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Abstract: Electrical machines are found in many applications, especially in wind energy conversion chain (WECC). 
However, these machines still remain the most potential of failures. Many researches and improvements 
have been carried out but in the aim of optimal operation systems, monitoring and diagnosis techniques are 
among the interests of existing laboratories and research teams. This paper deals with the principal 
components analysis (PCA) method application in electrical machines, especially a wound rotor induction 
machine (WRIM), diagnosis. The used PCA approach is based on residues analysis. To perform the matrix 
data needed for PCA method data input, an accurate analytical method of the WRIM is proposed. WRIM 
and PCA models are implemented in Matlab software. The simulation results show the potential necessity 
of the considered PCA method on the WRIM faults detection compared to some other signal analysis 
method. 

1 INTRODUCTION 

Since many years, faults detection in electrical 
machines has been object of both industrial and 
teaching laboratories. Previously, DC and 
synchronous machines were the most used on 
industry applications, and reliability researches were 
focused on these types of machines. With 
technological developments, power electronic 
progress and the economic issue, the squirrel cage 
and the wound rotor induction machines have taken 
their place in several applications domain like 
transportation, energy production and electrical 
drives through their robustness, reliability and lower 
costs. Although researches and improvements have 
been carried out, these machines still remain the 
most potential of the stator and the rotor failures. 

In fact, this article shows one of several 
methodology for monitoring and doing diagnostics 

related to the faults on a wound rotor induction 
machine (WRIM) based WECC by the residues 
analysis of its state variables. The approach is based 
on the principal components analysis (PCA) method. 

The first part of this paper deals with the WRIM 
modeling followed by some reminders of the 
different types of stator and rotor WRIM faults. The 
second part is devoted at the PCA principle. The 
PCA model construction method and the choice 
criterion of the number of components to be retained 
is discussed, followed by the PCA residues 
generation technical for the faults detection and the 
localization. The third part talks about the method 
validations using Matlab/Simulink software. The 
simulation results of several variables (stator and 
rotor currents, shaft rotational speed, electrical 
power, electromagnetic torque and other variables 
issued from mathematical transformations) of 
healthy and faulted WRIM are analyzed. 
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Special attention has been reserved to the PCA 
residues  representations.  The last part is reserved to  
the analyze and discussion of simulation results. 

2 WRIM MODELLING 

In the process of faults survey and diagnosis, an 
accurate modeling of the machine is necessary. In 
this paper, three phases model based on 
magnetically coupled electrical circuits was chosen.  

The aim of the modeling is to highlight the 
electrical faults influences on the different state 
variables of the WRIM. For that, some modeling 
assumptions given in the following section are 
necessary. 

2.1 Modeling Assumptions 

In the proposed approach, we assumed that: 
• the magnetic circuit is linear, and the relative 
permeability of iron is very large compared to the 
vacuum. 
• the skin effect is neglected, 
• hysteresis and eddy currents are neglected, 
• the airgap thickness is uniform, 
• magnetomotive force created by the stator and the 
rotor windings is sinusoidal distribution along the 
airgap, 
• the stator and the rotor have the same number of 
turns in series per phase,  
• the coils have the same properties,  
• the WRIM stator and rotor coils are coupled in star 
configuration and connected to the considered 
balanced state grid. 

2.2 Differential Equation System of the 
WRIM 

 

Figure 1: Equivalent electrical circuit of the WRIM. 

Vj, Ij and Φj (j : A, B, C for the stator phases et a, b, 
c, for the rotor phases) are respectively the voltages, 
the electrical currents and the magnetic flux of the 
stator and the rotor phases, θ is the angular position 
of the rotor relative to the stator. 

The figure 1 shows the equivalent electrical 
circuit of the WRIM. Each coil, for both the stator 
and the rotor, is modelised with a resistance and an 
inductance connected in series configuration (Fig. 
2). 

