity perspec-
tive can aid to specifically focus on the issues speci-
fied by Lucke et al. (Lucke et al., 2010), which have
been mentioned above: identifying modular depen-
dencies reveals how complexity is introduced when
modules are added; the parallel evolution of modules
limits the impact of rapidly changing conditions; the
explicit specification of modules aids scoping archi-
tectural descriptions.

Consequently, independence between enterprise
architecture layers should be achieved by defin-
ing business components and standardized interfaces
based on the artifacts modeled in the different lay-
ers. This shows that an explicit focus on the coupling
of artifacts from different enterprise architecture lay-
ers is required to gain insight in the kind of changes
which can be supported. In the case studies we per-
formed, dealing with this kind of coupling adequately
often seemed to be an important success factor. An
approach which explicitly shows these impacts can
therefore help to improve insight in the change pro-
cess.

3 CASE STUDY OBSERVATIONS

In this section, we illustrate the occurrence and im-
pact of modular dependencies between artifacts from
different levels in an enterprise architecture. The pre-
sented case studies are part of a larger group of case
studies which aim to apply insights from modularity

54

to enterprise architectures. These case studies have
been performed adhering to the case study method-
ology (Yin, 2003). Given the ambiguity of the defi-
nition of enterprise architecture in both practice and
academic literature, and the large scope of enterprise
architecture frameworks, it is difficult to clearly dis-
tinguish between the research subject itself and the
organizational environment. Therefore, we selected
an exploratory case study approach, since it is well
suited for research goals where the boundaries be-
tween phenomenon and context are not clearly de-
fined (Yin, 2003). In the various cases, we have
used the key informant method to identify informants
who were highly knowledgeable about and involved
in the enterprise architecture projects. The primary
mode of data collection consisted of face-to-face in-
terviews. In preparation for these interviews, vari-
ous documents (e.g., documentation and presentation
materials, documents on the organizational structure)
have been consulted to gain an initial understanding
of the organization and the project itself. A case study
protocol was crafted, including an initial set of ques-
tions. These questions concerned various topics (e.g.,
architecture definition, expected benefits and barri-
ers), in order to obtain a thorough description of the
project. Follow-up questions took place via e-mail.
During the interview, additional sources of evidence
were collected, such as articles and internal documen-
tation. The interview was digitally recorded and tran-
scribed for future reference.

3.1 Public Broadcasting Company

In a first case study, we observe a public broadcasting
company (PBC) which is faced with changing cus-
tomer demands. We focus on the division which is
responsible for broadcasting news journals. Tradi-
tionally, this organization offers radio and television
transmissions, which follow a clearly defined sched-
ule. The radio and television business units import
news items from different sources, such as feeds from
external agencies, or items made by reporters. Items
can be imported using physical tapes, digital files or
through satellite transfers. The items are then edited
and transmitted in the form of a news journal. How-
ever, since the introduction of the internet, customers
demand personalized and real-time access to trans-
missions. Therefore, the content of news journals
needs to be approached differently. The PBC decided
to create a dedicated business unit to create an online
channel, next to the existing radio and television units.
This new business unit could reuse content from both
the radio and television units, and create dedicated on-
line news items as well. Adding the online channel

DESIGNING FOR INNOVATION BY APPLYING ORGANIZATIONAL MODULARITY

was considered to be a necessary strategic move in
order to serve a changing market. For the PBC, the
radio, television and online business units are there-
fore situated on the business layer of their enterprise
architecture.

