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Abstract: Evolutionary algorithms are affected by more parameters than optimization methods typically. This is at the 
same time a source of their robustness as well as a source of frustration in designing them. Adaptation can 
be used not only for finding solutions to a given problem, but also for tuning genetic algorithms to the 
particular problem. Adaptation can be applied to problems as well as to evolutionary processes. In the first 
case adaptation modifies some components of genetic algorithms to provide an appropriate form of the 
algorithm, which meets the nature of the given problem. These components could be any of representation, 
crossover, mutation and selection. In the second case, adaptation suggests a way to tune the parameters of 
the changing configuration of genetic algorithms while solving the problem. In this paper two new self-
adaptive mutation operators; integer and decimal mutation are proposed for implementing efficient 
mutation in the evolutionary process of genetic algorithm for function optimization. Experimentation with 
27 test cases and 1350 runs proved the efficiency of these operators in solving optimization problems. 

1 INTRODUCTION 

Evolutionary algorithms are heuristic algorithms, 
which imitate the natural evolutionary process and 
try to build better solutions by gradually improving 
present solution candidates. It is generally accepted 
that any evolutionary algorithm must have five basic 
components: 1) a genetic representation of a number 
of solutions to the problem, 2) a way to create an 
initial population of solutions, 3) an evaluation 
function for rating solutions in terms of their 
“fitness”, 4) “genetic” operators that alter the 
genetic composition of offspring during 
reproduction, 5) values for the parameters, e.g. 
population size, probabilities of applying genetic 
operators (Michalewicz, 2000). 

Genetic algorithm is an evolutionary algorithm, 
which starts the solution process by randomly 
generating the initial population and then refining 
the present solutions through natural like operators, 
like crossover and mutation. The behaviour of the 
genetic algorithm can be adjusted by parameters, 
like the size of the initial population, the number of 
times genetic operators are applied and how these 
genetic operators are implemented. Deciding on the 
best possible parameter values over the genetic run 

is a challenging task, which has made researchers 
busy with developing even better and efficient 
techniques than the existing ones.   

2 GENETIC ALGORITHM 

Most often genetic algorithms (GAs) have at least 
the following elements in common: populations of 
chromosomes, selection according to fitness, 
crossover to produce new offspring, and random 
mutation of new offspring.  

A simple GA works as follows: 1) A population 
of l -bit strings (chromosomes) is randomly 
generated, 2) the fitness )(xf  of each 
chromosome x in the population is calculated, 3) 
chromosomes are selected to go through crossover 
and mutation operators with pc  and pm  probabilities 
respectively, 4) the old population is replace by the 
new one, 5) the process is continued until the 
termination conditions are met. 

However, more sophisticated genetic algorithms 
typically include other intelligent operators, which 
apply to the specific problem. In addition, the whole 
algorithm is normally implemented in a novel way 
with user-defined features while for instance 
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measuring and controlling parameters, which affect 
the behaviour of the algorithm.    

2.1 Genetic Operators 

For any evolutionary computation technique, the 
representation of an individual in the population and 
the set of operators used to alter its genetic code 
constitute probably the two most important 
components of the system. Therefore, an appropriate 
representation (encoding) of problem variables must 
be chosen along with the appropriate evolutionary 
computation operators. The reverse is also true; 
operators must match the representation. Data might 
be represented in different formats: binary strings, 
real-valued vectors, permutations, finite-state 
machines, parse trees and so on. Decision on what 
genetic operators to use greatly depends on the 
encoding strategy of the GA. For each 
representation, several operators might be employed 
(Michalewicz, 2000). The most commonly used 
genetic operators are crossover and mutation. These 
operators are implemented in different ways for 
binary and real-valued representations. In the 
following, these operators are described in more 
details.    

