
GUIDELINES FOR A DYNAMIC ONTOLOGY
Integrating Tools of Evolution and Versioning in Ontology

Perrine Pittet, Christophe Cruz and Christophe Nicolle
LE2I, UMR CNRS 5158, University of Bourgogne, Dijon, France

Keywords: Evolution, Versioning, Versiongraph, Ontology lifecycle, Change operations.

Abstract: Ontologies are built on systems that conceptually evolve over time. In addition, techniques and languages
for building ontologies evolve too. This has led to numerous studies in the field of ontology versioning and
ontology evolution. This paper presents a new way to manage the lifecycle of an ontology incorporating
both versioning tools and evolution process. This solution, called VersionGraph, is integrated in the source
ontology since its creation in order to make it possible to evolve and to be versioned. Change management
is strongly related to the model in which the ontology is represented. Therefore, we focus on the OWL
language in order to take into account the impact of the changes on the logical consistency of the ontology
like specified in OWL DL.

1 INTRODUCTION

According to (Hodgson, 2003), ontology lifecycle is
divided in seven steps: needs detection, conception,
management and planning, evolution, diffusion, use,
and evaluation. The needs detection phase starts with
a detailed inventory of the domain and the various
purposes. Like evolution phase, conception phase
needs: knowledge acquisition, shared
conceptualization building, formalization (Semantic
Web1 formalisms…) and integration of the existing
resources (another ontology, applications…).The The
phase of management and planning underlines the
importance of having a constant monitoring and a
global policy to detect or initiate, prepare or evaluate
the lifecycle iterations. This work intends to
guarantee that an iteration of the lifecycle is activated
when an evolution is ready to be completed. The
management step requires tools not only to prepare
the ontology to adapt the domain changes but also to
keep tracing of the previous versions of the ontology.
These goals can be reached with a versioning system
(Flouris and al, 2007). Diffusion phase deals with the
deployment of the ontology. The use phase encloses
all the activities related to the access of the ontology.
Finally, the evaluation phase aims at evaluating the
ontology state. Moreover, like the needs detection
phase, it collects beforehand the knowledge of the

1 Semantic Web: http://semanticweb.org/wiki/Main_Page

domain and can also rely on previous studies or
feedbacks. Except for the evolution and management
phases, all the steps described can be considered as
mature domains. Furthermore, this description of the
lifecycle shows that evolution, and management
remains the most complex phases. Evolution is the
backbone of the lifecycle iterations. Therefore, the
change management process is totally based on it.
Our state of art is articulated in three parts.
According to the literature, we will first define the
evolution role, operations and process. Then we’ll
have a look at the existing solutions for change
representation and ontology versioning. We will see
how to link the evolution process and a versioning
system in order to integrate both in existing
ontologies.

2 ONTOLOGY EVOLUTION

As stated by (Flouris and al, 2007), ontology
evolution aims at responding to one or several
changes in the domain or the conceptualization by
applying them on the source ontology. This brief
definition looks abstract and leads us to ask: what
kind of changes does the evolution apply? How
evolution applies them? What are the criteria to
respect? How can we manage a good evolution?
Evolution changes are defined in the literature and

173Pittet P., Cruz C. and Nicolle C..
GUIDELINES FOR A DYNAMIC ONTOLOGY - Integrating Tools of Evolution and Versioning in Ontology.
DOI: 10.5220/0003653201730179
In Proceedings of the International Conference on Knowledge Management and Information Sharing (KMIS-2011), pages 173-179
ISBN: 978-989-8425-81-2
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