Adding this additional business unit posed serious
problems due to the supporting structure of the PBC
on the lower enterprise architecture levels. For ex-
ample, accessing existing radio and television items
proved to be complex, since they were stored in spe-
cialized applications. For every import channel (tape,
digital or satellite), different applications needed to be
used. This is a direct result of the principles used to
develop the application portfolio, which was located
on the functional layer in the enterprise architecture.
As a general principle, the organization always selects
best-in-class software solutions for specialized me-
dia editing. This principle ensured the most efficient
editing process. However, this results in an applica-
tion portfolio which is not well integrated. Employees
with specialized competences are required to operate
these software packages. Therefore, in order to reuse
audio and video fragments for the online channel, em-
ployees with these competences needed to be made
available for the online business unit. This resulted
in a duplication of skill sets, which was not efficient.
The inclusion of employees with the competence to
use the specialized software packages was not fore-
seen when the new business unit was defined. How-
ever, the coupling between software packages and
employee competence on the information layer ne-
cessitates this inclusion. Put differently, the required
competences defined on the business layer need to be
adapted to account for a dependency on the functional
level. It should be noted that coupling on the func-
tional layer is solved by adapting the artifacts which
are defined on the business layer. Consequently, the
ability to take strategic decisions to serve an emerg-
ing market are impacted by decisions made on the
functional layer. While the principle to select best-in-
class applications may be justified for this sector and
the performance of the organization, the lack of inte-
gration which it causes and the restrictions it places
on business flexibility need to be understood as well.
When considered as a modular structure, this depen-
dency can be represented using a DSM. The DSM
is presented in Figure 2. It shows how a design pa-
rameter from the applications, which are part of the
functional layer, affect the organization chart design
parameter of the business unit, which is part of the
business layer.

Since the PBC was unable to motivate the costs of
specialized employees for the new channel, a struc-
tural solution was proposed. The dependency on the

Business unit Application

Organization chart

Charter
Platform

% | Competence

Organization chart| .
Charter
Competence
Platform

Figure 2: The DSM for PBC.

Business unit

Application

required application capabilities forces the the organi-
zation to deal with concerns from the functional layer
on the business layer, i.e., the different handling of
tape, digital and satellite items. This dependency was
removed by developing an abstraction layer on top of
the functional layer, which provided only the func-
tionality needed on the business layer. This abstrac-
tion layer was defined based on concepts known in
the business layer: the basic entity on this abstrac-
tion layer was a news item. A news items entity ab-
stracts from the method which was used to import the
source material. Therefore, it served as a kind of in-
terface to the specialized software applications. For
every application, audio and video fragments can be
extracted, together with the required meta-data, in a
uniform way. The specific functionality of the edit-
ing programs is not available through this interface.
In order to use the editing functionalities, specialized
competences remain necessary. However, the need
for employees with these competences is now not im-
posed on the business layer, only on the functional
layer.

This introductory case shows that decisions taken
on the functional layer of enterprise architectures can
make changes to the business layer more complex.
By adequately encapsulating the complexity from the
functional layer, dependencies between the different
layers can be removed, and necessary services can
still be offered. As a result, decisions on the busi-
ness layer only need to deal with the inherent com-
plexity imposed by the business environment, instead
of dealing with complexity originating from the sup-
porting layers as well. In this case, the number of
modules is low and the dependency which limits the
business layer is clear. However, this case provides a
clear illustration of the issue we address in this paper.

3.2 Gas Flow Manager Company

In a second case study, we observed an enterprise
architecture project at a gas flow manager company.
The company offers gas transport services to its cus-

55

BMSD 2011 - First International Symposium on Business Modeling and Software Design

