
A FRAMEWORK FOR STRUCTURED KNOWLEDGE
EXTRACTION AND REPRESENTATION FROM NATURAL

LANGUAGE THROUGH DEEP SENTENCE ANALYSIS

Stefania Costantini, Niva Florio and Alessio Paolucci
Dip. di Informatica, Università di L’Aquila, Via Vetoio 1, Coppito, L’Aquila, Italy

Keywords: NLP, Reasoning, ASP, OOLOT, Semantic web, Deep analysis.

Abstract: We present a framework that allow to extract knowledge from natural language sentences using a deep analysis
technique based on linguistic dependencies. The extracted knowledge is represented in OOLOT, an interme-
diate format inspired by the Language of Thought (LOT) and based on Answer Set Programming (ASP).
OOLOT uses ontology oriented lexicon and syntax. Finally, it is possible to export the knowledge in OWL
and native ASP.

1 INTRODUCTION

Many intelligent systems have to deal with knowledge
expressed in natural language, either extracted from
books, web pages and documents in general, or ex-
pressed by human users. Knowledge acquisition from
these sources is a challenging matter, and many at-
tempts are presently under way towards automatically
translating natural language sentences into an appro-
priate knowledge representation formalism (Bos and
Markert, 2005). Although this task is a classic Ar-
tificial Intelligence challenge (mainly related to Nat-
ural Language Processing and Knowledge Represen-
tation (Pereira and Shieber, 2002)), with the Seman-
tic Web growth new interesting scenarios are open-
ing. The Semantic Web aims at complementing the
current text-based web with machine interpretable se-
mantics; however, the manual population of ontolo-
gies is very tedious and time-consuming, and practi-
cally unrealistic at the web scale (Auer et al., 2007;
Kasneci et al., 2008). Given the enormous amount
of textual data that is available on the web, to over-
come the knowledge acquisition bottleneck, the on-
tology population task must rely on the use of natu-
ral language processing techniques to extract relevant
information from the Web and transforming it into a
machine-processable representation.

In this paper we present our framework. It allows
us to extract knowledge from natural language sen-
tences using a deep analysis technique based on lin-
guistic dependencies and phrase syntactic structure.

We also introduce OOLOT (Ontology Oriented
Language of Thought). It is an intermediate language
based on ASP, specifically designed for the represen-
tation of the distinctive features of the knowledge ex-
tracted from natural language. Since OOLOT is based
on an ontology oriented lexicon, our framework can
be easily integrated in the context of the Semantic
Web.

Section 2 introduces the framework architecture.
In Section 3 we analyse the sentence with a parser.
Section 4 describes the context disambiguation and
lexical item resolution methods. Section 5 introduces
the intermediate format OOLOT, while Section 6.2
describes the translation methodology with the help
of an example. Finally, Section 7 shows an exporting
from OOLOT into OWL example, and in Section 8
we conclude with a brief rsum of achieved goals and
future works.

2 THE FRAMEWORK
ARCHITECTURE

The proposed framework aims at allowing automat-
ically knowledge extraction starting from plain text,
like a web page, and have a structured representation
in OWL or ASP as output. Thus, the framework can
be seen as a standalone system, or can be part of a
wider workflow, e.g. a component of complex seman-
tic web applications.

Starting from plain text written in natural lan-

282
Costantini S., Florio N. and Paolucci A..
A FRAMEWORK FOR STRUCTURED KNOWLEDGE EXTRACTION AND REPRESENTATION FROM NATURAL LANGUAGE THROUGH DEEP
SENTENCE ANALYSIS.
DOI: 10.5220/0003663702740279
In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval (KDIR-2011), pages 274-279
ISBN: 978-989-8425-79-9
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: The framework architecture.

guage, as first step we process the sentence through
the statistical parser (see Section 3). If we use a parser
with embedded dependency extractor, we can perform
a single step and have as output both the parse tree
(constituents) and the dependency graph. Otherwise,
if we use two different components, the workflow is
that of Fig.1. For this step, we use a simple algorithm
for context disambiguation (see Section 4). Then,
each token is resolved w.r.t. popular ontologies in-
cluding DBPedia and OpenCYC and the context is
used for disambiguation in case of multiple choices.
At this point we have enough information to translate
the knowledge extracted from natural language sen-
tence into our intermediate OOLOT format (see Sec-
tion 5). For the translation process described in Sec-
tion 6, we use theλ-calculus as engine that drives the
translation into OOLOT, using information about the
deep structure of the sentence extracted in the pre-
vious steps. From OOLOT it is possible to directly
translate the encoded knowledge into OWL or to ex-
port the knowledge base in pure ASP.

