
UNOBSERVABLE INTRUSION DETECTION BASED ON CALL
TRACES IN PARAVIRTUALIZED SYSTEMS∗

Carlo Maiero and Marino Miculan
Department of Mathematics and Computer Science, University of Udine, Udine, Italy

Keywords: Intrusion detection systems, Paravirtualization, System call trace analysis.

Abstract: We present a non-invasive system for intrusion and anomaly detection, based on system call tracing in par-
avirtualized machines over Xen. System calls from guest user programs and operating systems are intercepted
stealthy within Xen hypervisor, and passed to a detection system running in Dom0 via a suitable communi-
cation channel. Guest applications and machines are left unchanged, and an intruder on the virtual machine
cannot tell whether the system is under inspection or not. As for the detection algorithm, we present and study
a variant of Stide, which we verify experimentally to have a good performance on intrusion detection with an
acceptable overhead—in fact, online real-time intrusion detection feasible. However, since the interception
mechanism is kept separated from the detection system, the latter can be replaced according to further needs.

1 INTRODUCTION

Nowadays, the most common form of intrusion and
anomaly detection ishost-based, which means that
the detection system runs on the same machine under
inspection. A serious drawback of host-based detec-
tion is that it is invasive, since the computation en-
vironment is modified by the presence of the detec-
tion system itself (e.g. as a program in the file sys-
tem, or as a process running in memory, or as a kernel
module, or some open ports. . . ). As a consequence,
an intruder can notice the detection system and mod-
ify her actions accordingly, e.g. by changing the at-
tack methodology in order to avoid detection. This
can be particularly serious in “honeypots”, which are
systems built on the purpose of gathering information
about attacker’s motives and tactics. Moreover, once
the detection system has been discovered, it can be
attacked, e.g. by disabling it or altering its data.

In order to avoid these problems, an intruder on
the machine under inspection must not be able to no-
tice the existence of the detection system. Ideally,
from the intruder’s point of view, a monitored ma-
chine should be observationally equivalent to an un-
monitored machine. This means that a monitored ma-
chine and an unmonitored one cannot differ neither in
the file system, nor in the user-space and kernel-space
memory, nor in devices, etc.. In particular, the detec-
tion system must executeoutside the machine under

∗Work funded by MIUR project 20088HXMYNSisteR.

inspection, and still be able to observe the behavior of
processesin the machine (which is unmodified), and
possibly to take appropriate countermeasures.

In this paper we show how to solve this conun-
drum by adopting(para)virtualized machines in con-
junction with syscall-based anomaly detection. In
paravirtualized systems (like Xen (Barham et al.,
2003)), a suitable layer, calledvirtual machine mon-
itor or hypervisor, allows to run an operating sys-
tems on a virtual version of the underlying hardware,
while maintaining the same architecture of the real
one. Privileged instructions cannot be executed by
the guest operating system, since this runs without
the necessary privileges. Therefore, when a process
in a guest machine executes a system call to its op-
erating system, the trap triggers the hypervisor which
takes care of the usual context-switch between user
and kernel space. In that instant, the hypervisor can
collect data about the system call, as done in (Laure-
ano et al., 2007), and forward these data to a detec-
tion system for analysis. In case the trace appears to
be not correct, the detection system can apply suitable
counter-measures, e.g. it can abort the offending sys-
tem call, or “suspend” the machine (possibly) under
attack.

This solution presents several interesting aspects.
First, system call interception is completely unob-
servable to the guest operating system and processes.
This means that an intruder cannot tell whether the
system is being monitored. Of course, the system ap-

300 Maiero C. and Miculan M..
UNOBSERVABLE INTRUSION DETECTION BASED ON CALL TRACES IN PARAVIRTUALIZED SYSTEMS.
DOI: 10.5220/0003521003000306
In Proceedings of the International Conference on Security and Cryptography (SECRYPT-2011), pages 300-306
ISBN: 978-989-8425-71-3
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



pears to be paravirtualized (e.g., due to the presence
of some specific daemons), but this is not uncommon
nowadays, especially for hosted services and cloud
computing. Secondly, the interception mechanism is
kept separated from the detection system, which can
be easily replaced and upgraded, accordingly to fur-
ther needs. Moreover, our approach is “black-box”,
i.e., we do not assume anya priori knowledge about
the internals of the virtual machine nor the applica-
tions therein running. Finally, the overhead intro-
duced by the interception mechanism is quite low, so
that on-line, real-time intrusion detection is feasible.

