
SOFTWARE DEVELOPMENT ASPECTS OF OUT-OF-CORE DATA
MANAGEMENT FOR PLANETARY TERRAIN

Cody J. White, Sergiu M. Dascalu and Frederick C. Harris, Jr.
University of Nevada, Reno, U.S.A.

Keywords: Terrain-rendering, Data management, Out-of-core, GPU, Software requirements, Software design.

Abstract: Rendering terrain on a planetary scale can quickly become a large problem. Many challenges arise when
attempting to render terrain over a spherical body as well as deal with the large amount of data that needs to
be used to accurately display the terrain of a planet. Most research in the area of terrain rendering is specific
to a given region of a planet, therefore needing few datasets for a proper rendering. However, since planets are
made up of larger areas, a different approach needs to be taken in order to display high-detail terrain around a
viewer while sorting through the large amount of planetary data available. Additionally, since modern desktops
have a relatively small amount of memory, a system to swap data from the hard drive into graphics processing
unit (GPU) memory must be created. Therefore, we present the software design for a data caching mechanism
which can efficiently swap only the data around a viewer into and out of the GPU memory in real-time. We
also present a prototype of the software which achieves efficient framerates for high-quality views of a planet’s
surface while minimizing the time it takes to find data centered around a viewer and display it to the screen.

1 INTRODUCTION

Terrain rendering has been at the forefront of re-
search for many years, especially in the fields of video
games, scientific visualization, and training simula-
tions. While many problems have been solved, lit-
tle has been done to address the issues surrounding
rendering terrain on a planetary-scale. These com-
plexities arise from both the shape of a planet as
well as the amount of data that must be used in or-
der to accurately render the planet in detail. While
there have been many solutions for rendering plane-
tary bodies, (Mahsman, 2010), (Cignoni et al., 2003),
the problem of dealing with large amounts of data still
needs to be fully addressed.

A planet’s surface is typically made up of many
datasets which describe the various geographical ar-
eas, ranging form very small in size to terabytes of in-
formation. Fortunately, there has been a large amount
of research in dealing with extremely large datasets
for terrain rendering (Cignoni et al., 2003), (Dick
et al., 2009), (Kooima et al., 2009). As this is the
first step to generating realistic terrain, it has received
much attention. Typically, the data is organized into a
spatial hierarchy and then chosen for rendering based
on a user-specified search criteria. Using this ap-
proach, only the data surrounding a user needs to be

in memory while the rest can safely remain on the
hard drive until it is needed. While this process is ex-
tremely helpful in handling large datasets efficiently,
it does not solve the problem of multiple datasets
needing to be considered. Therefore, an extension to
this approach must be devised.

As planets are of a fairly predictable shape, a
bounding box can be constructed which tightly con-
tains them. Using this information, it can be possi-
ble to construct a spatial subdivision hierarchy which
covers the region of the entire planet. This hierarchy
can then contain information for the system to deter-
mine which datasets that exist on the planet are cur-
rently in view. Using this approach, the use of a large
amount of datasets is simple to deal with. Addition-
ally, inserting new data into the hierarchy becomes
a trivial operation. Once the hierarchy has been cre-
ated, it can exist in the main memory without any data
loaded to simply determine the visibility of datasets.

As a core requirement of terrain renderers, the al-
gorithm should work in real time. To achieve this re-
sult, the data cacher should take advantage of both
CPU and graphics processing unit (GPU) parallel pro-
cessing. Much of the searching and data swapping
can occur in parallel, freeing up system resources
for the terrain renderer being used. Since the ter-
rain renderer can use data already loaded into mem-

185J. White C., M. Dascalu S., C. Harris and Jr. F..
SOFTWARE DEVELOPMENT ASPECTS OF OUT-OF-CORE DATA MANAGEMENT FOR PLANETARY TERRAIN.
DOI: 10.5220/0003509201850191
In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 185-191
ISBN: 978-989-8425-77-5
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



ory, the data cacher can work independently of the
renderer for its searching operations. The GPU can
also be used to perform composition of terrain data
into a final image for use in the generation of a three-
dimensional mesh, similar to (Kooima et al., 2009).

