An efficient Security Solution for Dealing with
Shortened URL Analysis

Jaime Devesa®, Xabier Cantero!, Gonzalo Alvarez? and Pablo G. Bringas®

153Lab, University of Deusto, Bilbao, Spain

2Grupo de Criptologia y Seguridad de la Informacién, CSIC, Madrid, Spain

Abstract. With the boom of the Internet, and particularly of social networks, in-
formation sharing possibilities have increased. In this context, the so called URL
shortening services, consisting of compacting a web link into a much shorter and
manageable one, have arisen. However, the popularity of Web 2.0 also causes
users to be unprotected against certain types of unwanted contents and attacks
motivated by the desire of economic profit, which translates as an exponential in-
crease in security incidents. Moreover, URL shortening services provide attackers
a new method of obfuscation to malicious web links, hindering the analysis and
detection of unwanted sites. Thus, we propose here a solution to solve the real
destination of a shortened URL, analysing it in terms of security.

1 Introduction

Web address shortening is a technique based on making a website accessible through an
URL much shorter than the original, so it is easier to remember. The shortened URLS
have become an extremely useful method for recommending links, especially through
social networks, mobile phones or microblogging platforms with space constraints, as
in the case of Twitter.

The technical ease to develop and implement new shortening services, along with
the emergence in 2006 of Twitter, have caused a boom in this kind of services. URL
shortening has become the reference technique for recommending text links where
HTML code cannot be inserted, and recently it is common to find these links in posts,
blogs, documents, forums, etc.

Against this background, we present a study of the internal operation of URL short-
ening services. Second, we review the current state of security regarding these services.
Furthermore, we propose a solution to address the aforementioned security risks. Next,
we evaluate it with real malicious URLSs. Finally, we draw conclusions about our tech-
nical solution and discuss the future work.

2 Study of the Internal Operation

Although not new, URL redirection is currently in vogue due to the different services to
shorten links: extensive directions and particularly difficult to remember URLSs become

Devesa J., Cantero X., Alvarez G. and G. Bringas P..

An efficient Security Solution for Dealing with Shortened URL Analysis.

DOI: 10.5220/0003579800700079

In Proceedings of the 8th International Workshop on Security in Information Systems (WOSIS-2011), pages 70-79
ISBN: 978-989-8425-61-4

Copyright ¢ 2011 SCITEPRESS (Science and Technology Publications, Lda.)

71

shorter and therefore much easier to type, with a positive impact on the publicity and
access to online services. There are different techniques to achieve this URL redirection,
either based on the HTTP protocol or on the interpretation by web browsers of the
downloaded page code.

The simplest system uses redirection HTTP status codes 30X. Defined in the Hy-
pertext Transfer Protocol [1], a redirect consist of a response to a specific request by
the client, whose code begins with the digit 3, prompting the browser to be directed to
a new address indicated in the Location header of the HTTP message.

The protocol defines different response codes: 300, which indicates multiple desti-
nations, such as when a page is available in several languages; 301, when the destination
has changed permanently; 302, when the destination exists but must be accessed tem-
porarily by another URL; 303, to specify that this URL is to be accessed via the HTTP
GET method; or 307, similar to 302, but with other technical constraints.

We have conducted a study on HTTP response codes offered by various URL short-
ening services available on the market, based on a total of 242 different services operat-
ing at the time of analysis. This study gave the following results, shown in Table 1: 44%
of services answered with HTTP code 301 (moved permanently), 39% did so with code
302 (moved temporarily), 1% used code 307, and finally, the remaining 16% returned
HTTP code 200, that is to say, they used a different redirection system. Moreover, we
have perceived that it is common to-use various chained redirections.

Table 1. HTTP responses distribution from a corpus of 242 different shortened URLS, where 84%
answered with 30X redirection codes.

HTTP response Number of responses Percentage

200 38 16%
301 108 44%
302 94 39%
307 2 1%
TOTAL 242 100%

As reflected in this study, the vast majority, 84% of shortening services, made use
of redirection based on HTTP 30X status codes. Still, this percentage is higher if the
analysis focuses only on the 10 most used services based on the Alexa ranking [2] as
can be seen in Table 2.