The paper is organized as follows. In Section 2,
we describe the architecture of the unobservable in-
trusion detection system: the mechanism added to the
Xen hypervisor in order to gather information about
system calls, the channels for communicating with the
detection system, etc. In Section 3 we consider some
possible algorithms for the detection system. Basi-
cally, the idea is to compare the system calls traces
with respect to a set of “well-behaved” traces, as done
e.g. in (Hofmeyr et al., 1998). As we will show
in Section 4, the resulting system has good perfor-
mances, concerning both the attacks it can recognize
(with very low false positive rates), and the compu-
tational overhead. Final remarks, related work and
directions for further work are discussed in Section 5.

2 XENINI: UNOBSERVABLE
SYSCALL INTERCEPTION

In this section we presentXenini, a patch to Xen hy-
pervisor implementing the stealthy gathering of in-
formation of the behavior of virtual machines. This
patch is designed to have the following features:

Independence and Flexibility. Xenini must be able
to operate in complete autonomy, without any co-
operation with the machines being monitored.

Security. the patch must affect only the hypervisor
and must not use any guest kernel data structure.

Independence from Memory. Differently from
other solutions using techniques of guest machine
memory and virtual disk introspection, Xenini
observes only the system calls (as in (Laureano
et al., 2007)).

Isolation. the attacker is not aware of being mon-
itored, because the patch is at hypervisor level
withoutany change to the virtual machine.

Simplicity. the system requires only an initial patch
to the hypervisor, and does not put any constraint
on virtual machines.

Figure 1: System call handling in a native system (left) and
paravirtualized Xen system (right).

Figure 2: Architecture of the Xenini-XenIds system.

Architecture. In Xen, a guest application executing
a system call raises a trap which yields the hypervisor
to be executed (Figure 1). At this point, before pass-
ing the control to the guest kernel, we can intercept
and log the system call. More precisely, we can ob-
serve the syscall number and the caller process ID.
This information is passed for evaluation to the detec-
tion system, calledXenIds, which is a process running
in Dom0. XenIds will scrutiny the syscall trace, and
possibly take suitable countermeasures.

The overall architecture is shown in Figure 2. Be-
fore describing the execution flow, let us describe the
main components of the system.

System Calls Interception. First, in order to han-
dle all system calls by the hypervisor, we disable
“fast” system calls in Xen (without modifying the
guest operating system). Then, for each paravir-
tualized domain DomU, Xen installs a “local” In-

UNOBSERVABLE INTRUSION DETECTION BASED ON CALL TRACES IN PARAVIRTUALIZED SYSTEMS

301



terrupt Descriptor Table (IDT) which it is looked
up by hypervisor when a trap is invoked by domU.
The interrupt 0x80 is not part of the traps han-
dled in local IDTs, and it is managed by hyper-
visor. The traps that must be managed at level 0
are handled by the functiondo_guest_trap() (file
xen/arch/x86/traps.c). In this function, the case
of interrupt 0x80 is modified into a call to Xenini. The
system call number is in the%eax register, which is
stored in a buffer, together with the process ID. Here,
we can also terminate the system call by changing the
value of the virtual processor register%eax.

Communication between Hypervisor and Dom0.
The communication mechanism between Xenini and
intrusion detection systems residing in Dom0, can be
divided into two parts: theevent channel and the li-
brarylibxc for message handling.

Event channels are a simple asynchronous noti-
fication mechanism provided by Xen. Each domain
has a set of ports that can be associated with an
event source, which can be an interrupt, a physical
IRQ, a virtual interrupt IRQ or port to another do-
main. The events are then handled asynchronously,
so the delivery of the message does not necessar-
ily wait for a response from Xen. In this case
the two domains connected are the hypervisor and
Dom0. This event channel notifies the IDS that
some new interception data is present in the buffer
of Xenini. The communication takes place via anad
hoc virtual interruptVIRQ_XENINI added in the file
xen/include/xen/xen.h.