We present the software development aspects for
the creation of a data caching system as described in
the thesisOut-of-Core Data Management for Plan-
etary Terrain(White, 2011). This system processes
the many datasets that compose a full planet and ef-
ficiently swaps them in and out of GPU memory in
real time. As the data caching system should not in-
terfere with the rendering, the system utilizes parallel
processing to resolve this issue. Additionally, the sys-
tem supports the addition of new datasets at runtime
to allow the user to render data which is not part of
the pre-built data cache. Figure 1 shows a resulting
frame from our proposed algorithm and system.

Figure 1: Global view of the planet Mars.

In this paper, we start with a brief survey of related
work (Section 2). Our software has been designed
with several considerations in mind which strive to
hide the complexities of data caching from the user
(Section 3). Instead of creating a new terrain ren-
derer to test the software, we integrated our algorithm
with the Hesperian terrain rendering library (Mahs-
man, 2010). Upon testing our software with the ter-
rain renderer, we’ve seen a noticeable improvement in
both the visual quality of the rendered terrain as well
as the overall efficiency of the system (Section 4). Ad-
ditionally, we present some ideas for a future expan-
sion of the software system (Section 5).

2 RELATED WORK

A common approach to breaking datasets into
smaller, more memory cohesive chunks is to subdi-
vide them into a quadtree hierarchy (Lindstrom et al.,
1996), (de Boer, 2000), (Lindstrom and Pascucci,
2001). This type of structure is used because it splits

data into four equal-sized chunks per node until a pre-
defined threshold has been met whereupon mipmap-
ping can occur. Using this approach, datasets can be
broken down and stored as pieces of the whole im-
age so that only the parts that are needed can be used
for rendering. Typically, the high-resolution imagery
is stored in the leaf nodes of the tree and the parent
nodes contain successively lower resolution versions
of their four children. Therefore, different levels of
the tree relate to a different level-of-detail (LOD) for
the given dataset.

A simple algorithm for mapping many differ-
ent datasets together is known as deferred textur-
ing (Kooima et al., 2009). Using this, a texture atlas
can be created which stores all of the loaded datasets
for access by the GPU. This method easily relates to
planetary data as each chunk of the atlas can repre-
sent a geographical region of the visible area. While
this helps to solve the issue of compositing multiple
datasets together on a planetary scale, the system im-
plemented in (Kooima et al., 2009) is unable of ren-
dering without a search pass through their hierarchies.
Therefore, the overall speed of the system is depen-
dant on the efficiency of their data swapping mech-
anism. This limitation forces the terrain renderer to
work at the speed of the hard drive and memory bus,
which restricts how often a frame can be rendered.
However, a data-caching system should not inhibit the
renderer’s performance. Therefore, it is an important
aspect for our system to decouple the data caching
and rendering through the use of CPU parallel pro-
cessing. Additionally, a generic data cacher should
be independent of the type of renderer being used, be
it ray or triangle-based. Our system then, has been
designed with this constraint in mind.

3 SOFTWARE DEVELOPMENT

In order to accurately define our system, we must first
determine the functional and non-functional require-
ments (Sommerville, 2010) (Pressman, 2010) (Sec-
tion 3.1). Additionally, it is imperative to understand
the user’s needs for the system (Section 3.2).

3.1 Requirements

Our proposed system is designed to work across dif-
ferent display types as well as different operating sys-
tems. In order to do this, we must make our imple-
mentation both thread-safe (Lin and Snyder, 2009)
and rendering context-safe. Additionally, we make
use of cross-platform APIs (Daughtry et al., 2009)
such as OpenGL (Angel, 2008) and GDAL (GDAL,

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

186



2011). This way, our library can be used on any oper-
ating system/display environment without any change
to the algorithm, making it more applicable to any ter-
rain renderer.