 
Figure 2: Equivalent electrical circuit of the WRIM coils. 

We note the voltages vector ([VS], [VR]), the 
currents vector ([IS], [IR]) and the flux vector ([Φ S], 
[Φ R]) of respectively the stator and the rotor: 
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[ ] [ ][ ] [ ][ ]SRSRRR IMIL   +=φ  (4)
 

[RS] and [RR] are the resistances matrix, [LS] and [LR] 
the own inductances matrix, and [MSR] and [MRS] the 
mutual inductances matrix between the stator and 
the rotor coils. 

With (3) and (4), (1) and (2) become: 
 

[ ] [ ] [ ] [ ][ ]{ } [ ][ ]{ }
dt

IMd
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[ ] [ ] [ ] [ ][ ]{ } [ ][ ]{ }
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IMd
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ILdIRV SRSRR
RRR

    ++=  (6)
 

By applying the fundamental principle of dynamics 
to the rotor, the mechanical motion equation is 
(Wieczorek and Rosołowski, 2010): 
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tJ  is the total inertia brought to the rotor shaft, Ω
 the shaft rotational speed, [I]=[IA IB  IC  Ia Ib Ic]t the 
currents vector, vf the viscous friction torque, emC   
the electromagnetic torque, rC  the load torque, θ
 the angular position of the rotor relative to the stator 
and [L] the inductances matrix of the machine. 

Introducing the cyclic inductances of the stator 
and the rotor SSC LL

2
3

=  and RRC LL
2
3

= (LS is the 

own inductance of the each phase of the stator and 
LR is the own inductance of the each phase of the 
rotor), the mutual inductances between the stator and 
the rotor coils MSR and pole pair number p, the 
inductance matrix of the WRIM car be written as 
follow: 
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2
2cos( )
3

f p πθ= +  (12)
 

3
2cos( )
3

f p πθ= −  (13)
 

In choosing the stator and rotor currents, the shaft 
rotational speed and the angular position of the rotor 
relative to the stator as state variables, the 
differential equations system modeling the WRIM is 
given by: 
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This model of the WRIM will be used to simulate 
both the healthy and the faulted operation case of the 
stator and the rotor. 

2.3 WRIM Faults 

The necessity for having reliable electric machines is 
more important than ever and the trend continues to 
increase. Lighter machine having a considerable 
lifetime is now possible due to advances in 
engineering and materials sciences domain. 
Although the constant improvements on design 
technical of reliable machine, different type of faults 
still exist. The faults can be resulted by normal wear, 
poor design, poor assembly (misalignment), 
improper use or combination of these different 
causes.  
 

 
Figure 3: Low and medium power induction machines 
faults (Razik, 2002; Chia-Chou et al., 2008). 

 
Figure 4: High power induction machines faults (Razik, 
2002; Chia-Chou et al, 2008). 

Figure 3 and figure 4 present the faults 
distribution carried out by a German company on 
industrial system. The figure 3 show the faults of the 
low and medium power machines (50 KW à 200 
KW), and the figure 2 those of the high power 
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machines (from 200 KW) (Razik, 2002; Chia-Chou et 
al., 2008). 