Libxc provides an API for Xen control, e.g., for
communicating with Xen through Dom0 and for con-
trolling (e.g., creating, destroying, suspending) other
virtual machines. We have extended the functionali-
ties of this library by adding an internal protocol for
communication between the IDS and Xenini.

Execution Flow is as follows (Figure 2):

1. Xenini intercepts the system call or the hypercall
2. Xenini alerts XenIds via a VIRQ
3. XenIds makes a request get info to libxc
4. Libxc requires data to Xenini
5. Xenini transmits the data to libxc
6. Libxc returns data to IDS
7. the IDS processes the data and gives an answer.
8. the control flow returns to the guest VM

Xenini can act synchronously (i.e., blocking) or asyn-
chronously, depending on the system call. Syn-
chronous operation is intended for system calls (or
hypercalls) which are considered “critical”; in this

case, Xenini waits for the answer from XenIds be-
fore executing the call. Asynchronous operation is
for system calls which have to be logged only; in this
case, Xenini communicates the data to XenIds and
proceeds immediately. We will see in Section 4 that
asynchronous operation yields much less overhead,
still allowing for a high level of recognized attacks.

3 CALL-TRACE BASED
INTRUSION DETECTION

In this Section we discuss the algorithm implemented
in the intrusion detection system XenIds. As for any
IDS, our aim is to recognize when the behavior of a
system is “non-standard”, which may indicate that the
system is being attacked.

Let us recall that Xenini passes to the IDS only the
system call numbers (i.e., the names), together with
the ID of the processes. The IDS does not have access
to guest machines memory, nor it can analyze the pro-
grams which are running on these machines. In fact,
we cannot even know which program a given process
is running. Therefore, we have to follow ablack-box
approach: we can only analyze the sequences of sys-
tem calls that are invoked by each process, without
the possibility of inspecting the process’ memory.

State of Art. Considerable work has been carried
out about the analysis of system call traces. In gen-
eral, the principal black-box approaches for the anal-
ysis of system calls traces use statistical approaches
or machine learning techniques for extracting the ba-
sic “correct” structures of call traces; then, the trace
of a single program at once is analyzed, usually of-
fline. Due to lack of space, we can give only a very
short description of the principal approaches.

Frequency-based methods observe the occur-
rences of certain patterns in a sequence of system
calls. (Helman and Bangoo, 1997) propose to clas-
sify each sequence on the frequency that it appears in
traces of intrusions: sequences that occur more fre-
quently in intrusions and less frequently in normal
behaviors are considered suspect. Unfortunately, the
frequency of each sequence in the intrusion traces is
not known a priori.

Data Mining can be used to recognize certain
types of patterns present in a large amount of data.
In the case of intrusion detection, this leads to a def-
inition of “normal” (self) lower than that obtained by
simply listing all sequences that occur in normal be-
havior. We mention Cohen’s RIPPER (Cohen, 1995),
which has been adapted for syscall interception in
(Lee et al., 1997; Lee and Stolfo, 1998).

SECRYPT 2011 - International Conference on Security and Cryptography

302



Finite State Machines can be used for recogniz-
ing a language of “normal traces”. An intrusion
yields a sequence which is not recognized. There
are many techniques for building DFA and NDFA to
solve this problem; we mention the Hidden Markov
Model (HMM). (Zhang et al., 2007) suggests an ap-
proach that deals with the grammar of system calls.

Enumerate Sequences Stide. (Forrest et al., 1996)
introduced an intrusion detection method based on
observation of system calls used by privileged pro-
cesses. The approach is inspired by the natural im-
mune system, which has several aspects in common
with security services (Forrest et al., 1997).

The Stide method of anomaly/intrusion detection
defined in (Hofmeyr et al., 1998) creates a profile de-
fined as “normal” and the substantial deviations from
this profile are defined as “abnormal”. Stide works in
two steps. First, a database of “normal behaviors” is
created by analysing system call traces generated by
processes running in a safe environment. Then, the
real system, possibly subject to attacks, is monitored
looking for abnormal behaviors. This method ana-
lyzes only short sequences of system calls, in chrono-
logical order. Thus, the only information necessary to
the algorithm are the names of system calls performed
by each process; system call parameters are ignored.