In this NASA funded project, we chose to ren-
der the planet Mars. However, because we use
GDAL to determine the projection information for
all of our datasets, any spherical body can be ren-
dered if the data is available. Most of this data,
which is represented as either height, color, or normal
data, can be obtained directly from NASA (NASA,
1976), (NASA, JPL, and University of Arizona,
2011), (NASA Goddard Space Flight Center, 1996).
Additionally, as NASA has many missions to map
similar regions of planets, there is a large possibil-
ity of there being overlapping data for a given region.
For this reason, a composition algorithm is used to
accurately deal with overlapping datasets.

At any time, the user is able to add new data to
the data-cache for viewing. Once processed, this data
will be shown to the screen if the viewer is in the area
where the new terrain is located. Since we do not want
the data cacher to inhibit the realistic terrain render-
ing, we utilize the multi-core power of modern CPUs
and push all searching, uploading of patch data, and
addition of new data to separate threads.

Using common projection equations (Eliason,
2007) we are able to place any dataset in the proper
geographic location. Currently, our implementation
supports both equirectangular and polar stereographic
projections. However, more projection types could
be trivially added. As different data can be stored in
these projections, it is imperative to use the proper
projection when transforming the projection coordi-
nates into texture coordinates or the image will have
continuity problems related to an improper projection.

These functional and non-functional requirements
are listed in Table 1 and Table 2 respectively.

Table 1: Functional requirements.

F01 The library will read a standard data format.
F02 The library will allow variable patch sizes.
F03 The library will allow for new data.
F04 The library will composite overlapped data.
F05 The library will allow variable LOD error.
F06 The library will allow scalable memory use.
F07 The library will preprocess terrain data.
F08 The library will select the proper LOD.
F09 The library will display datasets correctly
F10 The library will use threads.
F11 The library will make use of the GPU.
F12 The library will provide a simple interface.

Table 2: Non-functional requirements.

N01 The system will be implemented as a library
N02 The library will be implemented using C++.
N03 The library will be thread safe.
N04 The library will be rendering context safe.
N05 The library will use OpenGL.
N06 The library will use GLSL.
N07 The library will use GDAL

3.2 Use Cases

The user of this application is considered to be a ter-
rain renderer. Therefore, we provide a simple inter-
face into our data caching mechanism library for easy
use of its complex features.

Prior to any terrain renderer being able to use the
data cacher, a preprocessing step must be performed
which places the data into a state which is suitable
for rendering. This includes building mipmap hier-
archies (Lindstrom et al., 1996), the dataset bound-
ing volume hierarchy (BVH), and pre-determining
dataset errors. Once the data is processed, it is writ-
ten to the hard drive and stored for later use. These
written files then make up the data cache. This func-
tionality is simple to use in our library as the interface
can accept a list of datasets to preprocess. Once this
step has been completed, the renderer is able to use
the data cache for rendering purposes.

Figure 2: Use cases for the data-caching library.

At runtime, the terrain renderer can add new data
to the data cache which can either be saved to the data
cache or discarded upon program exit. Additionally,
the application can search for new data to render and
have that data composited into one final image for use
in mesh generation. At program initialization, the ren-
derer can specify the maximum amount of memory to

SOFTWARE DEVELOPMENT ASPECTS OF OUT-OF-CORE DATA MANAGEMENT FOR PLANETARY TERRAIN

187



be in use by the data-caching system as well as the
maximum screen-space error allowable for LOD se-
lection.

These use cases (Somé, 2006) are shown in Fig-
ure 2.

3.3 Classes

As we have strived to maintain usability and simplic-
ity in the use of our implementation, we have written
the code in as few classes as possible. For easy inte-
gration, the user only interacts with one class which is
used to hide the complexities of the system beneath it.
An overview of these classes can be seen in the class
diagram (Taylor et al., 2010) presented in Figure 3.

Figure 3: Class diagram for the data-caching library.