3 PARSER ANALYSIS

Syntactic parser decomposes a text into a sequence
of tokens (for example, words), and attributes them
their grammatical functions and thematic or logical
roles with respect to a given formal grammar, show-
ing also the relations between the various elements
of the sentence (Chomsky, 1956; Chomsky, 1957).
Most of today’s syntactic parsers are mainly statis-
tical (Charniak, 1996; Charniak and Johnson, 2005;
Collins, 1996; Collins, 1997) and Probabilistic Con-
text Free Grammar (PCFG) (Collins, 1996; Collins,
1997; Charniak and Johnson, 2005; McClosky et al.,
2006; Petrov et al., 2006; Petrov and Klein, 2007).

Statistical parsing is useful to solve problems like am-
biguity and efficiency, but with this kind of parsing
we lose part of the semantic information; this as-
pect is recovered thanks to dependency representa-
tion (De Marneffe and Manning, 2008). Dependency
grammars (DGs) were proposed by the French lin-
guist Tesnière (Tesnière, 1959) and have recently re-
ceived renewed attention (cfr. (Neuhaus and Bröker,
1997) and the references therein). In Dependency
Grammars, words in a sentence are connected by
means of binary, asymmetrical governor-dependent
relationships. In fact, Tesnière assumes that each syn-
tactic connection corresponds to a semantic relation.

It is difficult to evaluate parsers; we can compare
them in many ways, such as the speed with which they
examine a sentence or their accuracy in the analysis
(e.g. (Cer et al., 2010)). The task based evaluation
seems to be the best one (De Marneffe and Manning,
2008; Mollá and Hutchinson, 2003): we must choose
whether to use a parser rather than another simply
basing on our needs. At this stage of our ongoing re-
search, we use the Stanford parser because it is more
suited to our requirements, both for the analysis of the
constituents and for that of the dependencies.

Stanford parser performs a dependency and con-
stituent analysis (Klein and Manning, 2003a; Klein
and Manning, 2003b). This parser provides us with
different types of parsing: it can be used as an un-
lexicalized PCFG parser (Klein and Manning, 2003a)
to analyse sentences, or as a lexicalized probabilis-
tic parser (Klein and Manning, 2003b) combining the
PCFG analysis with the lexical dependency analysis.
The Stanford parser provides us a typed dependency
and a phrase structure tree. The Stanford typed depen-
dencies (cfr. (De Marneffe and Manning, 2008)) de-
scribe the grammatical relations in a sentence. The re-
lations are binary and are arranged hierarchically and
the head of a dependency can be any content words.
Thanks to rules (De Marneffe et al., 2006) applied
on phrase structure trees (also created by the Stanford
parser), typed dependencies are generated.

We choose to analyse the sentence”Many girls
eat apples.”. Seeing Fig.2, we can notice that the
parser attributes to each token its syntactic roles, and
it provides us also the grammatical function of each
word.

(ROOT

 (S

 (NP (JJ Many) (NNS girls))

 (VP (VBP eat)

 (NP (NNS apples)))

 (. .)))

Figure 2: Phrase structure produced by the Stanford parser
for the sentence ”Many girls eat apples”.

A FRAMEWORK FOR STRUCTURED KNOWLEDGE EXTRACTION AND REPRESENTATION FROM NATURAL
LANGUAGE THROUGH DEEP SENTENCE ANALYSIS

283

Table 1: Lexical item resolution example.

Lexicon Ontology URI

girls DBPedia http://dbpedia.org/resource/Girl

eat DBPedia http://dbpedia.org/class/Eating

apples DBPedia http://dbpedia.org/resource/Apple

With regard to dependency analysis, the Stanford
parser gives us two versions of this analysis: the typed
dependency structure and the collapsed typed depen-
dency structure (Fig.3) (De Marneffe and Manning,
2008).

amod(girls-2, Many-1)

nsubj(eat-3, girls-2)

dobj(eat-3, apples-4)

Figure 3: Collapsed typed dependency structure produced
by the Stanford parser for the sentence ”Many girls eat ap-
ples”.