However, within the HTTP redirection, the choice of different codes is relevant to
the creator of the destination page. The crawling engines used by search engines under-
stand redirection codes differently. If they get a 301 code, it will be understood that the
link is the destination, so the page rank [3] is updated correctly. However, when a code
302 or 307 is obtained, which is supposed to be temporary redirection, the robot gives
the page rank to the shortened link and not to the final destination, as really should oc-
cur. Therefore, when creating a URL shortening service, it is considered bad practice to
use any redirect code other than 301. Leading services in the sector, such as tinyurl.com
or bit.ly, properly use redirection code 301 (moved permanently), although the study
shows that in nearly 40% of cases this practice is violated.

72

Table 2. HTTP methods used by Alexa Top 10 URL shortening services.

Shortening Service Alexa Ranking HTTP method used Redirections

bit.ly 164 301 1
tinyurl.com 779 301 2
goo.gl 1.387 301 1
ow.ly 2.752 301 1
su.pr 7.467 301 1
is.gd 9.593 301/302 2
tiny.cc 10.400 301 1
j-mp 11.989 301 1
shorturl.com 16.408 301 1
cli.gs 30.877 200 0

There are other techniques to achieve the redirection of links, used by 20% of the
shortening services analysed in the study. These systems are based on the use of iframes
to insert the target page, the label "META REFRESH’ in "HEAD’ section of the website,
or via javascript. Thus, these methods are based on HTTP 200 OK status code, which
is a standard response for successful HTTP requests. Therefore, these practices are
also discouraged, as the page rank is given again to the shortening service and not the
destination page. However, these redirection techniques are often used by the creators
of URL shortening services, allowing them to easily add on-line advertising to obtain a
direct economic return from the service they offer.

Finally, there are also some specific cases of URL shortening services that do not
automatically redirect, and the user has to click on the link destination to visit that
page. The aim is to present the user an intermediate page full of banners and on-line
advertising, although there are others that use these pages to show the user what will the
final destination be, offering some relevant information about the content of this page
via a content analysis, a snapshot of the website, etc, and leaving the choice of visiting
it or not to the user. Once again, these services rely on HTTP 200 OK status code.

3 Security Implications

The dark side of the use of URL shortening services, and the most obvious, is that the
user is no longer able to see directly where the browser will be redirected to. Moreover,
because URL shortening is frequently used with social networks like Facebook, there
is an inherent trust that the link will be legitimate, so users are going to click without
taking into account their own security, and may be tricked into visiting malicious web
sites. For instance, in 2010, 8 percent of 25 million URLSs posted on Twitter pointed to
phishing, malware or scam sites listed on popular blacklists [4].

Furthermore, most URL shortening domains are trusted by firewalls, Web filters
or spam blocking tools [5], and other analysis solutions fail to detect the real URL’s
destination. This makes it difficult to identify links that lead to malicious destinations.
Hence, it is easier for attackers to distribute shortened links which could redirect users
to web sites containing the following security risks:

— Malware, trojans and other malicious programs.

73

— Code exploiting security vulnerabilities in browsers or systems.
— Web-based attacks.

— Phishing attempts.

— Spam campaigns.

Malware represents a high-priority issue to security researchers and poses a major
threat to the privacy of computer users and their information. Former malware writers
sought fame, but nowadays their goal has evolved into a notable financial gain. There-
fore, malware has become a profitable illegal business and causes great economic losses
all over the world [6]. Moreover, the amount, power, and variety of malicious software
increases every year as well as its ability to avoid all kinds of security barriers [7].
Indeed, URL shortening services are intensively used by these cyber-criminals to dis-
tribute malicious programs [8], as they provide an obfuscation layer, making detection
more difficult.

For instance, a new Twitter worm has recently spread fast, compromising user ac-
counts and abusing Google’s goo.gl link shortening service with the aim of distributing
malicious links [9]. Thus, clicking on the shortened URL will take the user to a site that
advertises a rogue antivirus solution, which is in fact malicious software.

Moreover, client-side exploits take advantage of vulnerabilities in client software,
such as web browsers or media players, allowing cybercriminals to take control of com-
puters visiting a malicious site [10]. In combination with URL shorteners, these attacks
gain in sophistication, making thousands of users vulnerable. Furthermore, other web-
based attacks such as Cross-Site scripting or SQL injection also benefit from using these
shortening services to go unnoticed.