Figure 3 shows that the most encountered faults 
of the low and medium power on the induction 
machines are the stator faults and the figure 4 shows 
that the faults due to mechanical defects give the 
highest percentages. The induction machines faults 
can be classified into four categories (Chia-Chou et 
al., 2008): 
The stator faults can be found on the coils or the 
breech. In most cases, the winding failure is caused 
by the inter-turns faults. These last grow and cause 
different faults between coils, between several 
phases or between phase and earth point before the 
deterioration of the machine (Sin et al., 2003). The 
breech of electrical machines is built with insulated 
thin steel sheets in order to minimize the eddy 
currents for a greater operational efficiency. In the 
case of the medium and great power machines, the 
core is compressed before the steel sheets 
emplacement to minimize the rolling sheets 
vibrations and to maximize the thermal conduction. 
The core problems are very little, only 1% compared 
to winding problems (Negrea, 2006). 
The rotor faults can be bar breaks, coils faults or 
rotor eccentricities. 
The bearings faults can be caused by a poor choice 
of materials during the manufacturing steps, the 
problems of rotation within the breech caused by 
damaged, chipped or cracked bearing and can create 
disturbance within the machines.  
The other faults can be caused by the flange or the 
shaft faults. The faults created by the machine flange 
are generally caused during the manufacturing step. 
Although the induction machines are robust, they 
can be seats of different types of faults that can be 
classified into two categories (Kliman et al., 1996): 
• The hard and brutal faults modelised by an abrupt 
inputs change or system parameters. 
• The soft and arising faults due to gradual changes 
of system parameters compared to their normal 
values. 
 

As previously mentioned, for the state survey of the 
electrical machines, the PCA method was adopted. 

3 PCA METHOD APPROACH 

The PCA principle is based on simple linear algebra. 
It can be used as exploring tool, analyzing data and 
models design. The PCA method is based on a 
transformation of the space representation of the 

simulation data. The new space dimension is smaller 
than that the original space dimension. It is classified 
as without models method categories (Liu, 2006). It 
can be considered as a full identification method of 
physical systems (Marx et al., 2007; Ku et al., 1995; 
Huang, 2001). The PCA allow to provide directly 
the redundancy relations between the variables 
without identifying the state representation matrix of 
the system. This task is often difficult to achieve. 

3.1 PCA Method Formulation 

We note by xi(j) = [x1 x2 x3 …xm] the measurements 
vector « i » represents the measurement variables 
that must be monitored and ranging from 1 to m and 
« j » the number of the performed measurements for 
each variable « m », ranging from 1 to N.  

The measurements data matrix (Xd € RN*m) can 
be written: 
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This data matrix can be described with a possible 
smallest set of new synthetic matrix, that is a 
orthogonal linear projection of a subspace of m 
dimension in a less dimension subspace l (l<m). The 
method consists in identifying the PCA model and is 
based on two steps (Li and Qin, 2001): 
• Determination on the eigenvalues and the 
eigenvectors of the covariance matrix R. 
• Determination of the structure of the model, which 
consists to calculate the components number « l » to 
be retained in the PCA model. 

3.2 Eigenvalues and Eigenvectors 
Determination 

Variables must be centered and reduced to make 
data matrix independent of variables physical units. 

Then, the new obtained normalized measures 
matrix is: 
 

]...[ 1 mXXX =  (16)

And the covariance matrix R is given by: 

TXX
N

R
1

1
−

=  (17)

In decomposing R, (16) can be expressed as: 
TPPR Λ=  (18)

With 
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m
TT IPPPP ==  (19)

Λ is diagonal matrix of the eigenvectors of R and 
their eigenvalues are ordered in descending order 
with respect to magnitude values (

)...21 mλλλ ≥≥≥ . 
The eigenvectors matrix P is expressed as: 

 

],...,,[ 21 mpppP =  (20)
 

ip is the orthogonal eigenvectors corresponding to 

iλ . Then, the principal components matrix is: 
 

XPT =  (21)
 

mNT *ℜ∈  

3.3 PCA Model Construction 

To obtain PCA model, the components number “l” 
to be retained must be determined. This step is very 
important for PCA construction. For that, many rules 
have been proposed by (Li and Qin, 2001). Most are 
from sometimes subjective heuristics method or 
criteria used in system identification in privileging 
the data matrix approximation of the data matrix. In 
this paper, "average eigenvalues" criterion is used. 
The principle is based on the determination of the 
variances of each component with the centered and 
reduced variables. The number of variables l to be 
retained to construct the PCA model is equal to the 
number of components whose variance is greater 
than unity.  