2.1.1 Crossover 

Crossover is the main distinguishing feature of a 
GA. The simplest form of crossover is single-point: 
a single crossover position is chosen randomly and 
the parts of the two parents after the crossover 
position are exchanged to form two new individuals 
(offspring). The idea is to recombine building blocks 
(schemas) on different strings. However, single-
point crossover has some shortcomings. For 
instance, segments exchanged in the single-point 
crossover always contain the endpoints of the 
strings; it treats endpoints preferentially, and cannot 
combine all possible schemas. For example, it 
cannot combine instances of 11*****1 and 
****11** to form an instance of 11***11* 
(Mitchell, 1998). Moreover, the single-point 
crossover suffers from “positional bias” (Mitchell, 
1998): the location of the bits in the chromosome 
determines the schemas that can be created or 
destroyed by crossover.  

Consequently, schemas with long defining 
lengths are likely to be destroyed under single-point 
crossover. The assumption in single-point crossover 
is that short, low-order schemas are the functional 
building blocks of strings, but the problem is that the 

optimal ordering of bits is not known in advance 
(Mitchell, 1998). Moreover, there may not be any 
way to put all functionally related bits close together 
on a string, since some particular bits might be 
crucial in more than one schema. This might happen 
if for instance in one schema the bit value of a locus 
is 0 and in the other schema the bit value of the 
same locus is 1. Furthermore, the tendency of 
single-point crossover to keep short schemas intact 
can lead to the preservation of so-called hitchhiker 
bits. These are bits that are not part of a desired 
schema, but by being close on the string, hitchhike 
along with the reproduced beneficial schema 
(Mitchell, 1998). 

In two-point crossover, two positions are chosen 
at random and the segments between them are 
exchanged. Two-point crossover reduces positional 
bias and endpoint effect, it is less likely to disrupt 
schemas with large defining lengths, and it can 
combine more schemas than single-point crossover 
(Mitchell, 1998). Two-point crossover has also its 
own shortcomings; it cannot combine all schemas. 

Multipoint-crossover has also been implemented, 
e.g. in one method, the number of crossover points 
for each parent is chosen from a Poisson distribution 
whose mean is a function of the length of the 
chromosome. Another method of implementing 
multipoint-crossover is the “parameterized uniform 
crossover” in which each bit is exchanged with 
probability p , typically 8.05.0 ≤≤ p   (Mitchell, 
1998). In parameterized uniform crossover, any 
schemas contained at different positions in the 
parents can potentially be recombined in the 
offspring; there is no positional bias. This implies 
that uniform crossover can be highly disruptive of 
any schema and may prevent coadapted alleles from 
ever forming in the population (Mitchell, 1998). 

There has been some successful experimentation 
with a crossover method, which adapts the 
distribution of its crossover points by the same 
process of survival of the fittest and recombination 
(Michalewicz, 2000). This was done by inserting 
into the string representation special marks, which 
keep track of the sites in the string where crossover 
occurred. The hope was that if a particular site 
produces poor offspring, the site dies off and vice 
versa. 

The one-point and uniform crossover methods 
have been combined by some researchers through 
extending a chromosomal representation by 
additional bit. There has also been some 
experimentation with other crossovers: segmented 
crossover and shuffle crossover (Eshelman and 
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Schaffer, 1991; Michalewicz, 2000). Segmented 
crossover, a variant of the multipoint, allows the 
number of crossover points to vary. The fixed 
number of crossover points and segments (obtained 
after dividing a chromosome into pieces on 
crossover points) are replaced by a segment switch 
rate, which specifies the probability that a segment 
will end at any point in the string. The shuffle 
crossover is an auxiliary mechanism, which is 
independent of the number of the crossover points. 
It 1) randomly shuffles the bit positions of the two 
strings in tandem, 2) exchanges segments between 
crossover points, and 3) unshuffles the string 
(Michalewicz, 2000). In gene pool recombination, 
genes are randomly picked from the gene pool 
defined by the selected parents. 

