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Abstract: This paper addresses the problem of computing maximal robustly positively invariant sets for discrete-time
linear time-invariant systems with disturbance inputs. It is assumed that the disturbance is unknown, additive,
but bounded. The main contribution is the determination of bound of the number of steps in the iterative
construction of the maximal invariant sets.

1 INTRODUCTION From literature, only the work in (Rakovic et al.,
2004) proposed a method for determining an upper

Set invariance plays a fundamental role in the analy- bound of the number of steps in the iterative con-

sis and design of control systems for constrained sys-struction of the maximal invariant sets. The method

tems, since if the initial state is contained inside an presented in the current paper offers a slight improve-

invariant set, all future states will stay within the set ment for this upper bound.

and hence will satisfy the imposed system constraints,  The following notation will be used throughout

(Blanchini, 1999). the paper.N £ {0,1,2,...} denotes the set of non-
In literature, two types of convex sets are essen- negative integerd\* denotes the sét \ 0 andNs =

tially used as candidate invariant sets: ellipsoidal and {0,1,2,...,s— 1}. Whenever time is unspecified, a

polyhedral sets. The use of ellipsoidal sets has thevariablex stands fomx(k) for somek € N.

advantage that the complexity is fixed, (Kurzhanski For somee > 0 we denoteBl(s) = {x € R :

and Varaiya, 2000), (Kurzhanski and Varaiya, 2002). HXHp < g}, Where”x” b is the p—norm of the vector

However, they have a_rather re;tncted shape, which, _ X1 Xo... %7, i.e. HX”p = (x| + [Xo|P + ... +

may be very conservative in typical problems. 1
In this paper we will focus only on polyhedral sets [%a|?)?.

in conjunction with linear dynamics. Given two setsX; C R" and X; C R", the
The construction of maximal robustly positively Minkowski sum of the set¥; andX; is defined by

invariant set for linear time-invariant (LTI) systems X1@® X2 £ {X1+Xo| X1 € X1,X2 € Xo}. The Pontryagin

was studied in literature in different contexts, see difference of the seX; with respect toX; is defined

for example the study in (Kolmanovsky and Gilbert, by X1 © Xz = {X| x+x2 € Xy, for all x € X}.

1998). The method, proposed in this early studies  The setX; is a proper subset of the ¥4 if and

constructs an invariant set by iteratively adding ad- only if X; lies strictly insideXo.

ditional constraints until invariance is obtained. How- A C-set is a convex and compact set containing
ever, the iterative number is unknown in advance and the origin as an interior point.
can be very large. A polyhedron, or a polyhedral set, is the intersec-

In this paper we provide a novel method for con- tion of a finite number of half spaces. A polytope is a
structing maximal robustly positively invariant sets closed and bounded polyhedral set.
for LTI systems that does not suffer from these draw- The paper is organized as follows. Section 2 deals
backs. Based on forward reachable sets, the methodwvith a general framework of robustly positively in-
provides additional insight for a better understanding variant sets. Section 3 is concerned with the mini-
of the properties of the maximal robustly positively mal robustly positively invariant set while Section 4
invariant sets. We will also discuss a method for com- is concerned with the maximal robustly constraint-
puting an a priori lower bound relevant to the pro- admissible set. Section 5 is dedicated to the problem
posed method. of computing an a priori lower bound. The simulation
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results are evaluated in Section 6 before drawing the Proof. The proof is not reported here. The reader is

conclusions.

2 ROBUSTLY POSITIVELY
INVARIANT SET

Consider the following discrete-time linear time-
invariant system:
X(k+ 1) = AX(k) 4+ w(K)

wherex(k) € R" andw(k) € R".
The state is subject to the following polytopic con-
straint:

)

xeX

whereX = {x|Hxx < Ky} is a C-set.
We assume that the disturbance sequensatis-
fies the constraint:

2

weW (€)

whereW = {w|Hyw < Ky} is a C-set.
Recall the following definitions from (Blanchini
and Miani, 2008):

Definition 1 (RPI Set) The setQ is robustly pos-

itively invariant (RPI) for system (1) if and only if
Ax+we Q for allwe W and allx € Q. Equivalently

Qis RPIif and only ifAQ&W C Q.

Definition 2 (mRPI). The setF. is minimal RPI
(mRPI) if it is a RPI set and contained in any RPI
set.