Furthermore, phishing is one of the attack vectors that causes more losses to fi-
nancial institutions, using legitimate-looking but fake web sites and emails to deceive
users into disclosing personal information [11]. According to [12], 0.47% of bank cus-
tomers fall victim to phishing attacks each year, translating to $2.4M-$9.4M in annual
fraud losses per one million clients. Likewise, there is evidence that phishers have been
exploiting and abusing URL shortening services actively at least since 2006 [13], cam-
ouflaging web addresses which are identified on blacklists, and thus avoiding security
filtering solutions.

Besides, spam (unwanted email messages which usually contain commercial con-
tents) made up between 80 and 90 percent of all messages in 2010 [14]. Furthermore,
the usage of URL shorteners in spam campaigns is also well known, used to avoid de-
tection of the real URL by intent analysing techniques [15]. First campaigns employed
popular URL shorteners like bit.ly, although the trend now is to use less known ser-
vices which do not even have a way to report abuses through their web site. Moreover,
spammers choose shortening services offering public APIs, which makes it even eas-
ier to integrate them into a botnet. Finally, services providing preview modes are also
avoided, unlike the ones offering statistics, which can help spammers measuring certain
aspects of the spam campaign they manage.

Therefore, URL shortening services have included some checks based on blacklists
to prevent spammers and hackers from using their service, although these barriers have
already been circumvented by using legitimate intermediate sites with redirection capa-
bilities, and hence prevent blacklisting or blocking of the shortened link [16]. This tech-

74

nique is based on taking advantage of bad coding practices on the site’s warning page for
all links to external sites (i.e. http://good.com/redirect?url=http://external.com/). Thus,
this page can be used to redirect users to any domain, including malicious pages (i.e.
http://good.com/redirect?url=http://evil.com/). Creating a short link of this legitimate
domain URL will avoid blacklists and redirect the victim to the spam site.

To conclude, we have identified other security implications regarding the shortening
service itself: hijacking or compromise of the shortening service, and Deny-of-Service
or interruption of service.

First, if the shortening service is compromised, an attacker could redirect all the
existing links to a malicious site. That happened in June 2009 [17], when a hacker
exploited a security hole in cli.gs shortening service’s web page, allowing her to edit
about 2.2 million URLs and point them to a harmless blog. Moreover, if it had been used
to distribute malware exploiting a bug on web browsers, it would have been devastating.
In conclusion, having control of so many URLs makes these services a very attractive
target, allowing the bad guys to make a lot of money.

Second, when a URL shortening service crashes, due to either technical problems or
because it is under a Deny-of-Service attack, it causes thousands of short-links posted
on Twitter and other social network sites to be unavailable. For instance, on 2nd Febru-
ary 2011, the popular URL shortening service is.gd was unavailable for a few hours,
effectively breaking thousands of shortened links [18]. Besides, two years ago a Span-
ish ISP blocked TinyURL’s IPs and domains for a week, meaning their clients could not
access to thousands of links [19].

4 Countermeasures

Presently, for the purpose of obtaining greater transparency, many URL shortening ser-
vices have included a preview functionality, so users are aware of the real destination
they are going to be redirected to and determine if it is safe enough to visit. Although
a lot of shorteners already offer this as an option, in most of them it is not the de-
fault. For instance, TinyURL’s http://tinyurl.com/xxx short link can be previewed by
using http://preview.tinyurl.com/xxx, and in BudURL simply adding ”?” at the end of
the URL.

In addition, various external web services have emerged with the aim of display-
ing the real URL. This is the case of LongURL [20], which is also available as a
browser plug-in. In fact, the problem of these solutions is that they depend on a known
list of URL shortening services. Thus, the appearance of a new shortener or even a
downtime in the service, makes them useless. Similarly, there are other web pages like
www.expandmyurl.com providing URL unshortening, although they only work for cer-
tain services (tinyurl.com, bit.ly and is.gd in this case).

Moreover, many URL shortening services have become aware of the dangers of
malicious URLS to their users’ security. Thus, services like mcaf.ee, saf.li, safe.mn or
sameurl.com, offer a secure shortening service by checking URLs for malware, phish-
ing, spam or even some types of attacks like Cross-site scripting. Therefore, hackers are
going to avoid shortening their malicious links with these services, using others with
fewer security measures, and hence, increasing the effectiveness of the attack.