especially in (Noy and Klein, 2004) as a succession of
simple or complex operations the user wants to apply
on the intension (schema) or the extension (data) of
the ontology. This evolution aims at adapting the
ontology to the changed domain. Applying and
propagating the change are often manual tasks but can
be done automatically by synchronization with the
domain. According to (Tovar, and Vidal, 2008) these
tasks usually occur during the use phase of the
ontology. Ontology Dynamics clearly define the
evolution criteria. (Atle and Sugumaran, 2008) and
(Dividino and Sonntag, 2008) qualify the
maintenance of the ontology as the most important
criterion. Evolution has to maintain whatever relies
on the ontology. Maintaining the ontology consistent
and pertinent, in a consensus is an inescapable issue
of evolution (Zablith and al, 2008). Applying changes
on ontology can turn the conceptualization
inconsistent and irrelevant. That’s why an evolution
should never be validated before the user has a
preview of the impact of the changes on the ontology.
This impact can only be estimated if the evolution
operations are semantically clearly defined. In order
to assure that this process is fully respected, some
works propose an approach in six phases.
1. The change detection phase consists in
detecting what changes occurred in the domain or in
the point of view must be propagated to the
conceptualization. Lots of papers in the Ontology
Dynamics deal with this phase and propose methods
and tools like integrated event handlers (Tovar and
Vidal, 2008), ontology learning (Novacek and al) etc.
2. The representation phase aims at representing
the selected changes with ontological operations.
(Noy and Klein, 2004) classifies the evolution
operations in two types: elementary (atomic)
operations and composed (complex) operations.
According to (Noy and Klein, 2004), elementary
operations are simple operations that modify only
one entity like addition/suppression of
classes/relations, of hierarchy, domain, range links,
of class/relation properties like disjoint, transitivity,
etc…whereas composed operations are a
composition of several elementary operations. The
choice of composed operations depends on the
granularity of the evolution needs. Usual operations
correspond to operations the ontology that developers
are the most expected to use when creating and
evolving an ontology. In addition to elementary
operations, the literature gives some lists of usual
operations (Stojanovic and al, 2002,Stickenschmidt
and Klein, 2003). A distinction can be done between
operations on the intension and operations on the
extension. The cited works on change operations do

not specify specific operations for the instances
because they argue that an instance can become a
class (Noy and Klein, 2004). However, we maintain
that schema operations can’t be confounded with
instance operations. Actually, it is impossible to
create an instance (instance operation) related to a
class if this class is not created. Inversely a class can
be created (schema operation) without instances.
3. The semantic phase prevents the user from
inconsistency risks by determining the sense of the
represented changes. For example, if composed
operations have been selected, this phase will allow
seeing their decomposition in elementary operations.
4. The implementation of the changes alerts the
user of the impact on data in terms of data gain or
loss. (Noy and Klein, 2004) gives these impacts from
a list of 22 usual operations (the elementary ones and
some composed).
5. The propagation phase aims at informing all
the dependent parts of the ontology (other ontologies,
application) of these changes.
6. Finally, in sixth step comes the validation of
the changes.

3 ONTOLOGY VERSIONING

This part defines the role of versioning, bringing our
new vision on this definition. First, (Flouris and al,
2007) gives in 2007 a very strict definition of the role
of versioning: give a transparent access to different
existing versions of an ontology by creating a
versioning system. This system identifies the
versions by their “Id” and delimits their mutual
compatibility. In the past three years, Ontology
Dynamics proposals extend its role: manage several
chronological and multitemporal versions (Grandi,
2008), at a local or web level (Allocca and al), when
collected, distributed, accessed by search engines.
All these definitions correspond to a retroactive
versioning because versions of the ontology have to
preexist. However, in our objective, we want to
integrate a versioning system since the creation of the
first version of the ontology, and we want it to be
reactive when a change occurs. Therefore, we need,
as the ontology development, a dynamic and
incremental process, which could take into account a
new version at each evolution phase. That is why we
propose to merge the evolution process (following
the six phases) with the versioning one. (Sassi and al,
2010) and (Djedidi and Aufaure, 2008) agree with
this proposition by giving the ontology versioning
the ability of following the evolution process. In and

KMIS 2011 - International Conference on Knowledge Management and Information Sharing

174

(Djedidi and Aufaure, 2008), the methodology goal
is to guide and validate the application of the changes
in a systematic and optimized way, maintaining the
coherence and evaluating the impact of the change on
the ontology quality by the mean of design patterns.
In (Sassi and al, 2010), the goal is to assist the users
during the evolution process to observe the
consequences of the change applications on the
several versions by allowing them to compare them.
The two methodologies are step by step approaches
integrating the versioning process directly into the
evolution one. Both propositions quite follow the
evolution phases cited before but do not explicitly
show them.

4 VersionGraph APPROACH

This section presents the versioning approach of our
versioning system based on the six phases of the
evolution process.