The algorithm used to create the database of nor-
mal behavior is very simple: we scan the traces of
system calls generated by a particular process and put
in the database all unique sequences of lengthk, for
k a fixed parameter. For instance, let us suppose we
observe the following trace:

open, write, mmap, open, write, mmap

If k = 3 we get the following unique sequences:

(open, write, mmap)
(write, mmap, open)
(mmap, open, write)

Once the database of normal behaviors is created,
the same method is used to check the traces under in-
spection. Given a trace, we look-up in the database
all unique sequences of lengthk in it; the sequences
which do not appear in the database are considered
mismatches. The “strength” of anomaly “signal” can
be measured as the number of events, i.e. mismatches,
in a trace. The anomalies are counted on the lastn
system calls. The algorithm raises an anomaly when
this number is over a given threshold, which is usually
specified as a percentage ofn.

Comparison. According to (Warrender et al.,
1999), there is no “best” algorithm in terms of false
positives and false negatives; however, it is also pos-

sible to say that RIPPER and Stide perform better on
a threshold value of 6.

For our application the best algorithm seems to
Stide, for two reasons. First, we can train its database
using directly the data provided by Xenini, during
normal activity of the system. Secondly, we can im-
plement the detection algorithm quite efficiently, al-
lowing for a real-time, online intrusion detection. In
fact, sequences are stored in the database as trees,
whose nodes are labelled with system calls. Hence,
there are as many trees as system calls; moreover, the
upper limit for the database size isO(Nk), wherek is
the sequence length, andN is the number of unique
sequences. In practice the requirements are lower be-
cause the sequences are stored in trees.

However, the modular structure of XenIds/Xenini
allows to replace easily the detection algorithm.

Implementation. Differently from other work in
literature, our aim is to identify intrusions on online
systems, in (almost) real time. When an anomaly is
detected, XenIds can perform several actions, from
very simple ones (such as reporting the intrusion) to
quite intrusive, such as aborting the compromising
system call or suspending the corresponding virtual
machine to preserve its data.

Operating Principles. Stide is intended to analyze
each process separately, which means that one should
build a database for each program, and compare the
traces from a process with respect to the database of
the corresponding program. However, this is prob-
lematic in our setting, because we do not know which
program is running a given process: Xenini can inter-
cept the process ID, but not the executable file name.

Therefore, we decide to keep a single database,
i.e. a single tree, for all sequences, coming from any
program. This is suggested by the experimental ob-
servation that different programs have only few se-
quences in common. In other words, a program can be
identified by looking the set of its “good” sequences.
Clearly, keeping all sequences from all programs in
the same database could increase the number of false
negatives (because a sequence which is abnormal for
a program could be normal for another), but as we
will see in the next Section this is not the case. In
fact, this problem can be solved by suitably choos-
ing the lengthk. Let us denote bypn the probability
that at some point in a sequence, an abnormal syscall
is found in the database; then, the probability of rec-
ognizing as normal ak-length abnormal sequence, is
pk

n. The possibility of a false negative can be reduced
exponentially by increasing the length of sequences.

XenIds works as follows. When it receives a triple
(VM ID,SysCall number, process ID) from Xenini,

UNOBSERVABLE INTRUSION DETECTION BASED ON CALL TRACES IN PARAVIRTUALIZED SYSTEMS

303



it appends theSysCall number to a buffer of length
k associated to(V M ID, process ID) (the buffer is
created if not already existing). Then the buffer is
searched in the database; if it is not present, the num-
ber of anomalies for that(VM ID, process ID) is in-
cremented. If the anomalies ratio exceeds the thresh-
old, XenIds will perform the corresponding action.

However, some system calls have a special mean-
ing, which must be taken into account in the IDS. In
particular a process can create other processes, or ex-
ecute a different program without changing its ID. In
these cases, a specific action is required on buffers.
For instance, on Unix-like machines processes are
created using afork or vfork system call. Whilefork
creates another instance of the same program which
will be tracked separately, thevfork replace the cur-
rent program with a new one without changing id.
So in the case ofvfork the system calls recorded in
the buffer have no relevance, and hence the buffer is
cleared. The same applies to theexec system call,
which replaces the calling program with a new one
program code; also in this case we clear the buffer.