By taking into account the number of 
components to be retained and by partitioning the 
principal components matrix T, the eigenvectors 
matrix P and the eigenvalues matrix Λ (Valle et al., 
1999; Benaicha et al., 2010), the constructed PCA 
model is given by: 
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pT  and rT  is respectively the principal and residual 

parts of T, pP  and rP  is respectively the principal 
and residual parts of P. 

With this PCA model, the centered and reduced 
matrix X can be written as: 
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The centered and reduced matrix data is given by: 

pX X E= +  (28)

pX  is the principal estimated matrix and E the 
residues matrix which represent information losses 
due to the data matrix X reduction. It represents the 
difference between the exact and the approached 
representations of X. This matrix is associated with 
the lowest eigenvalues 1,...,l mλ λ+ . Therefore, in this 
case, data compression preserves all the best the 
information that it conveys. Under the application of 
PCA at diagnosis, the number of components has a 
significant impact on each step of faults detection 
and localization procedure. 

Nine state variables (m=9) have been chosen to 
be monitored and 10000 measures (N=10000) 
during 4s are considered. The WRIM faults are 
introduced from the initial time (t=0s) to the final 
time (t=4s) of the different simulations. The machine 
is coupled to a mechanical load torque (10Nm) at 
t=2s. The considered faults are respectively, 
increases from 10% to 40% of the resistance value 
of both the stator and rotor coils. 

The following figures (Fig. 5 and Fig. 6) 
represent the residues variation of the WRIM stator 
current versus time and show the number l impact in 
the diagnosis approach: 

 
Figure 5: Stator current residue for l = 5. 

Figure 6 show that the chosen number of 
components is too high then the residual space 
dimension is reduced. Some faults are projected in 
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the principal space and the stator current residues 
can not be detectable. 

 
Figure 6: Stator current residue for l = 6. 

However, with the figure 5, the number of 
components is well chosen. Faults can be detected 
and localized and the PCA model is well 
reconstructed. 

Generally, the detection approach in the case of 
diagnosis based on analytical model is linked with 
the residues generation step. From these residues 
analysis, the decision making step must indicate if 
faults exist are not. The residues generation 
approach can be the state estimation approach or the 
parameter estimation approach. 

The residue indicates the information losses 
given by the matrix dimension reduction of the state 
variables matrix data to be monitored. Indeed, a 
small residue means that the estimated value tends to 
the exact value in healthy operation case. 

In our case, the eigenvalues corresponding to the 
number of the retained principal components 
represent 93% of the total sum of eigenvalues. 0nly 
7% of the total represent the residues subspace. One 
can conclude that the PCA model has been well 
constructed. 

4 PCA METHOD APPLICATION 
ON WRIM 

The WRIM data simulation approaches with the 
PCA method are given by the following figure: 
 

 

Figure 7: Synoptic diagram of the different steps of the 
data treatment. 
The simulation approach is divided in four blocs: 
• WRIM modeling: mathematical equations 
calculation and simulation. 
• Simulations results: graph showing the output 
states of the system (healthy and faulted operation) 
• Simulations data: simulation results acquisition as 
matrix form. 
• PCA: data treatment and system diagnosis. 

4.1 Considered Faults 

In normal operation, a resistance value variation 
compared to its nominal value (in ambient 
temperature, 25°C) is considered as faulted machine 
due to machine overload or coils fault (Razik, 2002). 

The resistance versus the temperature is 
expressed as: 
 

)1(0 TRR Δ+= α  (29)
 

0R is the resistance value at T0 = 25°C, α the 
temperature coefficient of the resistance and TΔ  the 
temperature variation. 

4.2 Simulation Results 

The different simulation results have been 
performed with respect to the simulation conditions 
mentioned earlier. 

Figure 8 to figure 17 represent the real variations 
without PCA method (Fig. 8 to Fig. 14) and the 
residue variations with PCA application (Fig. 15 to 
Fig. 17) of the faulted WRIM state variables in 
considering stator faults. 