tomers based on a grid consisting of entry points,
nodes, and pipelines connecting the nodes. The func-
tional and information layer of the enterprise architec-
ture had to be rebuilt after the company was separated
from a gas trading company. The legislation concern-
ing liberalization of the energy market demanded this
separation, as the company had to offer its gas trans-
port services to other gas trading companies as well.
Prior to the architectural redesign, IT was generally
considered to be a bottleneck during the implemen-
tation of changes by business users. The new archi-
tecture needed to be able to respond better and more
quickly to changing business requirements and had to
be understandable for business users, so they could
more realistically estimate the impact of the changes
they requested. Therefore, it was decided to clearly
align the functional architecture with a high-level en-
terprise architecture model on the business level. This
model needed to be constructed in such a way that the
stable operation and stakeholders of the organization
are represented. If the subsequent changes required
changes in the high-level model, it would not be use-
ful as a basis for the functional architecture. The issue
of rapidly changing conditions has indeed been ad-
dressed as an important enterprise architecture issue
by Lucke et al. (Lucke et al., 2010). Put differently,
business changes need to be attributed to the imple-
mentation of the model elements, not on the nature of
the elements itself. The model which was designed is
shown in Figure 3. The modeled activities represent
generic descriptions of the business-level construction
of the organization (e.g., Define commercial services).
In order to achieve a well-aligned business and func-
tional architecture, a separate application has been de-
veloped to support the scope of exactly one activity in
this model.

Adjacent
Gas Flow Manager GFMC _ Shipper
(Define
Develop Commercial
Grid services
Book Services 0
Send
Nominations
{]
Handle
Nominations
I
~___
Grid Operator
Plan
Execute Flow
Flow Plan
I
Metering
Measure Flow
I
Allocate
Bill

Figure 3: Stable GFMC model.

56

In a previous publication, we focused on a repeat-
able and reproducible method to design such models
(Huysmans et al., 2010), and the benefits which can
be achieved with such an approach. That description
was limited to the top layers of the enterprise archi-
tecture, i.e., the business and functional layers. In
this paper, we focus on the preconditions for apply-
ing this approach, which are situated on the functional
and information layers. For this approach to work, the
specification the functional layer may not be restricted
by the information layer. Modular dependencies be-
tween artifacts from the information layer and arti-
facts from the functional layer can be used as an indi-
cation for such restrictions. Before the organizational
split, applications had separate data sources, which
impacted the specification of application scope. Put
differently, dependencies existed between the func-
tional and information layers. Because the seman-
tic differences between entities in these data sources,
it was not feasible to design applications which re-
lied on data from different sources without creating
complexity within the application. In the enterprise
architecture maturity model, this indicates an archi-
tecture which is not correctly modularized (Ross and
Beath, 2006). For example, the entity “customer” ex-
isted in different data sources. In some sources, this
entity referred to end consumers of the gas which is
transported. In other sources, it contained the cus-
tomers of the gas flow manager company (i.e., the gas
traders). As a result, the scope of applications was de-
fined based on the scope in the data sources. During
the enterprise architecture project, a glossary was de-
veloped iteratively with business users from different
areas to ensure consistent terminology across the or-
ganization. The glossary defines the entities and their
relationships to each other. Based on this glossary, a
database scheme was developed and imposed on the
different data sources. Consequently, the dependency
of the application scope on the data source scope was
resolved. The coupling between the functional and
information layer was thus removed. As a result, the
modules on the functional layer could be designed to
be well-aligned with the business layer, without being
restricted by aspects from the information layer.

Moreover, the solution applied in this case follows
the solution presented in modularity theory. In or-
der to resolve modular dependencies, modularity the-
ory proposes to specify an architectural rule. Such
a rule limits the design freedom for the implementa-
tion aspects of modules by prescribing a certain de-
sign choice. In this case, the glossary limits the al-
lowed interpretation of, for example, the “customer”
entity. As a result, no conversions need to be per-
formed to ensure a correct use of data entities. Other

DESIGNING FOR INNOVATION BY APPLYING ORGANIZATIONAL MODULARITY

solutions are possible to resolve dependencies as well.
Currently, we focus on the ability of modular depen-
dencies to identify coupling between modules of dif-
ferent architectural layers as a cause for restrictions
on higher-level layers. In future research, we elab-
orate on different methods to deal with this kind of
coupling. However, the current case illustrates how
a modularity approach can be complementary to en-
terprise architecture frameworks. While the different
applications and data sources can be represented in
an enterprise architecture, no indications of the cou-
pling between the different viewpoints can be repre-
sented. When we consider the applications and data
sources as modules, we can use a Design Structure
Matrix (DSM) to represent aspects of the module im-
plementation which affect each other.