4.1 From Evolution Phases to
Versioning

To make sure the evolution phases are fully respected
we chose to match each of them with a versioning
step. First, the user chooses the list of operations to
apply: (cf. change detection phase). The versioning
system formalizes them (cf. representation phase),
turn them semantically understandable (cf. semantic
phase), records and implements them (cf.
implementation phase). Then after the propagation of
the changes, (cf. propagation phase), the user
validates them (cf. validation phase) and the
versioning system applies them and generates the
new version of the ontology corresponding to an
evolution iteration. Finally, the versioning system
can give a transparent access to both versions with
criteria defined by the user (Stuckenschmidt and
Klein, 2003). It can delimit compatibility by
retracing evolution operations (Stojanovic and al,
2002, Stuckenschmidt and Klein, 2003).

4.2 Versioning Steps Tools

To follow this process, we need to specify the tools
displayed by our versioning system. According to
(Klein and Fensel, 2001), a change specification
should enclose an operational change specification
(our list of operations), next the conceptual
relationship between the first version and the new
one (the selected operations on the selected entities).
The first phase of the evolution process is then

completed. The next step is to represent these
changes. Several approaches are proposed in the
literature to represent changes. Major part of them
uses logs. Versioning logs (Yildiz, 2005) record the
different versions of an ontology by representing
each entity at a given time. For each class, relation
and instance, a new instance of “EvolutionConcept”
class is created. (Klein and Fensel, 2001) argues that
metadata should be added to identify this change. In
versioning logs, each instance is annotated with
metadata (Id, cause, transaction time, state validated
or not, etc.). This solution is interesting if the
versioning log can be integrated in the ontology.
However, for our purposes, there is no need to
represent each entity if it is not modified by the
evolution. Evolution logs (Liang, 2005) do not save
the versions but act like a change history. Not each
entity but each substitution in the ontology is
recorded in order to be reused when the user wants to
access a version. Tracing the substitution rather
corresponds to our objectives as a substitution
contains the selected operations and the entities
affected. In order to cope with our evolution process,
we propose to create a Version concept like in the
versioning logs integrated in the ontology that will be
created at each evolution iteration. This Version
concept encloses: 1/the substitutions operated in the
intension or 2/ those operated on the extension and 3/
the metadata. For the semantic phase, we chose to
use ontology design patterns (ODP (Gangemi, 2005))
as (Djedidi and Aufaure, 2008) proposes in addition
to an evolution log, in order to guarantee the
consistence of the ontology when applying the
change. Then, the implementation phase can be
helped by introducing event detectors on data. In the
Jena application supporting the ontology, the idea is
to insert methods using “ActionListener” objects.
The propagation phase can be performed by
generating events activating the “ActionListener”
objects. Finally, the validation is similar to the
“Commit” operator of a DBMS, can be done by a
simple click by the user. Our incremental versioning
process following the six evolution phases
constitutes the first part of our versioning system.

4.3 Version Retrieval

Concerning the transparent access definition, the first
issue is the identification of the versions. Most of the
versioning systems use “Id” of the ontologies to
identify them (Allocca and al, 2008). Though, it is
not enough to identify in which version a change on a
certain entity occurred. As we have introduced the
metadata and the list of substitutions occurred when a
Version is created, those data can serve as search

GUIDELINES FOR A DYNAMIC ONTOLOGY - Integrating Tools of Evolution and Versioning in Ontology

175

criteria to identify and retrieve the right version. We
have chosen to extend Jena's operators (access on
ontology, etc.) in order to take into account the
search criteria. This extension can be performed by
an override of the access methods, for example, by
adding metadata and operation attributes. This state
of art permitted us to build the evolution and
versioning process of our proposition. We also
managed to design the versioning tools in order to
represent changes and access the ontology.

5 VersionGraph ARCHITECTURE

In this section, we present the VersionGraph
architecture which implements the choices of our
state of art.

5.1 Evolution Operations

Contrarily, to the (Sassi and al, 2010) proposition,
the schema and instance operations are differentiated
respectively by SchemaOperation and Instance-
Operation. SchemaOperation type operations
correspond to the creation and deletion of classes
(AddClass) and properties (AddProperty) but also
to additions and deletions of restrictions on them. We
distinguish restrictions on the classes and properties
or properties of the data link hierarchy
(HierarchyLink) such as class / subclass, property
/ sub-property. Furthermore, in the class restrictions,
limitations like classes / properties such as the
relationship between properties and classes
(ClassPropertyLink, ClassDataPropertyLink),
car-dinality (ClassPropertyCardinality) are
classified. In addition, in the restrictions we find
domain and range restrictions of attributes
(PropertyAttributeLink). Finally,
TypeProperty operations are used to define a
specific constraint of a property (transitive,
symmetric, etc.).