4 CONTEXT DISAMBIGUATION
AND LEXICAL ITEM
RESOLUTION

The context disambiguation task is a very important
step in our workflow, as we need to assign each lex-
ical unit to the correct meaning, and this is particu-
larly hard due to the polysemy. For this task, we use
a simple algorithm: we have a finite set of contexts
(political, technology, sport, ...), and as first step we
built a corpus of web pages for each context, and then
we used each set as a training set to build a simple
lexical model. Basically we build a matrix where for
each row we have a lexical item, and for each column
we have a context. The relation (lexical item, con-
text) is the normalized frequency of each lexical item
into the given context. The model is then used to as-
sign the correct context to a given sentence. We use
a n × m matrix, wheren is the number of lexical to-
kens (or items), andm is the number of contexts. In
other words, we give a score for each lexical token
in relation to each context. To obtain the final score
we perform a simple sum of the local values to obtain
the global score, and thus to assign the final context
to the sentence. Our method for context disambigua-
tion can certainly be improved, in particular (Banerjee
and Pedersen, 2002) seems to be a good development
direction.

The context is crucial to choose the correct refer-
ence when a lexical item has multiple meanings, and
thus, in an ontology can be resolved in multiple refer-
ences. The context becomes the key factor for the res-

olution of each lexical item to the relative reference.
We perform a lookup in the ontology for each token,
or a set of them (using a sliding window of length k).
For example, using DBPedia, for each token (or a set
of tokens of length k), we perform a SPARQL query,
assuming the existence of a reference to the lexical
item: if this is true, we’ve found the reference, other-
wise we go forward. If we found multiple references,
we use the context to choose the most appropriate one.

With regard to the lexical item resolution, the
steps are the following. Given the sentenceMany
girls eat applesand it’s syntactic phrase structure
(Fig.2) and dependencies structure (Fig.3), as first
step we tokenize the sentence, obtaining:

Many, girls, eat, apples.
Before the lookup, we use the part of speech tag-

ging from the parse tree to group the consecutive to-
kens that belong to the same class. In this case, such
peculiar aspect of natural language is not present and
thus the result is simply the following:

(Many), (girls), (eat), (apples).
Excluding the lexicon for which we have a direct

form, for each other lexicon the reference ontology is
resolved through a full text lookup; thus we obtain the
lexical item resolution in Table 1.

5 FROM THE LANGUAGE OF
THOUGHT TO OOLOT

The Language of Thought (LOT) is an intermediate
format mainly inspired by (Kowalski, 2011). It has
been introduced to represent the extracted knowledge
in a way that is totally independent from original lex-
ical items and, therefore, from original language.

Our LOT is itself a language, but its lexicon is on-
tology oriented, so we adopted the acronym OOLOT
(Ontology Oriented Language Of Thought). This is
a very important aspect: OOLOT is used to repre-
sent the knowledge extracted from natural language
sentences, so basically the bricks of OOLOT (lexi-
cons) are ontological identifier related to concepts (in
the ontology), and they are not a translation at lexi-
cal level. It uses ASP as host environment that allows
us for a native, high expressive knowledge represen-
tation and reasoning environment.

KDIR 2011 - International Conference on Knowledge Discovery and Information Retrieval

284

6 TRANSLATING INTO OOLOT

6.1 Background

(Costantini and Paolucci, 2010) describes a technique
for extracting knowledge from natural language and
automatically translate it into ASP. This translation
method takes into accounts all words of the sentence
is presented. This implies that the final represen-
tation is too dependant from original lexical struc-
ture, and this is sub-optimal if we want to export our
knowledge base to a formalism like OWL. To trans-
late into OOLOT, we built an extension ofλ-calculus
and we have introduced meta expressions to fully au-
tomate the translation process, originally inspired by
(Baral et al., 2008). This is a key point in the pro-
cess of representing knowledge extracted from natu-
ral language, and thus for using it into other contexts,
e.g. the Semantic Web. The selection of a suitable
formalism plays an important role, but under many
aspects first-order logic would represent a natural
choice, and it is actually not appropriate for express-
ing various kinds of knowledge, i.e., for dealing with
default statements, normative statements with excep-
tions, etc. Recent work has investigated the usability
of non-monotonic logics, like ASP (Baral et al., 2008)
with great result in terms of dealing with the kind of
knowledge represented through natural language.