4 APPLICATION OF MODULAR
DEPENDENCIES

In the previous cases, we illustrated the relevance
of modular dependencies in enterprise architecture
projects. We now apply the insights gained from the
analysis described above to a case study in a gov-
ernmental organization. The mission of the organiza-
tion is to introduce and implement e-government so-
lutions. To achieve this goal, it undertakes projects
in the field of back-office reengineering, and tries to
leverage these improvements by supporting projects
with governmental partners. In this paper, we focus
on a project that improves the way data from various
sources is used in governmental processes. We will
refer to this project as the Data Usage in Governmen-
tal Processes (DUGP) project. Similar to the descrip-
tion in Section 3.2, the structure of the data sources
limits the design of governmental processes. Because
of the political situation, different data sources are
controlled by different governmental entities, which
belong to governments on different levels (e.g., fed-
eral, regional, local level). As a result, different im-
plementations exist for a large amount of design pa-
rameters. For example, the data delivery design pa-
rameter may be implemented by an online web inter-
face, an FTP transfer, or through web services. Con-
sider the partial Design Structure Matrix represented
in Figure 4, which has been developed to describe
the situation before the DUGP project. In this DSM,
multiple design parameters are considered simultane-
ously. Compare this to the coupling in the GFMC
enterprise architecture, where we focused on a single
design parameter (i.e., data semantics).

The “x”-es with the grey background represent (1)
the dependency of the data retrieval design parameter

Process DS
3 5 g
) >
> o £ =
5588 288
-+ -
SE8E8|»g L8
DraAlgRA®RNA
D3R 38 1} &
[R T e
S 333|833
HRAAADAAA
@ Process Throughput| . x X
8 Data Retrieval X [x x
E Data Syntax .X X X
Data Dictionary X . X X
Capacity . X
w2 Data Delivery X . X
Data Syntax X . X
Data Dictionary X

Figure 4: DSM before the DUGP project.

of the processes on the data delivery design parame-
ter of the data sources, and (2) the dependency of the
data syntax used in the processes on the data syntax
used in the data sources. Consider the impact of these
two design parameters in the following example. A
process to request construction premiums requires
personal data of the citizen requesting the premium
(from data source A) as well as geographical data of
the construction site (from data source B). Since the
databases which contain the personal and geograph-
ical data are not integrated or standardized, various
conversions between the implemented data parame-
ters of these data sources may be necessary. Sup-
pose that the information required from data source
A needs to be obtained by invoking a single web ser-
vice call, providing the address from the end user us-
ing four data fields (street name, street number, bus
number, city name). In order to query geographical
information in data source B, a request file containing
two data fields (street name and street number, and
ZIP code) has to be transferred using the FTP proto-
col. Since the construction premium process depends
on both data sources, it needs to be able to communi-
cate using two different versions of address data syn-
tax, and two different versions of data retrieval tech-
nology. If the construction premium process needs
to be changed, and an additional data source is re-
quired, the process owner needs to be aware of the
data syntax and data retrieval method offered by the
new data source. Moreover, when changes are made
to these implementation aspects of data sources, ad-
ditional versions need to be supported by the pro-
cesses. The resulting complexity of these conversions
is a barrier for the use of these data sources. More-
over, this example shows that different design param-
eters are intertwined in a certain implementation. As
a result, it is hard to resolve these dependencies indi-
vidually. The goal of the DUGP project is therefore

57

BMSD 2011 - First International Symposium on Business Modeling and Software Design

to eliminate these dependencies at once in order to
reduce the complexity of using data sources in gov-
ernmental processes. However, the solution which is
suggested by modularity theory, i.e., the definition of
architectural rules, was not feasible because of the
governmental structure. The different data sources
are controlled by different governmental entities, who
can decide independently on the implementation of
design parameters. Declaring an architectural rule for
a design parameter therefore requires an agreement
between all governmental units responsible for a data
source. However, since most units rely heavily on
legacy systems to provide data services, changes to
the implementation of design parameters are not eas-
ily realized. Therefore, it is difficult to reach such an
agreement if an organization which can impose rules
to these governmental units is not in place.