TheDataCacher class acts as an interface into the
rest of the system. With this class, the user can pre-
process data, search for renderable terrain patches, in-
sert new data, and set the required parameters for li-
brary use. At runtime, we initialize our data by read-
ing the input files and building skeleton versions of
the data structures without any loaded image data.
Both the structure of the BVH as well as the datasets
are stored in a file for reading. As each node is
built into the structure, the accompanying datasets are
read and created in memory. Each dataset contains a
TextureQuadtree which contains information about
the various levels-of-detail that each dataset supports
as well as projection data specific to the dataset. We
have developed theProjectionParser class which
obtains all of the necessary projection information for
a particular dataset.

To simplify the code, all GDAL commands are
contained within theDataExtractor class. Using
this class, the system can determine projection infor-
mation, obtain regions of pixel data, and calculate the

projection coordinates of a dataset. In order to sup-
port rendering-context safety, we allow for multiple
terrain patch queues to exist (one per graphics con-
text). Therefore, different displays that are looking in
different directions in a virtual world are able to load
in their own relative data. To make this process work,
we also need to implement the search algorithm using
different search threads per context; therefore, each
context can be searched simultaneously without any
holdup by one display in the system. We support this
type of runtime environment by utilizing per context
data which segregates the terrain data for each con-
text into separate instances of any class that needs to
be context-safe.

Outside of providing just an interface, the
DataCacher class also takes care of maintaining the
queue of visible terrain patches by determining if too
much memory has been consumed. Old data patches
are discarded to the hard drive until the system is
no longer using more than the maximum amount
of memory. This class also uploads all patches to
the GPU by the creation of a texture atlas, similar
to (Kooima et al., 2009). While the atlas is being up-
loaded, a legend is also being created which details
where each dataset resides in the atlas, as well as per
dataset information required by the GPU for compo-
sition. As a final step, the center of each dataset in
world coordinates is saved in a vertex buffer object
(VBO) for rendering. Once the atlas has been up-
loaded, the GPU takes over for the final steps of the
implementation.

3.4 GPU

Using programmable shaders (Rost, 2008), we are
able to speed up the composition step by use of the
GPU. OpenGL gives us easy access to the geometry
and fragment shaders which we can use for texture
overlay options in order to create a resulting texture
that the terrain renderer can use for mesh generation.
As mentioned in the previous section, a texture atlas
along with a legend for the atlas and a VBO of points
is created for use by the GPU. Both of the shaders
work together to produce the final image.

Geometry Shader. The geometry shader in the
graphics pipeline can be used to turn incoming points
into solid geometry. For our purposes, we trans-
form the points defining the center of each dataset
into screen-aligned quads which are received by the
fragment shader. An activity diagram (Arlow and
Neustadt, 2005) depicting the flow of events in this
algorithm is shown in Figure 4.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

188



Figure 4: Generation of screen-aligned quads.

Once the quad has been generated, it is automati-
cally sent to the fragment shader by the GPU.

Fragment Shader. Using the fragment shader, we
can directly affect the outcome of a pixel color on the
currently-bound frame buffer. Each fragment of the
output quad gets processed as shown in Figure 5.

Figure 5: Data composition into final the texture.

3.5 Deployment

Since the data cacher is designed to handle three sepa-
rate types of data (color, height, and normal), a thread
is launched for each type to search their respective
subtrees individually. Therefore, each data type is

Figure 6: Deployment diagram for the system.

processed independently of each other so as to not
place a large search overhead on the system. The
main thread then takes care of uploading data to the
GPU and initiating the composition steps. This lay-
out can be seen in the deployment diagram (Arlow
and Neustadt, 2005) presented in Figure 6.

4 RESULTS

To test the functionality of the system, we imple-
mented the class structure from Section 3.3 along with
the Hesperian terrain renderer (Mahsman, 2010). To
accurately test our solution, we implemented it in a
virtual reality (VR) system via Hydra (Hydra, 2010)
as well as on a desktop platform using the Qt devel-
opment environment (Nokia, 2011). A resulting im-
age from the desktop version can be seen in Figure 7.
From the desktop view, a user is able to move about
the planet, adjust the datasets in use by the system,
add new data, and edit lighting and scaling factors.
Further figures are from the VR version.