75

Thus, the default behaviour of all URL shortening services should be to display the
full URL and ask if the user is sure to be redirected there. Unfortunately, this info is not
always enough to assess the risk of the target site.

5 Proposed Solution

In this Section, we present a solution for dealing with shortened URL analysis consist-
ing of two steps: resolution of HTTP redirections and URL analysis.

5.1 Method for resolving HTTP redirections

As has been seen in Sect. 2, most of the URL shortening services, around 85 percent,
employ HTTP 30X redirection methods. The main problem of these services is the
abuse induced by cyber-criminals to distribute links containing malware, spam, phish-
ing or other undesirable content. Hence, we present a solution to address malicious
URL obfuscation using shorteners employing 30X redirections.

resolvell RL(url)

status < get ResponseStatus(url)

case status

200 : return (url)

301 :

302 :

307 :

do d {:’ocation + getLocationHeader(url)
return (resolvel RL(location))

404 : return (‘ Final Page Doesn't Exist*)

405 : return (‘URLCan’t BeResolved*)

| 503 : return (‘ServiceUnavailable’)

Fig. 1. Real URL destination solve algorithm pseudo-code.

We have developed an algorithm, shown in Fig. 1, based on performing HTTP
HEAD requests recursively to determine where the redirection points to. According
to the response code sent by the remote server, the appropriate action is decided. Thus,
a 30X code means that there is another redirection, so the algorithm is repeated taking
the location field content of the HTTP header returned by the server as the new URL.
Moreover, if the response is a 200 code, there are not more redirections and the final
destination has been solved.

Otherwise, if the status response is an error code (404, 503, ...), this issue will be
reported. Nevertheless, if this error is a 405 status code, it implies that the remote server
can not service HEAD requests. Therefore, in this case the redirection should be solved
via GET requests, but previously analysing that URL for any kind of implicit attack (i.e.
XSS).

76

5.2 URL Analysis Services

In order to evaluate the malicious intentions of a URL, we have developed an analyser
making use of various open web services available on the Internet. Moreover, we have
included our proposed solution for dealing with shortened URLS before analysing them,
so we are actually able to classify the real destination and not the short link, obtaining
more accurate results as will be shown.

First, VirusTotal (http://www.virustotal.com/) is a service developed by Hispasec
Sistemas which analyses suspicious files and URLSs enabling the identification of viruses,
worms, trojans and other kinds of malicious content detected by 43 antivirus engines
and 6 web analysis toolbars. It offers a public API, so it has been easily integrated in our
system. The antivirus engine detection is given by a percentage, where we consider that
the file is suspicious if it is above 0%. On the other hand, we evaluate the web analysis
toolbars results individually, although we exclude ParetoLogic from the analyser as it
always detects shortened URLs as malicious. Hence, we employ the following URL
analysis tools from VirusTotal: Firefox, G-Data, Google Safebrowsing, Opera, Phish-
tank.

Second, WOT - Web Of Trust (http://www.mywot.com/) is a service that scores the
reputation of a website based on the community opinions. Thus, it grants a percentage
value'in terms of trustworthiness, vendor reliability, privacy and child safety. Hence,
we measure WOTS confidence as the average of these four terms, considering a positive
malicious URL detection if the percentage is below 59 (considered as an ’Unsatisfac-
tory” value by the vendor).

Moreover, all these analysis services fail to detect other kinds of web attacks. There-
fore, as a proof of concept, we have implemented in our solution a SQL Injection
and Cross-site scripting (XSS) attack detectors, based on Regular Expressions and ex-
plained in [21].

In summary, we have 9 services running in our analyser: VirusTotal antivirus en-
gine, the aforementioned five URL analysis tools from VirusTotal, MyWOT reputation
service, SQL Injection detector and XSS detector. Furthermore, we consider thata URL
is malicious if at least one of these services detects it.

These services are deployed as a unique web service that can be easily accessed by
using a plugin developed for Mozilla Firefox web-browser. Simply placing the pointer
over a web link, the results of the analysis will be displayed telling the user if it is safe
to visit it or not.