There is no definite guidance on when to use 
which variant of crossover. The success or failure of 
a particular crossover operator depends on the 
particular fitness function, encoding, and other 
details of GA. Actually, it is a very important open 
problem to fully understand interactions between 
particular fitness function, encoding, crossover and 
other details of a GA. Commonly, either two-point 
crossover or parameterized uniform crossover has 
been used with the probability of occurrence 

8.07.0 −≈p (Mitchell, 1998). 
Generally, it is assumed that crossover is able to 

recombine highly fit schemas. However, there is 
even some doubt on the usefulness of crossover, e.g. 
in schema analysis of GA, crossover might be 
considered as a “macro-mutation” operator that 
simply allows for large jumps in the search space 
(Mitchell, 1998).   

2.1.2 Mutation 

The common mutation operator used in canonical 
genetic algorithms to manipulate binary strings 

}1,0{),...( 1 =∈= Iaaa  of fixed length  was 
originally introduced by Holland (Holland, 1975) 
for general finite individual spaces AAI ...1 ×= , 
where },...,{

1 lkiiiA αα= . By this definition, the 

mutation operator proceeds by: 
i. determining the position }),...,1{(,...,1 liii jh ∈  to 

undergo mutation by a uniform random 
choice, where each position has the same 
small probability mp  of undergoing mutation, 
independently of what happens at other 
position  

ii. forming the new vector 
),...,,,...,,,,...,( 11111111 aiaiaiaaiaaaia

hhhii +−+− ′′=′ , where 

ii Aa ∈′ is drawn uniformly at random from the 
set of admissible values at position i . 

The original value ia  at a position undergoing 
mutation is not excluded from the random choice of 

ii Aa ∈′ . This implies that although the position is 
chosen for mutation, the corresponding value might 
not change at all (Bäck, Fogel, Whitely, Angeline, 
2000).  

Mutation rate is usually very small, like 0.001 
(Mitchell 1998). A good starting point for the bit-
flip mutation operation in binary encoding is 

LPm
1= , 

where L  is the length of the chromosome 
(Mühlenbein, 1992). Since L

1  corresponds to 

flipping one bit per genome on average, it is used as 
a lower bound for mutation rate. A mutation rate of 
range [ ]01.0,005.0∈mP  is recommended for binary 
encoding (Ursem, 2003). For real-value encoding 
the mutation rate is usually [ ]9.0,6.0∈mP  and the 
crossover rate is [ ]0.1,7.0∈mP  (Ursem, 2003). 

Crossover is commonly viewed as the major 
instrument of variation and innovation in GAs, with 
mutation, playing a background role, insuring the 
population against permanent fixation at any 
particular locus (Mitchell, 1998), (Bäck et al., 2000). 
Mutation and crossover have the same ability for 
“disruption” of existing schemas, but crossover is a 
more robust constructor of new schemas (Spears, 
1993; Mitchell, 1998). The power of mutation is 
claimed to be underestimated in traditional GA, 
since experimentation has shown that in many cases 
a hill-climbing strategy works better than a GA with 
crossover (Mühlenbein, 1992; Mitchell, 1998). 

While recombination involves more than one 
parent, mutation generally refers to the creation of a 
new solution form one and only one parent. Given a 
real-valued representation where each element in a 
population is an n -dimensional vector nx ℜ∈ , 
there are many methods for creating new offspring 
using mutation. The general form of mutation can be 
written as: 

)(xmx =′ , (1) 

where x  is the parent vector, m  is the mutation 
function and x′  is the resulting offspring vector. The 
more common form of mutation generated offspring 
vector: 

Mxx +=′ , (2) 

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

186



where the mutation M  is a random variable. M  has 
often zero mean such that 

xxE =′)( . (3) 

the expected difference between the real values of a 
parent and its offspring is zero (Bäck et al., 2000). 

Some forms of evolutionary algorithms apply 
mutation operators to a population of strings without 
using recombination, while other algorithms may 
combine the use of mutation with recombination. 
Any form of mutation applied to a permutation must 
yield a string, which also presents a permutation. 
Most mutation operators for permutations are related 
to operators, which have also been used in 
neighbourhood local search strategies (Whitley, 
2000). Some other variations of the mutation 
operator for more specific problems have been 
introduced in Chapter 32 in (Bäck et al., 2000). 
Some new methods and techniques for applying 
crossover and mutation operators have also been 
presented in (Moghadampour, 2006).  