OOLOT allows us to have native reasoning capa-
bilities (using ASP) to support the syntactic and se-
mantic analysis tasks. Embedded reasoning is of fun-
damental importance for the correct analysis of com-
plex sentences, as shown in (Costantini and Paolucci,
2008), but having an ASP based host language is not
limited to the previous aspects. In fact the integra-
tion of ASP and the Semantic Web is not limited on
the Natural Language Processing side. Answer Set
Programming fits very well with Semantic Web in
the research efforts of integrating rule-based inference
methods with current knowledge representation for-
malisms in the Semantic Web (Eiter, 2010; Schind-
lauer, 2006).

Ontology languages such as OWL and RDF
Schema are widely accepted and successfully used
for semantically enriching knowledge on the Web.
However, these languages have a restricted expres-
sivity if we have to infer new knowledge from exist-
ing. Semantic Web needs a powerful rule language
complementing its ontology formalisms in order to
facilitate sophisticated reasoning tasks. To overcome
this gap, different approaches have been presented on
how to combine Description Logics with rules, like in
(Schindlauer, 2006).

Table 2: Theλ-ASP-expression template.

Lexicon SemClass λ−ASP−expression T

- noun λx.〈noun〉(x)

- verb λy.〈verb〉(y)

- transVerb λy.λw.〈verb〉(y,w)

many det λuλv.(
v@X← u@X,

not ¬v@X,

possible(v@X,u@X),
usual(v@X,u@X)
)

6.2 Lambda Calculus translation

λ-calculus is a formal system designed to investi-
gate function definition, function application and re-
cursion. Any computable function can be expressed
and evaluated via this formalism (Church, 1932). In
(Costantini and Paolucci, 2010) we extended theλ-
calculus introducing theλ-ASP-ExpressionT that al-
lows a native support for ASP and, at the same time,
permits to formally instantiate toλ-ASP-Expression
(Baral et al., 2008; Costantini and Paolucci, 2010).
For the purpose of our running example, the set ofλ-
ASP-ExpressionT is available in Table 2. The choice
of the lambda calculus was made because it fully
matches the specifications of the formal tool we need
to drive the execution of the steps in the right way.

According to the workflow in Fig.1, the transla-
tion from plain text to the OOLOT intermediate for-
mat makes use of the information extracted in several
steps. The information on the deep structure of the
sentence is now used to drive the translation using the
λ-calculus according to theλ- expression definitions
in Table2. For each lexicon, we use the phrase struc-
ture in Fig.2 to determine the semantic class to which
it belongs. In this way, we are able to fetch the cor-
rectlambda-ASP-expression template from the Table
2. For the running example, as result we have theλ-
ASP-expressions of Table 3.

Now, differently from (Costantini and Paolucci,
2010), we use the dependencies, that is the deep struc-
ture information, to drive the translation. According
to dependency in Fig.3, the first relation that we use is
amod(girls−2, many−1). Thus, for theλ-calculus
definition, we apply theλ-ASP-expression forgirls to
theλ-ASP-expression formany, obtaining:

A FRAMEWORK FOR STRUCTURED KNOWLEDGE EXTRACTION AND REPRESENTATION FROM NATURAL
LANGUAGE THROUGH DEEP SENTENCE ANALYSIS

285

Table 3: Theλ-ASP-expressions.