It is well known that if the matrixA is not strictly
stable, ther, is unbounded. Therefore, in the se-
quel, we consider only the case whais strictly sta-
ble.

Itis also known that, the mRPI set is unique, com-
pact and - in the case whé&Hl contains the origin -
contains the origin.

Definition 3 (MRPI). The setO. is maximal RPI
(MRPI) if it is a RPI set and contains every RPI set
under a set of constraints (2), (3).

If the MRPI set is non-empty, then it is unique.
Furthermore ifX is a C set then the MPRI set is also
a C set.

The link between the mRPI s&t, and the MRPI
set O, is given by the following theorem ((Kol-
manovsky and Gilbert, 1998)):

Theorem 1.The following statements are equivalent:
1. the MRPI seD,, is non-empty,
2. Fo C X,

3. X6 F contains the origin, where denotes the
Pontryagin difference.

referred to (Kolmanovsky and Gilbert, 1998) for more
details. O

Definition 4 (RAS). A setQ is a robustly constraint-
admissible set (RAS) for system (1) if and only
it A4+ A10(0) + A 200(1) + ...+ w(k— 1) €
X,Vk € N for all we W and allx € Q. Furthermore

if Q contains every robustly constraint-admissible set
then Q is a maximal robustly constraint-admissible
set (MRAS).

Theorem 2. The setQ is a MRAS for system (1) if
and only if this set is a MRPI set.

Proof. If Q is MRPI and contained iiX, thenAx+
we QC X foranywe W andx € Q. HenceQ is a
robustly constraint-admissible set, Sois contained
ina MRAS.

ConverselyQ is a MRAS. One hag?Q & AN &
WC X orAAQaW)aW C X or AQ; aW C X,
whereQ; = AQ@W. That means2; is a RAS.
Hence,Q; C Q or in another wordsQ is robustly
invariant set and contained in the MRPI set. . O

From the above theorem, one can conclude that
the problem of finding MRPI sets is equivalent to the
problem of finding MRAS. Therefore, in the rest of
the paper, we consider only the problem of finding
the MRAS for a given linear dynamics.

3 MINIMAL ROBUSTLY
POSITIVELY INVARIANT SET

This section addresses the problem of approximating
a mRPI.

It can be shown that in (Rakovic et al., 2005) the
MRPI setF, is the limit set of all the possible trajec-
tories of (1) and defined as:

Foo = iZOAiW

SinceF, is a Minkowski sum of infinitely many
terms, its exact computation can be assured only un-
der restrictive assumptions of nilpotent system dy-
namics, (Mayne and Schroeder, 1997).

Recall the following definition:

Definition 5 (mRPI e—approximation) Given a
scalare > 0 and a sef2 C R", the setd C R" is an
outere—approximation ofQ if

QCdCQ®By(e) 4)
and an innee—approximation of if
PCQCdBBY(e) (5)
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Figure 1: Approximation oF. for example 1.

Denote
k-1
R = Z}A‘W
i=

Theorem 3. If the setW contains the origin in its
interior, then there exists a finite integez N* and a
scalare € (0,1] that satisfies:

A'W C eW (6)
If (6) is satisfied, then
F(e,r)=(1—¢) R (7)

is a convex, compact, RPI set of (1). Furthermore
F(e,r) andR. C F(g,r).

Proof. The proof is omitted here. The reader is re-
ferred to (Rakovic et al., 2005) for more details on
this topic. O

4 MAXIMAL ROBUSTLY
CONSTRAINT-ADMISSIBLE
SET

In this section we consider the problem of the exact
computation of the MRAS and start with the assump-
tion that the mRPI sdk, is a proper subset of.

Remark 1. The assumptiof., C X is uncheckable but

practically realistic by the fact that once we have an

outer approximation, we can verify its inclusionXn
Define the sef(s) by:

{x} cX
{Ax} W cX
Q(s) = { x S (8)
(A xpa@AwW CX
k=0

Theorem 4. There exists an indexthat satisfies:

AXBATWSAWa...aWCT X (9)
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and the se€)(s) defined in (8) is a MRAS for system
Q).

Proof. One has

s—1 Y
AX e PAW CAX e EPAWCAXSF, (10)
k=0 k=0

The fact thatA is strictly stable andr. is a proper
subset ofX confirm the existence of the indesby
the fact that there will always an integer which makes
ASX arbitrarily small.