It is not a choice between crossover and mutation 
but rather the balance among crossover, mutation, 
selection, details of fitness function and the 
encoding. Moreover, the relative usefulness of 
crossover and mutation change over the course of a 
run. However, all these remain to be elucidated 
precisely (Mitchell, 1998). 

2.1.3 Other Operators and Mating 
Strategies 

In addition to common crossover and mutation there 
are some other operators used in GAs including 
inversion, gene doubling and several operators for 
preserving diversity in the population. For instance, 
a “crowding” operator has been used in (De Jong, 
1975), (Mitchell, 1998) to prevent too many similar 
individuals (“crowds”) from being in the population 
at the same time. This operator replaces an existing 
individual by a newly formed and most similar 
offspring. In (Mengshoel and Goldberg, 2008) a 
probabilistic crowding niching algorithm in which 
subpopulations are maintained reliably, is presented. 
It is argued that like the closely related deterministic 
crowding approach, probabilistic crowding is fast, 
simple, and requires no parameters beyond those of 
classical genetic algorithms. 

The same result can be accomplished by using an 
explicit “fitness sharing” function (Mitchell 1998), 
whose idea is to decrease each individual’s fitness 
by an explicit increasing function of the presence of 
other similar population members. In some cases, 

this operator induces appropriate “speciation”, 
allowing the population members to converge on 
several peaks in the fitness landscape (Mitchell, 
1998). However, the same effect could be obtained 
without the presence of an explicit sharing function 
(Smith, Forrest and Perelson, 1993; Mitchell, 1998). 

Diversity in the population can also be promoted 
by putting restrictions on mating. For instance, 
distinct “species” tend to be formed if only 
sufficiently similar individuals are allowed to mate 
(Mitchell, 1998). Another attempt to keep the entire 
population as diverse as possible is disallowing 
mating between too similar individuals, “incest” 
(Eshelman and Schaffer, 1991; Mitchell, 1998). 
Another solution is to use a “sexual selection” 
procedure; allowing mating only between 
individuals having the same “mating tags” (parts of 
the chromosome that identify prospective mates to 
one another). These tags, in principle, would also 
evolve to implement appropriate restrictions on new 
prospective mates (Eiben and Schut, 2008). 

Another solution is to restrict mating spatially. 
The population evolves on a spatial lattice, and 
individuals are likely to mate only with individuals 
in their spatial neighborhoods. Such a scheme would 
help preserve diversity by maintaining spatially 
isolated species, with innovations largely occurring 
at the boundaries between species (Mitchell 1998). 

The efficiency of genetic algorithms has also 
been tried by imposing adaptively, where the 
algorithm operators are controlled dynamically 
during runtime (Eiben and Schut, 2008). These 
methods cn be categorized as deterministic, 
adaptive, and self-adaptive methods (Eiben and 
Smith, 2007; Eiben and Schut, 2008). Adaptive 
methods adjust the parameters’ values during 
runtime based on feedbacks from the algorithm 
(Eiben et al., 2008), which are mostly based on the 
quality of the solutions or speed of the algorithm 
(Smit and Eiben, 2009). 

2.1.4 Other Operators and Mating 
Strategies 

In addition to common crossover and mutation there 
are some other operators used in GAs including 
inversion, gene doubling and several operators for 
preserving diversity in the population. For instance, 
a “crowding” operator has been used in (De Jong, 
1975), (Mitchell 1998) to prevent too many similar 
individuals (“crowds”) from being in the population 
at the same time. This operator replaces an existing 
individual by a newly formed and most similar 
offspring. In (Mengshoel et al., 2008) a probabilistic 
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crowding niching algorithm in which 
subpopulations are maintained reliably, is presented. 
It is argued that like the closely related deterministic 
crowding approach, probabilistic crowding is fast, 
simple, and requires no parameters beyond those of 
classical genetic algorithms. 