Lexicon λ−ASP−expression

apples λx.dbpedia: Apple(x)

eat λyλw.dbpedia: Eating(y,w)

girls λz.dbpedia: Girl (x)

many λuλv.(
v@X← u@X,

not ¬v@X,

possible(v@X,u@X),
usual(v@X,u@X)
)

λv.(
v@X← dbpedia: Girl (X),
not ¬v@X,

possible(v@X,dbpedia: Girl (X)),
usual(v@X,dbpedia: Girl (X))

)

The second relation,nsub j(eat− 3, girls− 2),
drives the application of theλ-expression foreat
to the expression forgirls that we obtained in the
previous step:

dbpedia: Eating(X,W)←
dbpedia: Girl (X),

not ¬dbpedia: Eating(X,W),
possible(dbpedia: Eating(X,W),

dbpedia: Girl (X)),
usual(dbpedia: Eating(X,W),

dbpedia: Girl (X))

Then, we applyappleto the expression we have
seen, obtaining the final result:

dbpedia: Eating(X,dbpedia: Apple)←
dbpedia: Girl (X),

not ¬dbpedia: Eating(X,dbpedia: Apple),
possible(dbpedia: Eating(X,

dbpedia: Apple),
dbpedia: Girl (X)),

usual(dbpedia: Eating(X,dbpedia: Apple),
dbpedia: Girl (X))

7 EXPORTING INTO OWL

Our framework has been designed to export the
knowledge base from OOLOT into a target formal-
ism. For now, we are working on a pure ASP and

OWL exporter.
Exporting into OWL is a very important feature,

because it allows endless possibilities due to its native
Semantic Web integration. In this way, the frame-
work as a whole become a power tool that starting
from plain text produces the RDF/OWL representa-
tion of the sentences; through ASP it takes care of
special reasoning and representation features of natu-
ral language. To complete the example, the resulting
RDF/OWL representation is:

Figure 4: RDF.

Clearly, the exporting into OWL has, at this time,
some drawbacks, including the loosing of some as-
pect of natural language that instead is perfectly man-
aged in OOLOT. Exporting is an ongoing work, so
there is room for improvement.

8 CONCLUSIONS

In this paper, we have proposed a comprehensive
framework for extracting knowledge from natural lan-
guage and representing the extracted knowledge in
suitable formalisms so as to be able to reason about it
and to enrich existing knowledge bases. The proposed
framework is being developed and an implementation
is under way and will be fully available in short time.
The proposed approach incorporates the best aspects
and results from previous related works and, although
in the early stages, it exhibits a good potential.

Future improvements concern many aspects of the
framework. On the OOLOT side, there is the need to
better formalize the language itself, and better investi-
gate the reasoning capabilities that it allows, and how
to take the best advantage from them. The ontology-
oriented integration is at a very early stage, and there
is room for substantial improvements, including a bet-
ter usage of the current reference ontologies, and the
evaluation study about using an upper level ontology,
in order to have a more homogeneous translation.

ACKNOWLEDGEMENTS

This work was improved by conversations with Prof.
Eng. Giovanni De Gasperis. We take immense plea-
sure in thanking him for discussions and his support.

KDIR 2011 - International Conference on Knowledge Discovery and Information Retrieval

286

REFERENCES

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak,
R., and Ives, Z. (2007). Dbpedia: A nucleus for a web
of open data.The Semantic Web, pages 722–735.

Banerjee, S. and Pedersen, T. (2002).An Adapted Lesk Al-
gorithm for Word Sense Disambiguation Using Word-
Net, volume 2276 ofLecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg.

Baral, C., Dzifcak, J., and Son, T. C. (2008). Using an-
swer set programming and lambda calculus to char-
acterize natural language sentences with normatives
and exceptions. InProceedings of the 23rd national
conference on Artificial intelligence - Volume 2, pages
818–823. AAAI Press.

Bos, J. and Markert, K. (2005). Recognising textual en-
tailment with logical inference. InHLT ’05: Pro-
ceedings of the conference on Human Language Tech-
nology and Empirical Methods in Natural Language
Processing, pages 628–635. Association for Compu-
tational Linguistics.

Cer, D., de Marneffe, M., Jurafsky, D., and Manning, C.
(2010). Parsing to stanford dependencies: Trade-offs
between speed and accuracy.LREC 2010.

Charniak, E. (1996). Tree-bank grammars. InProceedings
of the National Conference on Artificial Intelligence,
pages 1031–1036.

Charniak, E. and Johnson, M. (2005). Coarse-to-fine n-best
parsing and maxent discriminative reranking. InPro-
ceedings of the 43rd Annual Meeting on Association
for Computational Linguistics, pages 173–180. Asso-
ciation for Computational Linguistics.