6 Evaluation

In order to evaluate the proposed solution, we created a malicious URL dataset detailed
in Sect. 6.1. Moreover, we developed an URL analyser, explained in Sect. 5.2, con-
formed by various services available on the Web. Furthermore, we ran four different
experiments explained in Sect. 6.2 in order to show the shortcomings of URL analysis
solutions when dealing with shortened URLs. What is more, we proved that our solu-
tion is able to deal with this problem, being able to analyse the actual URL instead of
the shortened one.

77

6.1 Dataset

For the following experiments, we created a dataset made up of 133 different malicious
URLSs, considered as already known threats. Table 3 details the different URL types,
number of samples and sources of the whole dataset. Furthermore, we ran a script that
makes an HTTP HEAD request to each URL to ensure that every URL is on-line.

Table 3. Malicious URL dataset composition.

Type Number Source
Malware 45 https://zeustracker.abuse.ch
http://lwww.malwaredomains.com
Phishing 49 http://www.phishtank.com
Spam 19 http://www.spamcop.com
SQLi 20 Diverse Hacking Forums
XSS 20 Diverse Hacking Forums
TOTAL 153 -

Moreover, in order to evaluate our proposed solution, we chose different URL short-
ening services to be used in the experimentation phase. First, we selected the best po-
sitioned services on Alexa ranking [2], i.e. bit.ly and tinyurl.com. Furthermore, we also
chose is.gd as it employs a combination of HTTP 301 and 302 methods, while it is
widely used, as shown in Table 2. Finally, we employed the services presented in Sect.
4 offering some kind of security measures against malicious links, i.e. saf.li and safe.mn,
although we exclude mcaf.ee since this service bans the IP address if it detects that ma-
licious URLs are being shortened. We consider this a good practice, and although we
can not measure it, the detection rate is quite high.

6.2 Experiments

We have conducted four experiments, the results of which are summarized in Table 4.
To begin, the first experiment consisted of analysing all the ’long” URLSs in the dataset
with the solution proposed in Sect. 5.2, measuring the detection rate of malicious links.
In the second place, we evaluated the shortening services malicious URL detection rate
at the time of creating the short link or accessing it, automating the task by using the
offered APIs by each service. Moreover, the third experiment involved analysing with
our solution the shortened URLS that have not been detected by the shortening services,
but without resolving the real destination. To conclude, in the last run we analysed the
same URLs used in experiment 3 employing the algorithm presented in Sect. 5 before
performing the analysis, so the real URL is analysed instead of the shortened one.

In the first experiment, mostly all the malicious URLs in the dataset are detected
by the analysis system. Instead, the detection rates in the second experiment are not
as high as they should (in some cases even null), and moreover, all the services fail
to detect web attacks (i.e. SQLi and XSS). Hence, there is evidence that shortening
services must improve their security solutions to protect their users. Moreover, when
analysing the shortened URLS the detection rates fall to 0, demonstrating that they are a

78

Table 4. Malicious URL detection rate in %, where s1=hit.ly, so=is.gd, sz=tinyurl.com, ss=saf.li,
ss=safe.mn.

URL | Experiment 1 Experiment 2 Experiment 3 Experiment 4
S1 S2 S3 S Sg S1 S2 S3 S4 Ss S1 So S3 Sa S5
Malware 100 0 133 0 22 288|0 O O O O |100 100 100 100 100
Phishing 97.9 795 326 0 2 750 0 0 0 0| 9 9.9 979 979 916
Spam 89.4 105 736 O 0O 578/ 0 0 0O O 0 |941 80 894 894 875
SQLi 100 0 0 0 0 0 0 0 O O 0100 100 100 100 100
XSS 100 0 0 0 0 0 0 0 O O 0100 100 100 100 100

good way to obfuscate malicious links. Finally, using our redirection algorithm before
performing the analysis, throws the same results as in the first experiment, which probes
our solution to be a good approach to deal with. URL obfuscation using shortening
services.

7 Conclusions & Future Work

We have developed an easily implementable solution to protect Internet users during
navegation sessions by developing a web service able to assess the security risk of
a shortened URL. This web service can be conveniently accessed through a browser
plugin, with minimal disruption to web browsing. Experimental results confirm that
our system largely exceeds the performance of other partial solutions offered to date.