The same result can be accomplished by using an 
explicit “fitness sharing” function (Mitchell 1998), 
whose idea is to decrease each individual’s fitness 
by an explicit increasing function of the presence of 
other similar population members. In some cases, 
this operator induces appropriate “speciation”, 
allowing the population members to converge on 
several peaks in the fitness landscape (Mitchell, 
1998). However, the same effect could be obtained 
without the presence of an explicit sharing function 
(Smith et al., 1993; Mitchell, 1998). 

Diversity in the population can also be promoted 
by putting restrictions on mating. For instance, 
distinct “species” tend to be formed if only 
sufficiently similar individuals are allowed to mate 
(Mitchell 1998). Another attempt to keep the entire 
population as diverse as possible is disallowing 
mating between too similar individuals, “incest” 
(Eshelman and Schaffer 1991; Mitchell, 1998). 
Another solution is to use a “sexual selection” 
procedure; allowing mating only between 
individuals having the same “mating tags” (parts of 
the chromosome that identify prospective mates to 
one another). These tags, in principle, would also 
evolve to implement appropriate restrictions on new 
prospective mates (Eiben et al., 2008). 

Another solution is to restrict mating spatially. 
The population evolves on a spatial lattice, and 
individuals are likely to mate only with individuals 
in their spatial neighborhoods. Such a scheme would 
help preserve diversity by maintaining spatially 
isolated species, with innovations largely occurring 
at the boundaries between species (Mitchell, 1998). 

The efficiency of genetic algorithms has also 
been tried by imposing adaptively, where the 
algorithm operators are controlled dynamically 
during runtime (Eiben et al., 2008). These methods 
cn be categorized as deterministic, adaptive, and 
self-adaptive methods (Eiben & Smith, 2007; Eiben 
et al., 2008). Adaptive methods adjust the 
parameters’ values during runtime based on 
feedbacks from the algorithm (Eiben et al., 2008), 
which are mostly based on the quality of the 
solutions or speed of the algorithm (Smit et al., 
2009). 

3 SELF-ADAPTIVE MUTATION 
OPERATORS 

One major problem with the classical 
implementation of binary mutation, the multipoint 
mutation or the crossover operator is that it is 
difficult to control their effect or to restrict changes 
caused by them within certain values. 

Therefore, several techniques are developed here 
to implement the genetic operators intelligently so 
that the resulting modifications on the binary string 
will cause changes in the real values within the 
desired limits. This idea is implemented so that the 
real value of the variable is randomly changed 
within the desired limits and the modified value then 
is converted to the binary representation and stored 
as the value of the variable. In this way we can 
cause more precise mutations in the bit strings and 
make sure that changes in real values are within the 
desired bounds. 

Apparently, changes of different magnitudes are 
required at different stages of the evolutionary 
process. Thus, two types of decimal mutation 
operators have been implemented:  

1. For modifying variables with integer 
values. The bounds for the absolute values of 
such changes are at least 1 and at most the 
integer part of the real value representation of 
the variable. This means that the upper bound 
of the range may vary even for each variable 
of the same individual. The randomly 
selected mutation value may be either 
positive or negative. Thus, if the integer part 
of the variable is )int(variable , the integer 
mutation range is )int(var,1 iable± . 

2. For modifying variables with values from 
the range ( )1,0 . The lower bound for the 
absolute value of such changes is determined 
by the required precision of the real value 
presentation of the variable, like 10 6− . The 
upper bound for the absolute value of such 
changes is determined by decimal part of the 
variable. Here also the mutation value can be 
either positive or negative. Thus, if the 
number of digits after the decimal point for a 
variable is )varprecision( iable , and the decimal 
part of the variable is )rdecimal(va iable , the 
range for the real mutation values is 
[ ])rdecimal(va ,10 )varprecision( iableiable−± .  
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3.1 The Integer Mutation Operator 

The integer mutation (IM) operator mutates the 
individuals of the population in relatively great 
magnitudes. This operator is naturally applied only 
to individuals with integer part equal or greater or 
than 1. During this operation an integer mutation 
value Δ  is selected randomly from the following 
range: 

[ ])(nti ,1 variable±∈Δ  (4) 

and added to the variable under mutation. Here, 
)(nti variable  stands for the absolute value of the 

integer part of the variable. Clearly, this integer part 
does not necessarily cover the whole range of the 
variable. To avoid wasting resources special care is 
taken to make sure that the generated random 
number is not 0. Thus, the upper bound for the 
integer mutation value is different for each variable 
and is defined by the absolute value of the integer 
part of the variable. This will make the process more 
flexible and smart. If the resulting value of the 
variable is outside of its pre-defined variable range, 
the change will be rejected.  