Chomsky, N. (1956). Three models for the description of
language.IEEE Transactions on Information Theory,
2(3):113–124.

Chomsky, N. (1957).Syntactic Structures. The MIT Press.
Church, A. (1932). A set of postulates for the foundation of

logic. The Annals of Mathematics, 33(2):346–366.
Collins, M. (1996). A new statistical parser based on bigram

lexical dependencies. InProceedings of the 34th an-
nual meeting on Association for Computational Lin-
guistics, pages 184–191. Association for Computa-
tional Linguistics.

Collins, M. (1997). Three generative, lexicalised models
for statistical parsing. InProceedings of the 35th An-
nual Meeting of the Association for Computational
Linguistics and Eighth Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 16–23. Association for Computational
Linguistics.

Costantini, S. and Paolucci, A. (2008). Semantically aug-
mented DCG analysis for next-generation search en-
gine. CILC (July 2008).

Costantini, S. and Paolucci, A. (2010). Towards translating
natural language sentences into asp. InProc. of the
Intl. Worksh. on Answer Set Programming and Other
Computing Paradigms (ASPOCP), Edimburgh.

De Marneffe, M., MacCartney, B., and Manning, C. (2006).
Generating typed dependency parses from phrase

structure parses. InProceedings of LREC, volume 6,
pages 449–454. Citeseer.

De Marneffe, M. and Manning, C. (2008). The stanford
typed dependencies representation. InColing 2008:
Proceedings of the workshop on Cross-Framework
and Cross-Domain Parser Evaluation, pages 1–8. As-
sociation for Computational Linguistics.

Eiter, T. (2010). Answer set programming for the semantic
web. Logic Programming, pages 23–26.

Kasneci, G., Ramanath, M., Suchanek, F., and Weikum, G.
(2008). The YAGO-NAGA approach to knowledge
discovery.SIGMOD Record, 37(4):41–47.

Klein, D. and Manning, C. (2003a). Accurate unlexicalized
parsing. InProceedings of the 41st Annual Meeting on
Association for Computational Linguistics-Volume 1,
pages 423–430. Association for Computational Lin-
guistics.

Klein, D. and Manning, C. (2003b). Fast exact inference
with a factored model for natural language parsing.
Advances in neural information processing systems,
pages 3–10.

Kowalski, R. (2011). Computational Logic and Human
Thinking: How to be Artificially Intelligent - In Press.
Cambridge University Press.

McClosky, D., Charniak, E., and Johnson, M. (2006). Ef-
fective self-training for parsing. InProceedings of
the main conference on Human Language Technol-
ogy Conference of the North American Chapter of the
Association of Computational Linguistics, pages 152–
159. Association for Computational Linguistics.

Mollá, D. and Hutchinson, B. (2003). Intrinsic versus ex-
trinsic evaluations of parsing systems. InProceed-
ings of the EACL 2003 Workshop on Evaluation Ini-
tiatives in Natural Language Processing: are evalua-
tion methods, metrics and resources reusable?, pages
43–50. Association for Computational Linguistics.

Neuhaus, P. and Bröker, N. (1997). The complexity
of recognition of linguistically adequate dependency
grammars. InProc. of ACL-97/EACL-97.

Pereira, F. and Shieber, S. (2002).Prolog and natural-
language analysis. Microtome Publishing.

Petrov, S., Barrett, L., Thibaux, R., and Klein, D. (2006).
Learning accurate, compact, and interpretable tree an-
notation. InProceedings of the 21st International
Conference on Computational Linguistics and the
44th annual meeting of the Association for Compu-
tational Linguistics, pages 433–440. Association for
Computational Linguistics.

Petrov, S. and Klein, D. (2007). Improved inference for
unlexicalized parsing. InProceedings of NAACL HLT
2007, pages 404–411.

Schindlauer, R. (2006). Answer-set programming for the
Semantic Web.

Tesnière, L. (1959). Elèments de syntaxe structurale.
Klincksieck, Paris. ISBN 2252018615.

A FRAMEWORK FOR STRUCTURED KNOWLEDGE EXTRACTION AND REPRESENTATION FROM NATURAL
LANGUAGE THROUGH DEEP SENTENCE ANALYSIS

287