Modes of Operation. As mentioned before, the in-
trusion detection system can operate in two modes:
synchronous or asynchronous. In the synchronous
modality, each system call intercepted by Xenini is
delayed until the IDS has verified that the behavior is
normal. In the asynchronous modality, Xenini sends
to the IDS the data about the intercepted system call,
and proceeds immediately with the execution of the
system call. Thus, the decision (and possibly the ac-
tion) of the IDS is decoupled from the interception, as
it may be delayed with respect to the compromising
system call. As we will see in the next section, these
two modes present quite different performances.

4 DISCUSSION

Detection Testing. In order to evaluate the detec-
tion ability of XenIDS, we can refer to two datasets of
syscall traces available from the Artificial Intelligence
Laboratory at MIT, and the Department of Com-
puter Science, University of New Mexico (UNM)
(Hofmeyr et al., 1998; Hofmeyr et al., 1999).

Since the database of XenIds collects sequences
from different programs, we have created a system
call trace by combining a trace of 300,000 system
calls obtained by logging an “idle” Linux virtual ma-
chine, with about 1900 unique sequences from MIT
and UNM datasets for the program “sendmail” (which
contain also sequences arising from various attacks).
The resulting trace contains system calls from 18
Linux services, including sendmail and apache2.

This trace has been submitted both to the original
Stide algorithm (which uses the database for sendmail
only) and to XenIds (which uses instead the database
containing sequences from all processes), with the
following parameters:

• sequence length (stide)k = 6;

• locality frame count equal to 100;

• threshold = 6%.

The following table summarize the results of this test,
for several attacks to sendmail.

Attack mismatch Stide XenIds
decode 8% yes yes
syslog 30% yes yes
fw-loop 16% yes yes
sscp 26% yes yes
sm5x 35% yes yes

Therefore, we can conclude that on these sample trace
sets, our IDS has the same detection skill of the origi-
nal Stide algorithm: no false negative has been found.
This does not guarantee that using a single sequence
database for all programs isalways as precise as us-
ing a separate database for each program: a sequence
which could be suspicious for a process, could be
valid for another. It is worthwhile to notice that using
a single sequence database does not affect the false
positive rate. Indeed, if a valid call sequence is not
recognized by our IDS, it means that it does not ap-
pear in the trace set of any program; but then, also the
original Stide algorithm would not recognized it.

As another test, we have installed a simple server
running on a Linux virtual machine, which receives
strings over the network and saves them on a file. The
IDS has been trained with the trace coming from the
following cases:

• strings of 10 characters, and of 200 characters;

• termination of the server using SIGINT.

Then, we have changed the behavior of the pro-
cess in two ways. First, we have not changed the pro-
gram, but only the data it has to deal with, and how it
is terminated:

• strings of 25 characters, and of 100 characters;

• termination using SIGKILL.

Secondly, we have modified the program, in or-
der to simulate an intruder that introduces malicious
changes. The modifications we have introduced are:

• write a copy of the data in a different location;

• opens a backdoor (a system shell);

• sends a copy of the data to a remote address.

SECRYPT 2011 - International Conference on Security and Cryptography

304



The following table summarize the answer of XenIds;
for this experiment the lengthk is 6, the size of LFC
is 100 and the threshold value is 15%.

Change Mismatch Anomaly?
strings of 25 chars < 15% No
strings of 100 chars < 15% No
closing using kill < 15% No
local copy string 20% Yes
open a system shell 50% Yes
remote copy string 30% Yes

In all cases, the IDS detects correctly the modified
sequences. We must observe that the accuracy of the
system depends mainly on two factors: the threshold,
and the accuracy of data collected. We noticed that
tests carried out without adequate preparation led to
a false positive rate of 50% for some processes. The
same applies to a very low threshold, i.e. of less than
6%, the false positive rate is always high, and stands
at 15-20% for new jobs. On the other hand, with
the threshold at 15% and a “well-trained” database,
we found no false positives for the traces under test.
However, XenIds stays “on the safe side”, since has
identified all the attacks carried out in programs, i.e.,
there have been no false negatives.