Consequently, the e-government organization de-
veloped a platform to consolidate data sources and
provide uniform data access. Similar to the PBC
case discussed in Section 3.1, an abstraction layer was
developed to offer the required functionality with-
out exposing the complexity of the layer offering
these services. This abstraction layer provides ser-
vices from the information layer to governmental pro-
cesses, which are considered to be on the functional
layer. The platform is based on two existing data
sources from the federal government. Data from these
data sources will be augmented with data available in
data sources from other governments (e.g., geograph-
ical data, which is offered by regional governments).
The first data source which is used focuses on data
concerning organizations. In this data source, data
such as registration number, official addresses and le-
gal statute of enterprises can be obtained. We will re-
fer to this data source as the Data Source for Organi-
zations (DSO). The Federal Public Service Economy
is responsible for this data source. The second data
source offers data concerning individuals. It refers to
data such as employment and social status of citizens.
We will refer to this data source as the Data Source
for Individuals (DSI). This data source is governed by
a separate organization created by the federal govern-
ment. The platform will maintain this distinction, and
offer its data services grouped in an Enhanced Data
Source for Organizations (EDSO) and an Enhanced
Data Source for Individuals (EDSI).

Since the EDSO relies on the DSO for its data,
and the EDSI relies on the DSI, they need to consider
the implementation of these data sources. Many im-
plementations of design parameters are quite differ-
ent. For example, the DSI has webservices available
to query its data. As a result, these webservices can
be used to develop webservices in the EDSI. These

58

webservices are not directly offered in their original
form. Instead, a facade pattern is used. This en-
ables the creation of a uniform web service syntax
throughout the platform. Otherwise, a dependency
on the data syntax design parameter would be intro-
duced. In contrast, the DSO has no webservices avail-
able. It is a mainframe which operates using batch
requests. Therefore, a copy is made from the origi-
nal DSO every night. This copy is then augmented
with data from other governmental authorities, and
used as a central database on which the services from
the EDSO are provided. In order to simplify data ac-
cess, the new platform provides three data delivery
methods which will be available for all data sources:
data repositories, an online application and webser-
vices. Customized data repositories are large data
files, which are copied to the process owner. Af-
ter this initial data provision, automatic updates are
transferred when data changes. These repositories are
offered to enable process owners to incorporate the
data from the new platform in their processes, with-
out having to implement a webservices-based data ac-
cess. Since many organizations are accustomed to us-
ing their own data sources in their processes, a cus-
tomized data repository can be implemented without
many changes in the processes. However, the unau-
thorized data sources which have been collected by
the organizations themselves will then be replaced
with authentic data. The online application allows for
manual consultation of the data with a much smaller
granularity: instead of a single large data file, only the
result of a single query is returned. The same result
can be obtained automatically through the use of web-
services. Webservices offer the same data granularity,
but can be implemented to automate processes.

From a modularity perspective, the platform can
be considered as an additional module to eliminate
dependencies between data and process modules. The
DSM for the DUGP project is shown in Figure 5.
When comparing DSM of the platform in Figure 5
with the DSM in Figure 4, we can conclude that some
of these dependencies are indeed eliminated. Con-
sider for example the data syntax and data delivery.
We included an empty grey background to mark the
previous existence of these dependencies. The syntax
of webservices offered by EDSI is decoupled from the
naming conventions of the DSI by using a facade pat-
tern. As a result, naming conventions can be kept in-
ternally consistent with custom-built webservices for
EDSO. The data syntax can be considered as an archi-
tectural rule which is maintained by the e-government
organization. By adhering to this data syntax, process
owners no longer need conversions between different
data syntax versions. Another example is the data de-