4.1 Experimental Method

To test the execution time of the algorithm, we used
a machine with an Intel Core i7 processor running at
2.8GHz and 8GB of RAM. In addition, we used an
Nvidia GeForce GTX 480 graphics card.

For all tests performed, the system has loaded
5.5GB of terrain data for use in the visualization.

SOFTWARE DEVELOPMENT ASPECTS OF OUT-OF-CORE DATA MANAGEMENT FOR PLANETARY TERRAIN

189



Figure 7: Desktop version of the implemented system.

Since Hesperian is designed to render the planet Mars,
all resulting images shown are of the Martian surface.

4.2 Results and Analysis

To determine if the implemented system was success-
ful, we performed numerous tests against a base ver-
sion of the Hesperian terrain rendering library. This
base version supports no out-of-core data streaming
mechanism and therefore can only use data that fits
within system memory. Visually, our algorithm per-
forms much better as it is capable of handling high-
quality data, as can be seen in the comparison be-
tween Figure 9 and Figure 8.

Figure 8: Olympus Mons from Hesperian.

Outside of visual results, it was determined that
our system ran nearly 10% faster than the base Hes-
perian implementation (White, 2011). This is largely
due the fact that our algorithm has knowledge of the
datasets and can create tightly-fitting bounding ge-
ometry around them in the geometry shader whereas
Hesperian must render a full-screen quadric for every
dataset during the composition pass of the rendering
algorithm. Therefore, less screen pixels need to be

Figure 9: Olympus Mons from our algorithm.

executed by the GPU from our implementation, de-
creasing the runtime of the composition step.

In order to prove that the parallelization of the
data caching algorithm was effective, we needed to
determine that the implemented system was decou-
pled from the terrain renderer. From our analysis, we
calculated that approximately 4% of the overall exe-
cution time for each frame of the visualization is spent
dealing with our data caching system. Therefore, we
can show that our system is in fact decoupled from the
terrain renderer as the remaining 96% of the execution
time is spent in the Hesperian system rendering to the
screen. From this, we can determine that the system
is successful in not forcing a constraint on the over-
all rendering system performance from searching the
dataset hierarchies and uploading data to the GPU for
insertion into the texture atlas.

5 CONCLUSIONS

We have presented the software design for an out-of-
core data caching mechanism designed to work for
a planetary terrain renderer. By breaking the prob-
lem down into manageable classes, we have created a
simple to maintain and use system which can easily
be integrated into a terrain rendering system which
uses either a triangle or a ray-based terrain generation
approach. In utilizing the GPU, the system is able to
approach efficient run time speeds. Additionally, the
design of a GPU algorithm means that this system will
need no modification for future hardware as GPU ar-
chitecture improves due to the fact that the GPU code
is written in GLSL, which automatically scales with
the number of cores present (Rost, 2008).

From the analysis of our results, we have proven
that the system is both efficient and decoupled from
the terrain renderer. Therefore, if the system were
to be integrated with other terrain renderers, no no-
ticeable drops in framerates should occur. We have
achieved this through the parallelization of our search

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

190



algorithms as well as a joint CPU-GPU design which
offloads heavy work onto the GPU.

To further improve the system, a data compres-
sion system could be implemented to allow for com-
pressed terrain data to exist on the hard drive. Using
this approach, data is compressed by the terrain pre-
processing step and stored for future searches. Once
the data is uploaded to the GPU, it is uncompressed
into its original form for use. The performance benefit
from this method is directly related to the amount of
data being read from the hard drive and to the GPU.

ACKNOWLEDGEMENTS

This work was funded by NASA EPSCoR, grant #
NSHE 08-51, and Nevada NASA EPSCoR, grants #
NSHE 08-52, NSHE 09-41, and NSHE 10-69.

REFERENCES

Angel, E. (2008). Interactive Computer Graphics: A
Top-Down Approach Using OpenGL, pages 289–304,
492–495. Addison Wesley, 5th edition.