On the other hand, there are still some limitations. First, we only work with 30X
redirection methods, so our algorithm will fail to resolve the final destination if other
ways of redirection are used. Second, we access the VirusTotal antivirus engine by
consulting the downloaded file md5 hash. Therefore, files are not actually analysed, so
it is not effective for unknown samples for VirusTotal service.

As future lines of work, we plan to deal with other redirection methods used by
URL shortening services, like the use of iframes to insert the target page, the label
"META REFRESH’ in "HEAD?’ section of the website, or via javascript. Moreover, we
also project to develop plugins for other web browsers, like Internet Explorer or Google
Chrome, so our solution can be easily accessed by more users. Finally, we are going to
incorporate more security analysis services to web service solution in order to improve
the results, and therefore, users’ security.

References

1. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.:
Hypertext transfer protocol-HTTP/1.1 (1999)

2. Alexa Ranking: The web information company (2011) Online: http://www.alexa.com/.

3. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order
to the web. (1998)

4. Grier, C., Thomas, K., Paxson, V., Zhang, M.: @ spam: the underground on 140 characters
or less. In: Proceedings of the 17th ACM conference on Computer and communications
security, ACM (2010) 27-37

5. Bradley, T.: URL Shortening Frenzy Comes with Security Risks (December 15th 2009) On-
line: http://www.pcworld.com/businesscenter/article/184677/url_shortening_frenzy_comes
_with_security_risks.html.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

79

Computer-Economics: 2007 Malware report: The Economic Impact of Malware (2008) On-
line: http://www.computereconomics.com/.

Kaspersky-Labs: Kaspersky Security Bulletin: Statistics 2010 (2011) Online:
http://www.securelist.com/en/analysis/204792162/Kaspersky_Security_Bulletin_2010
_Statistics_2010.

Fighter, S.: Cyber-criminals Exploiting Shortened URLs for Malware Distribution (April
17th 2010) Online: http://www.spamfighter.com/News-14219-Cyber-criminals-Exploiting-
Shortened-URLs-for-Malware-Distribution.htm.

Secure List: New Twitter worm redirects to Fake AV (January 20th 2011) Online:
http://lwww.securelist.com/en/blog/11136/New_Twitter_worm_redirects_to_Fake_AV.
Petkov, P.D.: Client-Side Security - One year later. Black Hat (2008)

Wu, M., Miller, R., Garfinkel, S.: Do security toolbars actually prevent phishing attacks?
In: Proceedings of the SIGCHI conference on Human Factors in computing systems, ACM
(2006) 601-610

Trusteer: Measuring the Effectiveness of In-the-Wild Phishing Attacks (December 2nd 2009)
Online: http://www.trusteer.com/sites/default/files/Phishing-Statistics-Dec-2009-FIN.pdf.
McGrath, D., Gupta, M.: Behind phishing: an examination of phisher modi operandi. In:
Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and Emergent Threats,
USENIX Association (2008) 1-8

Symantec: State of Spam and Phishing, a monthly report (February 2011) Online:
http://www.symantec.com/content/en/us/enterprise/other_resources/b-state_of_spam-and
_phishing_report_02-2011.en-us.pdf.

MXLab: Increase in usage of URL shorteners in spam campaigns (January 4th 2011) Online:
http://blog.mxlab.eu/2011/01/04/increase-in-usage-of-url-shorteners-in-spam-campaigns/.
Computer Security articles: Unchecked redirection + URL shortener = Spam (February 8th
2011) Online: http://www.computersecurityarticles.info/security/unchecked-redirection-url-
shortener-spam/.

Cligs Blog: Cligs Got Hacked (June 15th 2010) Online: http://blog.cli.gs/news/cligs-got-
hacked-restoration-from-backup-started.

Netcraft: is.gd URL shortener suffers downtime (February 2nd 2011) Online:
http://news.netcraft.com/archives/2011/02/02/is-gd-url-shortener-suffers-downtime.html.
Genbeta: Tinyurl blocked by Telefonica all this week (October 23rd 2008) Online:
http://lwww.genbeta.com/web/tinyurl-bloqueado-por-telefonica.

LongURL: URL, LongBrowse with Confidence and Increased Security! (2011) Online:
http://longurl.org/.

Mookhey, K., Burghate, N.: Detection of SQL injection and cross-site scripting attacks.
Article from: http://www. securityfocus. com/infocus/1768 (2004)