DESIGNING FOR INNOVATION BY APPLYING ORGANIZATIONAL MODULARITY

Process Platform DS
55 § g . g
+2] -~ o -
EEsAIER A28 54
cesglfsssliess
. B3 3| a2 3 B @ 83D
AAAADAAAQAKAAA
@ Process Throughput| . x x
8 Data Retrieval X X
£ Data Syntax x X X
Data Dictionary X X
g Capacity X X X
& Data Delivery X . X bd
8 Data Syntax X . X X
&~ Data Dictionary x b'q X X
Capacity . X X
w1 Data Delivery b4 X
Data Syntax X . X
Data Dictionary X

Figure 5: DSM of the DUGP project.

livery design. In data sources from the platform, data
can be provided through customized data repositories,
an online application or webservices. Here, a single
design option has not been selected, but the consistent
offering of all data delivery techniques allows process
owners to implement a single design for data deliv-
ery. Again, process owners no longer depend on the
specific data delivery technique of the individual data
sources. Consequently, it seems that the platform aids
to decouple the process owners from the design deci-
sion of the data sources.

However, as stated by Baldwin and Clark, elimi-
nating all dependencies in a modular structure is not
a trivial task (Baldwin and Clark, 2000). Consider
the design option process throughput in the case of
an automated process. Our respondents indicated that
the number of processes which can be supported is
limited by, amongst others, the capacity of the data
delivery implementation. In Figure 5, this is visu-
alized by the “x” where the column of the capac-
ity of the platform intersects with the row of pro-
cess throughput. A possible data delivery implemen-
tation in the platform are webservices. As described
above, webservices from the platform can be either
custom-built by the e-government organization (e.g.,
webservices for EDSO), or can be part of a facade-
pattern, calling underlying webservices (e.g., webser-
vices for EDSI). The custom-built webservices oper-
ate on a local database. Consequently, their capacity
is limited by the servers of the e-government organi-
zation itself. However, webservices which are part
of the facade pattern are dependent on the capacity
of the underlying services of DSI. Based on the im-
plementation, issues with webservice capacity need
to be discussed with the e-government organization

or with the organization responsible for the original
data source. The difference between the implemen-
tation of webservices in the platform is based on the
available data delivery techniques from the original
data sources. In Figure 5, this is visualized by the
“x” where the column of the data delivery of a data
source intersects with row of the capacity of the plat-
form. It therefore seems that an unexpected depen-
dency can be identified: when the platform is used,
the process throughput design decision is impacted by
the data delivery technique of the original date source.
When the data delivery of DSO is changed (e.g., web-
services become available) and used by the platform,
process performance may be impacted. This is an ex-
ample of a chained design dependency which propa-
gates through the design structure matrix. Such de-
pendencies are difficult to trace and to account for in
change projects.

S CONCLUSIONS

In this paper, we explored a concrete application of
modularity on the organizational level. We have
shown that by modeling modular dependencies, inter-
actions between layers in enterprise architecture mod-
els can be represented. Such interactions are not ex-
plicitly focused on in enterprise architecture frame-
works. Therefore, this approach is complementary to
existing frameworks. These frameworks usually fo-
cus on the top-down specification of different view-
points. However, these viewpoints can not be consid-
ered to be independent from each other in complex or-
ganizations. As a result, one needs to be aware of the