 InstanceOperationtype operations
correspond to operations of addition and deletion of
individuals and statements about these individuals.
We distinguish between the assertions relying
individuals to the values
(DataPropertyAssertion) and those specifying
the types for these individuals
(ObjectPropertyAssertion).

5.2 Versioning Process

From these evolution operations and the study of the

different versioning solutions of our state of art, we
derived a versioning system. At each evolution of the
ontology, the system stores in the ontology, the
changes impacted by the operations used and the
context. This versioning system is an independent
ontology which intends to be integrated into the
existing ontology by a simple addition operation.
Then, the user can start a first evolution of ontology
in choosing whether to change the schema
(intension) or data (extension) using the above
operations. Each list of changes chosen by the user
during the evolution is kept using a concept
SchemaVersionGraph for SchemaOperation
operations and InstanceVersionGraph for
Instance-Operation operations on instances by
specifying which elements of the ontology are
concerned (concepts, relationships, etc.). Contextual
information can be added (as version, date, author,
description, etc.). These data are traced during the
evolution using a concept of context
VersionContext. The set containing
SchemaVersion-Graph or
InstanceversionGraph and Version-Context
is called VersionGraph. Figure 1 depicts an
overview of the ontology schema. For more clarity, it
only shows concepts and their relationships under 6th
hierarchical degrees.

In a transparent way, each application of changes
made by the user generates a new VersionGraph.
A VersionGraph contains a link with the previous
version of the ontology (hasPrevious-
VersionGraph). It's actually a link to the core
ontology (for the first VersionGraph) or to the
previous VersionGraph. Because of its nature, our
system of evolution and versioning can be integrated
into applications using ontologies Jena. The access
operations of the library Jena can be overridden by
the criteria of change and context. Until now,
proposals for versioning are often accompanied by a
specific application that the user must install to
access the version it wants if the use of URI is not
enough (Evolva). However, many ontologies are
accessed using a Java API Jena. Indeed, this library
supports ontology-based formalisms like RDF,
RDFS, OWL and the various DAML + OIL. Jena
contains all the methods to access and edit
ontologies. In addition, it also implements all the
basic operations of evolution and the commonly used
composed ones. Overridden access methods are able
to take into account the criteria of versions thanks to
new attributes. These criteria are integrated into the
ontology itself as we saw in the previous paragraph.

KMIS 2011 - International Conference on Knowledge Management and Information Sharing

176

Figure 1: VersionGraph definition in Protege.

Script 1: Version graph for the Wine ontology.

<vg :VersionGraph#VersionGraph0>
p:hasPreviousVersionGraph <http://www.w3.org/TR/owl-guide/wine.rdf>;

Script 2: Version graph extended with new instances.

VersionGraph1 description
<vg:VersionGraph#VersionGraph1>
p:hasPreviousVersionGraph <vg:VersionGraph#VersionGraph0>;
p:hasDate "11/05/2010";
p:hasAuthor "Perrine PITTET";
p:hasSchemaVersionGraph <vg:SchemaVersionGraph#SchemaVersionGraph1>;

AssociatedSchemaVersionGraph1 description
<vg:SchemaVersionGraph#SchemaVersionGraph1>
p:hasAddClass <rdfs:class#StrawWine>;
p:hasAddClassHierarchyLink <vg:ClassHierarchyLink#ClassHierarchyLink1>;
p:hasAddClassDataPropertyLink <vg:ClassDataPropertyLink#ClassDataPropertyLink1>;
p:hasAddClassDataPropertyCardinality
<vg:ClassDataPropertyCardinality#ClassDataPropertyCardinality1>;
p:hasAddClassDataPropertyCardinality
<vg:ClassDataPropertyCardinality#ClassDataPropertyCardinality2>;

Description of SchemaOperation used
<vg:ClassHierarchyLink#ClassHierarchyLink1>
p:class <rdfs:class#StrawWine>;
p:subClass <rdfs:subClassOf#DessertWine>;
<vg:ClassDataPropertyLink#ClassDataPropertyLink1>
p:class <rdfs:class#StrawWine>;
p:dataProperty <owl:DataProperty#hasColor>;
p:value <rdf:resource#Golden>;

<vg:ClassDataPropertyCardinality#ClassDataPropertyCardinality1>
p:class <rdfs:class#StrawWine>
p:dataProperty <owl:DataProperty#hasBody>
p:value <rdf:resource#Full> and <rdf:resource#Moderate>

<vg:ClassDataPropertyCardinality#ClassDataPropertyCardinality2>
p:class <rdfs:class#StrawWine>
p:dataProperty <owl:DataProperty#madeFromGrape>
p:value ((<rdf:resource#CabernetSauvignon> and <rdf:resource#Carbernetfranc>)
or (<rdf:resource#Chardonnay> and <rdf:resource#SauvignonBlanc>))

Script 3: Version graph extended to include description og new object properties.