Performance. In order to run a sample performance
analysis, we installed a Linux virtual machine with
the Apache web server v2.2, that responds to requests
for a simple PHP page. To simulate the requests we
have used the “Apache Benchmark”ab tool. The tests
have been performed for four different scenarios:

1. Xen (version 4.0.1) native, without modifications
(i.e., without Xenini).

2. Xen with Xenini, but interception is not acti-
vated: the hypervisor is patched with Xenini, and
XenIDS is running on Dom0, but interception is
disabled. This test is carried out to check the im-
pact of additional controls.

3. Xen with interception activated, and IDS in asyn-
chronous mode.

4. Xen with Xenini active and IDS in synchronous
mode (i.e., the hypervisor waits for the answer
from the IDS for each system call).

For each case, we have run three tests:

• 50,000 requests, concurrency level=2 (i.e., 2 par-
allel requests at a time);

• 50,000 requests, concurrency level=50;

• 100,000 requests, concurrency level=5.

The results are shown in Figure 3. These tests point

Figure 3: Performance analysis.

out that the patch, when inactive, introduces an over-
head of about 5-6%, which is due to controls on in-
terrupts 0x80 and 0x82 and inspections on some flags
for intercepting calls. Instead, when the interception
is activated, and XenIds operates asynchronously, the
overhead is about 40%; this is due to monitoring, re-
porting and analysis of all system call. However, we
consider this overhead still acceptable for a real-time,
online monitoring. Finally, the tests with XenIds in
synchronous modality have exhibited a drastic over-
head; in fact, the system becomes so slow that seems
to be in deadlock. Thus, we can say that synchronous
modality cannot be used for on-line production sys-
tems, but only for testing purposes.

5 CONCLUSIONS

In this work we have described Xenini and XenIds, a
system for detecting intrusion in paravirtualized Xen,
unobservable by guest applications. This has been
possible by intercepting system calls in the hypervi-
sor, and passing this information to a IDS running in
Dom0, through a Xen communication channel. The
algorithm for the analysis of system call traces that
we have implemented is a variant of Stide, which we
have experimentally verified to have a good perfor-
mance on intrusion detection, at the price of an ac-
ceptable overhead.

Related Work. One of the first implementations of
using virtual machines for intrusion detection and pre-
vention is Livewire (Garfinkel and Rosenblum, 2003).
Their approach differs from ours in many aspects;
e.g. the IDS can inspect directly the virtual machine’s
memory, but only the low-level internal state of the
virtual machine is observed, not the activity of each
guest process. Also the actions that the IDS can take
are quite limited: it can either suspend or restart a vir-
tual machine. Memory inspection of Xen virtualized
machines is also used in PsycoTrace (Baiardi et al.,
2009), which adopts a “white box” approach, i.e., it

UNOBSERVABLE INTRUSION DETECTION BASED ON CALL TRACES IN PARAVIRTUALIZED SYSTEMS

305



analyzes the program memory in order to detect pos-
sible anomalies. Moreover PsycoTrace is not trans-
parent, since it requires a module to be installed on
the monitored machines. The same issue affects the
solution proposed by (Payne et al., 2008), where an
active monitoring for Xen is implemented by a spe-
cific “security driver” to be loaded in the kernel of
monitored machines. However, (Bahram et al., 2010)
have shown that approaches based on virtual memory
introspection can be fooled by the “DKSM attack”

On the other hand, VMScope (Jiang and Wang,
2007) only logs system calls and their arguments (on
QEMU), without any memory inspection. However,
VMScope is used only fora posteriori trace analysis
and attack reconstruction, since it lacks a real IDS.

Finally, the work closest to ours is (Laureano
et al., 2007), which adopts a mechanism for sys-
tem call logging similar to ours (but for User-Mode
Linux). Their intrusion detection methodology in-
tegrates Stide with access control lists: “sensible”
(i.e., possibly dangerous) system calls can be exe-
cuted only by some pre-determined programs; for
each process, the path of the corresponding program
is obtained by direct memory introspection. There-
fore, this approach is not as strictly “black-box” as
ours. Moreover, the DKSM attack could be used for
obfuscating the program names, thus misleading the
IDS.