For the second part of theorem, tfe Ng =
{0,1,...,s— 1}, by the definition of the se®(s), for
anyxe€ Q(s) and anyw(k) e W fork=0,1,...,t -1

one has
t—1

Axa PAW(K) € X

k=0
If t e N andt > s, itis possible to find a pajp € N,
p>1andgeNs={0,1,...,s— 1} such that = ps+

(11)

t—1
q. Denote¥ = AlQ(s) & D A*W, it follows that:
k=0
ps+o-1
Y =AFTIQ() e P AW
k=0
q-1 ps—1
= APS{A%Q(s) & P AW} & P A'w
k=0 k=0
ps—1
C APX @ P AW
k=0
s—1 (p—1)s-1
=AP-Usiaxa@PAwWle P Aw
k=0 k=0
(p—1)s-1
CAPDsXxg P Aw
k=0
s—1
= AX & (HAW
k=0

cX

Thus, for everyt € N, one hasA'Q(s) @
t—1
@A“W C X, henceQ(s) is a constraint-admissible
k=0
set. The fact tha®(s) is a MRAS follows from the
construction of this set. d
Clearly, if W is any RPI set such th&t, c W C X
andASX @ W C X, then the seQ(s) is a MRAS. This
setW can be obtained upon ultimate bounds in the
case wherA has real eigenvalues, for example using
the results provided in the next theorem.

Theorem 5. (Kofman et al., 2007) Consider the sys-
tem (1), letA = TJT ! be the Jordan decomposition
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of A and consider a bounding box for the ¥t If
this bounding box is described by the vediowhich
satisfiegw| < w, Yw € W then the set:

W={x|[T X < (-3~ T}
is RPI, and thus contairts,.

Remark 2: Note that for anys; ands; that verify (9)
one hax)(s1) = Q(s2). One would like to find the
smallest value o§ such that (9) holds in order to re-
duce the number of redundant inequalities.

It is clear that, the se®@(s) can be determined as
follows:

(12)

Hy
HxA
Q(s) .

X < Ky — Kg (13)

HyAS

whereKs is a solution of the followings linear pro-
grams

0 0 0 w(0)
Hy 0 0 w(1)
Ks= max HyA Hy 0 .
w(0),...,w(s—1) 5
HxA572 HXA%‘?’ Hx (A)(S - l)
subject to

wk) eW, k =0,2,...,s—1

It is worth noticing that the se®(s) = {x|Hx <
K} may contain redundant inequalities. One can use
the algorithm in (Kerrigan, 2000) to eliminate these
inequalities.

5 APRIORI LOWER BOUND
COMPUTATION

In this section we will consider the problem of find-
ing the smallest value afsuch that the condition (9)
holds.

5.1 The Theoretical Principle

One has

Fe Dico AW = DG AW & B AW

—1
o AW s ASF,

then

XS Fo X O (@5 AW @ A, )
(X & @p_ AW) & ASF,
ASX & AR,
AS(X & Fo)

(14)

Uiviv

Let X; = X © Fw = {X|Hix < K1}, it follows that
ASX; C X1, so our problem is reduced to find the index
ssuch thataSX; C X;.

Remark 3: Indeed, we obtain only bounds and not the
exact index due to the fact that Pontryagin difference
and Minkowski addition are not commutative opera-
tions.

Remark 4: Using the result in (Rakovic et al., 2004)
an alternative upper boumds obtained by exploiting
the following set inclusion:

AXCXOFe

It is clear that the bound in (14) represents an im-
provementwith respect to the result in (Rakovic et al.,
2004) by the fact thaX © F., C X.

5.2 Numerical Construction

Let pi (k) andpr (k) be solutions of following &linear
programs:

K — mi
R (1s)
and . )
ANy (16)
Define matrice®,x andRi, as follows:
Ro(1) 0 0
0 R(2
Rout = : : : (17)
0o o Ro(N)
whereRy(k) = max(|p' (K)[,|p"(K)[), k=1,2,...,n,
and
Ri(1) 0 0
0 Ri(2) 0
Rin = : : : (18)
6 O Rj&n)

whereR; (k) = min(|p' (k)
A set®d,; defined as

K, k=1,2,...,n.

Doyt = {x € R"|x = Roud, ||d]|,, < 1} (19)
is the smallest orthotope that contalfis
And a setd;, defined as
O = {xe R'x=Rpd, [ld, <1}  (20)

is the biggest orthotope that is containecin

Inthe case, when matriis not diagonizable, one
can use the following algorithm to find the smallest
indexs such thatdSX; C X;.