VersionGraph2 description
<vg:VersionGraph#VersionGraph2>
 p:hasPreviousVersionGraph <vg:VersionGraph#VersionGraph1>;
 p:hasDate "12/05/2010";
 p:hasAuthor "Perrine PITTET";
 p:hasInstanceVersionGraph <vg:InstanceVersionGraph#InstanceVersionGraph1>;

GUIDELINES FOR A DYNAMIC ONTOLOGY - Integrating Tools of Evolution and Versioning in Ontology

177

AssociatedInstanceVersionGraph1 description
<vg:InstanceVersionGraph#InstanceVersionGraph1>
 p:hasAddIndividual <vg:AddIndividual#AddIndividual1>
 p:hasAddMemberClass <vg:AddMemberClass#AddMemberClass1>
 p:hasAddObjectPropertyAssertion
<vg:AddObjectPropertyAssertion#AddObjectPropertyAssertion1>

InstanceOperationdescription
<vg:AddIndividual#AddIndividual1>
 p:individual <rdf:resource#VinPaillé>

<vg:AddMemberClass#AddMemberClass1>
 p:individual <rdf:resource#VinPaillé>
 p:class <rdfs:class#StrawWine>

<vg:AddObjectPropertyAssertion#AddObjectPropertyAssertion1>
 p:individual <rdf:resource#VinPaillé>
 p:objectProperty <owl:ObjectProperty#locatedIn>
 p:value <rdf:resource#FrenchRegion>

5.3 The Wine Ontology Versionning

International wines are described at
<http://www.w3.org/TR/owl-guide/wine.rdf>;
Afterwards, we want to add the “StrawWine” wine
which does not exist in the Wine ontology. Straw
Wine’s fruit is selected then dried in the sun so that
the juice is very concentrated in flavor and sugar.
Consequently, it is a dessert style wine sometimes
heavy or balanced or straw gold color. It can be
made from red grapes Cabernet Franc and Cabernet
Sauvignon or Chardonnay white grapes and
Sauvignon Blanc. To add this new concept and
describe it, the system creates another
VersionGraph. This new one is linked with the
previous one. The system specifies a
SchemaVersionGraph which contains the operations
needed to describe and add the concept in the
ontology.
The Wine ontology is an ontology example in which
international wines are described. For the first step,
the VersionGraph ontology is imported into the
Wine ontology by an addition operation (Script 1).
Then the system creates the first version of the wine
ontology with a primary instance of
VersionGraph. This Versiongraph only has a link
with the source ontology. Next, we want to add the
“StrawWine” wine which doesn’t exist in the Wine
ontology.

Straw Wine’s fruit is selected then dried in the
sun so that the juice is very concentrated in flavor
and sugar. So it is a dessert style wine sometimes
heavy or balanced or straw gold color. It can be
made from red grapes Cabernet Franc and Cabernet
Sauvignon or Chardonnay white grapes and
Sauvignon Blanc. To add this new concept and
describe it, the system creates another
VersionGraph. This new one is linked with the

previous one. The system specifies a
SchemaVersionGraph which contains the operations
needed to describe and add the concept in the
ontology (Script 2).
Then, we want to add an individual of Straw Wine
type: “Vin Paillé de Corrèze”. First, we need to
validate the previous changes by a “Commit”. Then
changes in the schema are recorded and the new
schema version is propagated to the ontology. A
third VersionGraphis generated for the addition of
the individual. This time it contains an
InstanceVersionGraph (Script 3).

6 CONCLUSIONS

Ontology evolution and versioning are recent
domains of search. Most of the current ontology
versioning approaches are not based on the evolution
process. Rare are the solutions which integrate these
mechanisms since the creation of the ontology. Our
proposed architecture Versiongraph is a semantic
solution towards the characterization of a dynamic
ontology which reaches these objectives. Our
ongoing research shows preliminary results on
evolution of several ontologies like Wine. The
architecture is employed to guide the ontology
change validation in a systematic and optimized
way, reducing user dependency and justifying
change costs. Our short coming plan is to enhance
our evolution and versioning process on several
projects applied to online press comments, tourism
and town heritage ontologies. Currently, we work on
enlarging the set of considered OWL ontology
changes and analyzing the semantic of consistency
resolution of those changes to define more resolution
patterns.