Future Developments. Although the experimental
evaluation carried out in this paper is encouraging,
keeping the sequences from all programs in a single
database may not scale up as the number of programs
and guest OSs will increase. A possible approach is
to create a separate database for each program (i.e.,
profile), but this raises the issue of how to identify a
program just by its trace of system calls. To this end,
one could use an Hamming distance between a given
process syscall trace, and the profiles (i.e., programs)
present in the database; the profile associated with the
process will be the one with the lowest Hamming dis-
tance. Alternatively, one could create statistical pro-
files based on the distributions of system calls of each
program, and classify processes accordingly.

Finally, it is interesting to investigate whether the
interception mechanism could be detected by means
of some “side channel”. In particular, the intercep-
tion process necessarily introduces some overhead,
increasing the time of system call execution. An at-
tacker could detect this extra delay and use it to distin-
guish an observed system from a non-observed one.
However, this seems unlikely, because virtualization
itself introduces a similar delay, which can be also
quite varying according to several parameters (e.g.
system load, number of virtualized systems, etc.).

REFERENCES

Bahram, S., Jiang, X., Wang, Z., Grace, M., Li, J., Srini-
vasan, D., Rhee, J., and Xu, D. (2010). DKSM:
Subverting virtual machine introspection for fun and
profit. Symp. Reliable Distributed Systems, 82–91.

Baiardi, F., Maggiari, D., Sgandurra, D., and Tamberi, F.
(2009). Transparent process monitoring in a virtual
environment.ENTCS, 85–100.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T. L.,
Ho, A., Neugebauer, R., Pratt, I., and Warfield, A.
(2003). Xen and the art of virtualization. InProc.
SOSP, 164–177.

Cohen, W. W. (1995). Fast effective rule induction.In Ma-
chine Learning: the 12th International Conference.

Forrest, S., Hofmeyr, S., and Somayaji, A. (1997). Com-
puter immunology.Comm. ACM, 40(10), 88–96.

Forrest, S., Hofmeyr, S., Somayaji, A., and Longstaff, T.
(1996). A sense of self for UNIX process.Proc. IEEE
Symp. on Security and Privacy, 120–128.

Garfinkel, T. and Rosenblum, M. (2003). A virtual machine
introspection based architecture for intrusion detec-
tion. In Proc. NDSS. The Internet Society.

Helman, P. and Bangoo, J. (1997). A statistically based
system for prioritizing information exploration under
uncertainty. IEEE Transaction on System, Man and
Cybernetics, 27(4), 449–466.

Hofmeyr, S., Somayaji, A., and Forrest, S. (1998). Intrusion
detection using sequences of system calls.Journal of
computer security 6(3), 151–180.

Hofmeyr, S., Somayaji, A., and Forrest, S. (1999). Com-
puter immune systems.

Jiang, X. and Wang, X. (2007). Out-of-the-box mon-
itoring of VM-based high-interaction honeypots.
Proc. RAID’07, 198–218.

Laureano, M., Maziero, C., and Jamhour, E. (2007). Pro-
tecting host-based intrusion detectors through virtual
machines.Computer Networks 51, 1275–1283.

Lee, W. and Stolfo, J. (1998). Data mining approaches for
intrusion detection.Proc. 7th USENIX Security Symp.

Lee, W., Stolfo, J., and Chan, P. (1997). Learning patterns
from UNIX process execution traces for intrusion de-
tection. AAAI Workshop on AI Approaches to Fraud
Detection and Risk Management, 50–56.

Payne, B. D., Carbone, M., Sharif, M., and Lee, W. (2008).
Lares: An architecture for secure active monitoring
using virtualization. Proc. IEEE Symp. on Security
and Privacy, 233–247.

Warrender, C., Forrest, S., and Pearlmutter, B. (1999). De-
tecting intrusions using system calls: Alternative data
models.Proc. IEEE Symposium on Security and Pri-
vacy, 133–145.

Zhang, X., J. Li, Z. J., and Feng, H. (2007). Black-box ex-
traction of funtional structures from system call traces
for intrusion detection.Advanced Intelligent Comput-
ing Theories and Application, 135–144.

SECRYPT 2011 - International Conference on Security and Cryptography

306