If the upper bound of the mutation value is set to 
a fixed value, the operator becomes inefficient or the 
probability for its failure will rise. For instance, if 
the optimal value of a variable is 0.05 and its present 
value 80.64, we will need 80 successful integer 
mutations of magnitude 1 in order to get close to the 
optimal value of the variable. However, if the 
magnitude of the integer mutation value can be 
dynamically determined by the magnitude of the 
variable, the operator will have a much greater 
chance to improve the value of the variable 
dramatically in a short time. 

During this operation a randomly generated 
integer number within the specified bounds is added 
to the value of the variable and the binary 
representation of the resulting offspring is updated. 
The offspring is then evaluated and put through the 
survivor selection procedure. There is no fixed rate 
for this operator. All population members go 
through this operator at least once. 

3.2 The Decimal Mutation Operator 

The decimal mutation (DM) operator is used in 
order to implement changes of smaller magnitudes 
on individuals. This operator is naturally applied 
only to variables with decimal part greater than 0. 
During this operation non-zero decimal numbers in 

the specific range are randomly generated and added 
to the randomly selected variables in the individual. 
The upper bound for the decimal mutation values is 
determined by the absolute value of the decimal part 
of variables. If the decimal part of a variable is 
denoted by )decimal(variable , the maximum distance 
of the mutation values from 0 is )decimal(variable . 
The lower bound of the mutation range is 
determined by the number of digits after the decimal 
point. Thus, if )precision(variable  shows the number 
of required decimal places of a variable, the decimal 
mutation value is determined in the following way: 

[ ])rdecimal(va ,10 )varprecision( iableiable−±σ  (5) 

If the resulting value of the variable is outside of 
the pre-defined range of the variable, the change 
will be rejected. The difference between this 
operator and the integer mutation operator is the 
way the mutation value is determined. Otherwise, 
these operators are similar. 

After each operator application, new offspring 
are evaluated and compared to the population 
individuals. Newly generated offspring will replace 
the worst individual in the population if they are 
better than the worst individual. Therefore, the 
algorithm is a steady state genetic algorithm. 

4 EXPERIMENTATION 

The self-adaptive integer and decimal mutation 
operators were applied as part of a genetic algorithm 
to solve the following minimization problems: 
Ackley’s function, Colville’s function, Griewank’s 
function F1, Rastrigin’s function, Rosenbrock’s 
function and Schaffer’s F6 and F7 functions. For 
multidimensional problems with optional number of 
dimensions ( n ), the algorithm was tested for 

50 ,10 ,5 3, ,2 ,1=n . The population size was set to 9.  
The efficiency of the proposed operators was 

compared against classical crossover (with 55%- 
88% crossover rate) and mutation operator (with 1% 
mutation rate). Experimentations were carried out 
with three different configurations. In the first 
configuration only classical mutation and crossover 
operators were used to solve the problems. In the 
second configuration classical mutation and 
crossover and proposed self-adaptive integer and 
decimal mutation operators were used to solve the 
problems. Finally, in the third configuration only 
proposed self-adaptive integer and decimal mutation 
operators were used to solve the problems. For each 
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configuration the worst individual in the population 
was replaced by a better offspring produced as a 
result of applying an operator. Each algorithm was 
run 50 times for each problem.  

The following table summarises the results of 
applying three different sets of operators to solve 
functions mentioned earlier. Functions and different 
variations of their variables make 27 different test 
cases.  