KMIS 2011 - International Conference on Knowledge Management and Information Sharing

178

REFERENCES

Atle Gulla, J. and Sugumaran, V. - An Ontology Creation
Methodology: A Phased Approach.. Karlsruhe,
Germany: s.n., 2008. Proc. of the International
Workshop on Ontology Dynamics at ISWC 2008.

Dividino, R. and Sonntag, D. - Controlled Ontology
Evolution through Semiotic-based Ontology
Evaluation. Karlsruhe, Germany: s.n., 2008.
International Workshop on Ontology Dynamicsat
ISWC.

Djedidi, R., Aufaure, M. A.- « Ontological Knowledge
Maintenance Methodology », In I. Lovrek, R. J.
Howlett, and L. C. Jain (Eds.), Proceedings of the 12th
International Conference Knowledge-Based Intelligent
Information and Engineering Systems (KES 2008),
Part I. LNCS: Vol. 5177, pp. 557-564, Springer.
Zagreb, Croatia, September 3-5, 2008

Flouris, F., Manakanatas, D., Kondylakis, H., Plexousakis,
D., Antoniou, G. - Ontology Change: Classification &
Survey - The Knowledge Engineering Review, 1–29,
2007, Cambridge University Press

Gangemi, A.: Ontology Design Patterns for Semantic Web
Content. In: Gil, Y., Motta, E., Benjamins, V.R.,
Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp.
262–276. Springer, Heidelberg (2005)

Grandi, F. - Multi-temporal RDF Ontology Versioning.
Karlsruhe, Germany, International Workshop on
Ontology Dynamics at ISWC 2008.

Hodgson, R.- The Potential of Semantic Technologies for
e-government- presentation of eGov Open Source
Conference- Washington, DC, March 18th, 2003

Jaziri W., Sassi N., Gargouri F. - Approach and tool to
evolve ontology and maintain its coherence,
International Journal of Metadata, 2010.

Liang, Y. - Ontology Versioning and Evolution For
Semantic Web-Based Applications. 2005.

Novacek, V., Laera, L. and Handschuh, S. - Semi-
automatic Integration of Learned Ontologies into a
Collaborative Framework.

Noy, N. F., Klein, M. - Ontology Evolution: Not the Same
as Schema Evolution -Stanford Medical Informatics,
Stanford University, Stanford, CA, USA Vrije
University Amsterdam, Amsterdam, The Netherlands,
2004.

Presutti, V., Gangemi, A., David, S., Aguado De Cea, G.,
Suarez-Figueroa, M., Montiel- Ponsoda, E., Poveda,
M.: Library of design patterns for collaborative
development of networked ontologies. Deliverable
D2.5.1, NeOn project (2008)

Sassi, N., Brahmia, Z., Jaziri, W., Bouaziz, R., From
Temporal Databases to Ontology Versioning: An
Approach for Ontology Evolution, In Ontology
Theory, Management and Design: Advanced Tools
and Models, Ed IGI-Global Publisher, USA, 2010.

Stojanovic, L., et al.User-driven Ontology Evolution
Management. 13th Int. Conf. on Knowledge
Engineering and Knowledge Management. 2002.

Stuckenschmidt, H. and Klein, M. - Integrity and Change

 in Modular Ontologies. 18th International Conference
on Artificial Intelligence, 2003.

Stuckenschmidt, H. and Klein, M. - Integrity and Change
in Modular Ontologies, 18th Int. Joint Conference on
Artificial Intelligence, 2003.

Tovar, E., Vidal, M., E. - REACTIVE: A Rule-based
Framework to Process Reactivity - Proceedings of the
International Workshop on Ontology Dynamics at
ESWC 2008, Karlsruhe, Germany. 2008.

Yildiz, B. - Ontology Versioning and Evolution, Asgaard,
2006

Zablith, F., et al. - Using Background Knowledge for
Ontology Evolution, Int. Work. on Ontology
Dynamics, Karlsruhe, Germany 2008

GUIDELINES FOR A DYNAMIC ONTOLOGY - Integrating Tools of Evolution and Versioning in Ontology

179