Arlow, J. and Neustadt, I. (2005).UML 2 and the Unified
Process. Addison-Wesley, 2nd edition.

Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Pon-
chio, F., and Scopigno, R. (2003). Planet-sized
batched dynamic adaptive meshes (P-BDAM). InPro-
ceedings of the 14th IEEE Visualization 2003, pages
147–154. IEEE Computer Society.

Daughtry, J. M., Farooq, U., Stylos, J., and Myers, B. A.
(2009). API usability: CHI’2009 special interest
group meeting. InProceedings of the 27th Interna-
tional Conference on Human Factors in Computing
Systems, CHI ’09, pages 2771–2774, New York, NY,
USA. ACM.

de Boer, W. (2000). Fast terrain rendering using geometical
mipmapping. http://www.connectii.net/emersion.

Dick, C., Krüger, J., and Westermann, R. (2009). GPU
ray-casting for scalable terrain rendering. InProceed-
ings of Eurographics 2009–Areas Papers, pages 43–
50. Eurographics Association.

Eliason, E. (2007). Hirise catalog. http://hirise.lpl.arizona.
edu/PDS/CATALOG/DSMAP.CAT (Accessed July
21, 2010).

GDAL (2011). GDAL - Geospatial Data Abstraction Li-
brary. http://www.gdal.org (Accessed July 21, 2010).

Hydra (2010). Hydra. http://www.cse.unr.edu/hpcvis/
hydra/ (Accessed August 26, 2010).

Kooima, R., Leigh, J., Johnson, A., Roberts, D., SubbaRao,
M., and DeFanti, T. (2009). Planetary-scale terrain
composition.IEEE Transactions on Visualization and
Computer Graphics, 15(5):719–733.

Lin, C. and Snyder, L. (2009).Principles of Parallel Pro-
gramming. Addison-Wesley, 1st edition.

Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L. F.,
Faust, N., and Turner, G. A. (1996). Real-time, contin-
uous level of detail rendering of height fields. InSIG-
GRAPH ’96: Proceedings of the 23rd Annual Con-
ference on Computer Graphics and Interactive Tech-
niques, pages 109–118. ACM.

Lindstrom, P. and Pascucci, V. (2001). Visualization of
large terrains made easy. InIEEE Visualization 2001.

Mahsman, J. D. (2010). Projective grid mapping for plane-
tary terrain. Master’s thesis, Department of Computer
Science and Engineering, University of Nevada, Reno.

NASA (1976). Mars - images of mars.
http://www.nasa.gov/missionpages/mars/images/
index.html (Accessed December 10, 2010).

NASA Goddard Space Flight Center (1996). The Mars Or-
biter Laster Altimiter. http://mola.gsfc.nasa.gov (Ac-
cessed April 21, 2010).

NASA, JPL, and University of Arizona (2011). HiRISE:
High Resolution Imaging Science Experiment.
http://hirise.lpl.arizona.edu (Accessed July 21, 2010).

Nokia (2011). Qt - a cross-platform application and UI
framework. http://qt.nokia.com/products/.

Pressman, R. S. (2010).Software Engineering: A Practi-
tioner’s Approach. McGraw-Hill, 7th edition.

Rost, R. J. (2008).OpenGL Shading Language. Addison-
Wesley, 2nd edition.

Somé, S. S. (2006). Supporting use case based requirements
engineering.Inf. Softw. Technol., 48:43–58.

Sommerville, I. (2010).Software Engineering. Addison-
Wesley, 9th edition.

Taylor, R. N., Medvidovic, N., and Dashofy, E. (2010).
Software Architecture: Foundations, Theory, and
Practice. Wiley, 1st edition.

White, C. J. (2011). Out-of-core data management for plan-
etary terrain. Master’s thesis, Department of Com-
puter Science and Engineering, University of Nevada,
Reno.

SOFTWARE DEVELOPMENT ASPECTS OF OUT-OF-CORE DATA MANAGEMENT FOR PLANETARY TERRAIN

191