Table 1: Summary of test runs with three different 
operator sets: CoMu (crossover & mutation), CoMuImDm 
(crossover, mutation, integer mutation & decimal 
mutation) and ImDm (integer mutation & decimal 
mutation) to solve Ackely’s functions (A1-A50), 
Colville’s function (C4), Grienwank’s functions (G1-
G50), Rastrigin’s function (Ra1-Ra50), Rosenbrock’s 
function (Ro1-Ro50), Schaffer’s F6 (S62) and F7 (S72) 
functions. Fn. stands for function, F. for fitness and FE. 
for function evaluation.  

Fn. Operator Set 

 CoMu CoMuIm_Dm ImDm 

 F. FE. F. FE. F. FE. 
A1 1.12E-06 5804 8.00E-08 3276 4.00E-06 10005 

A2 2.98E-01 10017 1.76E-06 8174 4.00E-06 10005 

A3 1.440 10009 8.30E-01 9844 8.02E-01 10006 

A5 4.390 10015 0.278 10010 1.89 10006 

A10 9.495 10009 1.188 10011 3.86 10006 

A50 18.754 10019 8.925 10013 10.17 10005 

C4 5.486 10012 0.564 5380 1.57 6688 

G1 1.10E-03 5960 0.000 1740 7.89E-04 2723 

G2 0.022 9998 0.017 9391 0.036 9644 

G3 0.147 10017 0.110 10012 0.633 10005 

G5 0.911 10007 0.531 10008 1.273 10004 

G10 5.412 10006 2.860 10014 5.248 10006 

G50 349.603 10018 56.67 10005 88.485 10006 

Ra1 0.000 2650 0.000 494 0.00E+00 177 

Ra2 0.073 9772 0.000 1111 0.00E+00 695 

Ra3 0.593 10020 0.000 1867 0.239 4268 

Ra5 2.951 10014 0.388 6300 2.688 9617 

Ra10 19.720 10020 3.987 9417 9.830 10006 

Ra50 149.98 10154 119.41 10076 114.50 10008 

Ro1 0.000 18 6.46E-06 9832 5.56E-05 10008 

Ro2 11.61 10013 5.32E-04 8259 3.56E-05 8474 

Ro3 39.21 10010 0.111 10008 1.48 10008 

Ro5 1.96E+04 10006 55.95 10012 116.87 10008 

Ro10 3.29E+04 10011 1576 10026 9651 10008 

Ro50 8.55E+07 10112 3.87E+05 10144 4.58E+07 10006 

S62 1.07E-02 8746 5.05E-03 6822 3.69E-03 4807 

S72 5.28E-02 7976 0.00E+00 780 0.00E+00 388 

Studying results in Table 1 reveals that the 
integer and decimal mutation operators have 
successfully managed to improve the efficiency of 
the algorithm either by decreasing the required 
number of function evaluations or improving the 
quality of the solutions or by resulting in both 

improvements simultaneously. Using the integer and 
decimal mutation operators in conjunction with 
classical crossover and mutation operators resulted 
in better fitness values in 93% of test cases and in 
less required function evaluations in 74% of test 
case. Furthermore, using integer and decimal 
mutation operators in combination with the 
crossover and mutation operator improved the 
quality of the solution by at least 90% in 44% of test 
cases.  

The integer and decimal mutation operators 
proved to outperform the classical crossover and 
mutation operators in 78% of test cases in terms of 
the quality of the solution and in 85% of test cases 
in terms of required function evaluations. In 56% of 
test cases the integer and decimal mutation operators 
resulted in at least 50% of improvement in the 
quality of solutions than the classical crossover and 
mutation operators.    

5 CONCLUSIONS 

Two new genetic operators namely integer and 
decimal mutation operators were proposed in this 
paper. The operators were described and tested for 
solving some classical minimization problems. 
Furthermore, the efficiency of the proposed 
operators against the classical crossover and 
mutation operators was tested. Experimentation 
proved that the proposed operators are efficient and 
can lead into better results in solving optimization 
problems. 
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