59

BMSD 2011 - First International Symposium on Business Modeling and Software Design

impacts and restrictions imposed by lower-level lay-
ers during a top-down specification of enterprise ar-
chitecture models. Therefore, research on this subject
should be based on observations in real-life case stud-
ies instead of on theoretical examples. We focused on
the restrictions of modeling artifacts on higher-level
layers based on dependencies on the implementation
of design parameters of lower-level artifacts. First,
we demonstrated how this effect occurs in the PBC
case study. Second, we discussed how the elimina-
tion of such dependencies can be a prerequisite in
successful enterprise architecture projects. We illus-
trated this prerequisite in the context of the GFMC
case study, which was published earlier. Moreover,
we explored the applicability of dealing with mod-
ular dependencies as suggested by modularity liter-
ature. This solution implies the definition of archi-
tectural rules to limit the implementation possibilities
of design parameters. Consequently, artifacts which
are dependent on these design parameters can assume
that a fixed implementation will always be supported.
Third, we applied the insights from the observations
in these case studies more concretely to the DUGP
project. We showed that a DSM can be used to rep-
resent relevant issues for the enterprise architecture
project as modular dependencies. This perspective al-
lows to objectivate the issues which are resolved by
the project. Moreover, a structured analysis can lead
to the discovery of remaining issues after the project.
Remaining issues can be unresolved dependencies,
or newly introduced dependencies. This was illus-
trated by identifying the capacity design parameter as
a chained dependency.

Future research needs to be conducted to gain
insight on how modular dependencies on this level
can be dealt with. In some cases, the definition of
architectural rules seems appropriate. However, in-
stead of choosing a single implementation option, it
has already been observed that a consistent offering
of multiple implementations can be required as well.
Moreover, in some cases, imposing architectural rules
does not seem feasible, because of the organizational
structure. In the DUGP project, it was impossible
to impose architectural rules to different organiza-
tional units. Therefore, an additional module was
added. However, the introduction of new dependen-
cies shows that a structured approach is required to
adequately resolve modular dependencies.

REFERENCES

Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Gariap-
athy, S., and Holley, K. (2008). Soma: a method for

60

developing service-oriented solutions. IBM Syst. J.,
47:377-396.

Baldwin, C. Y. and Clark, K. B. (2000). Design Rules, Vol-
ume 1: The Power of Modularity, volume 1 of MIT
Press Books. The MIT Press.

Baldwin, C. Y. and Clark, K. B. (2003). The value, costs and
organizational consequences of modularity. Working
Paper.

Barjis, J. and Wamba, S. F. (2010). Organizational and
business impacts of rfid technology. Business Process
Management Journal, 16(6):897-903.

Campagnolo, D. and Camuffo, A. (2010). The concept of
modularity in management studies: A literature re-

view. International Journal of Management Reviews,
12(3):259-283.

Galunic, D. C. and Eisenhardt, K. M. (2001). Architec-
tural innovation and modular corporate forms. The
Academy of Management Journal, 44(6):1229-1249.

Huysmans, P., Ven, K., and Verelst, J. (2010). Designing for
innovation: using enterprise ontology theory to im-
prove business-it alignment. Proceedings of the Ist
International Conference on IT-enabled Innovation in
Enterprise, pages 177-186.

Lucke, C., Krell, S., and Lechner, U. (2010). Ceritical is-
sues in enterprise architecting - a literature review. In
AMCIS 2010 Proceedings.

Parnas, D. L. (1972). On the criteria to be used in decom-
posing systems into modules. Communications of the
ACM, 15(12):1053-1058.

Ross, J. and Beath, C. M. (2006). Sustainable it outsourc-
ing success: Let enterprise architecture be your guide.
MIS Quarterly Executive, 5(4):181-192.

Schekkerman, J. (2005). Trends in enterprise architecture:
How are organizations progressing? Technical report,
Institute For Enterprise Architecture Developments.

Schoenherr, M. (2008). Towards a common terminology
in the discipline of enterprise architecture. In /ICSOC
Workshops’08, pages 400—413.

Simon, H. A. (1962). The architecture of complexity.
Proceedings of the American Philosophical Society,

106(6):467-482.
The Open Group (2009). The open group ar-
chitecture framework (togaf) version 9.

http://www.opengroup.org/togaf/.

Yin, R. K. (2003). Case Study Research: Design and Meth-
ods. Sage Publications, Newbury Park, California, 3rd
edition.