Consider the case when matwxis diagonizable
with A= TJT 1, whereT is a nonsingular matrix]
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Algorithm 1: Computation of the smallest index.
The case when matriX is not diagonizable.

Input: Xg, A
Output: s
2. Sets=1;
3. if ASX; C X; then
| Setsy=sand stop
else
| Continue
end
4. Sets=s+1 and go to step 3.

is a diagonal matrix of the eigenvalues/Afand the
spectral radiup(A) € (0,1). It is clear that ifAS C

@, for anyx € ®q: thenASx € X3 for anyx € X;. It

follows that

ASDgy C O

= ARoud C (Dilna fdfl, <1

= |A%; <a,a =min Rﬁ((ii’%, i=1,2,...,n

= [T, [T},p°<a

x| |n(u)—|r:r(1p(Tp|>l|T o)

Denoting[s] the smallest integer greater or equal

to s, the set inclusio®SX; € X; is satisfied for every
ssuch thas > s*, where:

In(a) —=In(|T|, T~
¢ [n@=(T[TH)] )
In(p)
It is clear that thiss* may be not the smallest in-

s—1
teger such thad®X & P AW C X holds. To the best

i=0
of our knowledge, there is no effective method to de-
termine analytically suck. One may use a bisection
method for computing the smallestas follows:

Algorithm 2: Computation of the smallest index.
Input: s*, X, W, A
Output: s
2. Sets; =0, =5";
3. Sets= [25%2];
s-1

4.if ASX & @AW C X then

k=1

| sets;=s
else

| =
end
5.if -5 =1then

| sets, =% and stop
else

| gotostep3
end
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s—1
Remark 5. The conditionA®X & @D AW C X can be

k=1
verified by solving the following linear programs:

J = max{HyAX+ HyAs_10(0) + ... + Hyw(s— 1)}
s.t.xeX
wi)eW,i =12,...,5s-1

and after that checking conditian< Kj.

6 EXAMPLES

To show the effectiveness of the proposed method,
two examples will be considered in this section. For
both of these examples, to solve linear programs, we
used the Multi-parametric toolbox, (Kvasnica et al.,

2004).

6.1 Example 1
This example is taken from (Rakovic and Fiacchini,

2008). Consider the following discrete-time linear
time-invariant system:

x(k+1) = Ax(k) + (k) (22)
where

8) sin® 0.8916 01225
A=0.9< fgﬁﬁ(g) s(l)ns((e)) ):( —0.1225 08916)

with ® = Z and

X = {x e R?||X||,, < 100} N {x € R?|xz > —20}.
(23)
The disturbance set is

W = {we R|||w|, < 0.01} (24)

Figure 1 presents the disturbance ¥étand the
RPI set obtained by using theorem 3.

Using algorithm 1, one obtairsg = 19.

Figure 2 shows the maximal robustly positively in-
variant seO.

Figure 2: the MRPI seD., for example 1.
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6.2 Example 2

To show the ability of the algorithm to cope efficiently
with a higher order systems, we will use a 4th order
system in this example.

Consider the following discrete-time linear time-
invariant system:

x(k+ 1) = AX(k) 4+ w(K) (25)
where
0.5042 00618 06935 01406
A 0.3070 01811 04636 —0.0106
— | —-0.4748 —-0.0911 01162 Q1502
0.1940 00771 06828 03539
and
4
X = {xe R x|, <50} N {xe R| > x| <10}
i=

The disturbance set is
W= {we R o)., <0.1}

Using theorem 3, Figure 3 illustrates the distur-
bance setV and the RPI set with = 0.32 andr = 4.

cuttnrougn x,=000

Figure 3: Approximation of. for example 2, cut through
X4 =0.

Using algorithm 1, one obtairss = 7.
Figure 4 illustrates the maximal robustly posi-
tively invariant seQ,.

7 CONCLUSIONS

This paper discussed the characterization of the maxi-
mal robustly positively invariant sets for discrete-time
linear time-invariant systems with disturbance inputs
by providing upper bounds for the iterative construc-
tion.

It was shown that the maximal robustly positively
invariant set and the maximal robustly constraint-

Figure 4: The maximal robustly positively invariant set for
example 2, cut througky = 0.
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