With the WRIM state variables, other quantities 
issued to their transformations have been calculated: 
• quadrature axis and direct axis currents with Park 
transformation, 
• α axis and β axis currents with Concordia 
transformation. 
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Figure 8: Real variations versus time of the stator current 
of the healthy and faulted WRIM. 

 
Figure 9: Real variations versus time of the rotor current 
of the healthy and faulted WRIM. 

 
Figure 10: Real variations versus time of the shaft 
rotational speed of the healthy and faulted WRIM. 

 
Figure 11: Real variations versus time of the 
electromagnetic torque of the healthy and faulted WRIM. 

 

Figure 12: Real variations of electromagnetic torque 
versus the shaft rotational speed of the WRIM. 

 
Figure 13: Real variations of β  axis current versus the 
phase α  axis current of the stator phase. 

 
Figure 14: Real variations of the quadrature axis current 
versus the phase direct axis current of the stator phase. 

 
Figure 15: Variations of the stator phase “A” current 
residues versus time of the healthy and faulted WRIM. 
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Figure 16: Variations of the rotor phase “a” current 
residues versus time of the healthy and faulted WRIM. 

 
Figure 17: Variations of electromagnetic torque residues 
versus the shaft rotational speed residues of the WRIM. 

4.3 Discussion 

Several types of representations are used in the 
signals processing domain, in particular for electrical 
machines diagnosis. We can mention the temporal 
representation (Fig. 8 to Fig.11, Fig. 15 and Fig. 17) 
and the signal frequency analysis. Although they 
have demonstrated their effectiveness, the state 
variables representations between them also show 
their advantages. They can be performed without 
mathematical transformation (Fig. 12) and with 
mathematical transformation (Fig. 13 and Fig. 14). 

The latter representation type and the temporal 
representation are confronted with the PCA method 
application results (Fig. 15 to Fig. 17). Only the 
simulation results with stator faults are presented 
because the global behavior of the state variables in 
both rotor and stator faults are almost similar. 

For the temporal variations case, the rotor 
currents (Fig. 9) and the shaft rotational speed (Fig. 
10) are the variables which produce the most 
information in presence of faults. The faults occur 
on the rotor current frequency and the shaft 
rotational speed magnitude. 

Also, the electromagnetic torque variations 
versus the shaft rotational speed clearly show the 
WRIM operation zone in the presence of faults (Fig. 
12). Contrary to this, the representations with 
mathematical transformations (Fig. 13 and Fig. 14) 
do not provide significant information due to the fact 
that the stator currents remain almost unchanged in 
the presence of faults (Fig. 8). 

With PCA method application, all representation 
types well show the differences between healthy and 
faulted WRIM (Fig. 15 to Fig. 17). In the healthy 
case, residues are zero. When faults appear, the 
residue representations have an effective value with 
an absolute value greater than zero. 

In the figure 17, the healthy case is represented 
by a point placed on the coordinate origins. Also, 
one can show several right lines corresponding to 
the faulted cases. This behavior is due to the 
proportional characteristic of the considered faults. 

PCA method proved so effective in electrical 
machines faults detection. This requires a good 
choice of the number of the principal components to 
be retained so that information contained in residues 
is relevant. 

5 CONCLUSIONS 

PCA method based on residues analysis has been 
established and applied on WRIM diagnosis. 

An accurate analytical model of the machine has 
been proposed and simulated to performed the 
healthy and faulted data for PCA approach need. 

Several representations of nine state variables of 
the machine have been analyzed. In the case of 
temporal variation and without PCA, the rotor 
current and the shaft rotational speed are the more 
affected by the considered fault type. The 
representations of the electromagnetic torque versus 
the shaft rotational speed in both with and without 
PCA approach show clearly the presence of faults. 
Indeed, PCA method is interesting for all type of 
representation compared to some other signal 
processing types. 
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