
SHARING SECURE DOCUMENTS IN THE CLOUD
A Secure Layer for Google Docs

Lilian Adkinson-Orellana, Daniel A. Rodríguez-Silva, Francisco J. González-Castaño
GRADIANT, ETSI Telecomunicación, Campus, 36310 Vigo, Spain

David González-Martínez
University of Vigo, ETSI Telecomunicación, Campus, 36310 Vigo, Spain

Keywords: Cloud security, SaaS privacy, Google Docs, Collaborative work, Document sharing, Document encryption.

Abstract: With the advent of Web 2.0, end users generate and share more and more content. One of the most
representative services in this context is the collaborative edition of online documents. This service is
commonly provided through Cloud Computing as Software as a Service. However, the Cloud paradigm still
requires users to place their trust in Cloud providers with regard to privacy. This is the case of Google Docs,
a very popular service without privacy support for the documents stored on its servers. In this paper we
present and discuss a secure layer to guarantee privacy of shared Google Docs documents. To our
knowledge, this is one of the first approaches to private shared edition with real Cloud tools.

1 INTRODUCTION

In Web 2.0, and social networks in particular, users
are active agents who generate content
collaboratively (T. O’Reilly, 2007). This is
particularly interesting when several users from
different locations work together and it has resulted
in the development of new mechanisms for sharing
documents through the Internet.

Furthermore, new paradigms have emerged
following improvements in Internet technologies and
computing resources. Among them, the Cloud
Computing (or simply “Cloud”) paradigm takes
application complexity to the server side to simplify
clients and client maintenance. Cloud solutions are
intrinsically scalable and ubiquitous, and follow a
pay-per-use approach at all levels (M. Armbrust et
al., 2009). Of the three levels of Cloud Computing,
Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS), we
will focus on the third. We introduce a security layer
at the SaaS (or application) level to manage shared
documents privately. This level is highly familiar to
end users because it provides final services such as
GMail, Google Docs, Zoho and Microsoft Office
Live.

One of the main barriers to the adoption of Cloud
Computing is security (CSA, 2010): user data are
stored on provider servers and there are no rigorous
guarantees that this information will not be
accessible to a third party. This can contravene legal
requirements when the stored data are sensitive, as
occurs in health care or banking environments. For
this reason many users do not trust Cloud services,
despite the fact that, from an operational perspective,
there are optimal solutions for sharing their work.

Although the privacy problem has been adressed
in virtualization platforms, Cloud privacy is
completely open (T. Ristenpart et al., 2009). Indeed,
in the case of Google Docs –one of the most
important shared Cloud services– there is no
guarantee that the documents will be safe at the
server side, as there is evidence that Google has
analyzed user information in the past, in particular to
personalize advertisements (T. O’Reilly, 2004 and S.
Lederer et al., 2004). In a previous paper (L.
Adkinson-Orellana et al., 2010), we presented a
solution based on the encryption of user data before
storing it on Google Cloud servers, but we only dealt
with the case of a single user. In this article we
address secure on-line document sharing. To our
knowledge, this is one of the first approaches to
private shared edition with real Cloud tools.

439Adkinson-Orellana L., A. Rodríguez-Silva D., J. González-Castaño F. and González-Martínez D..
SHARING SECURE DOCUMENTS IN THE CLOUD - A Secure Layer for Google Docs.
DOI: 10.5220/0003391904390444
In Proceedings of the 1st International Conference on Cloud Computing and Services Science (CLOSER-2011), pages 439-444
ISBN: 978-989-8425-52-2
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

The paper is organized as follows: Section 2
discusses the background in on-line document
sharing and encryption. Section 3 presents technical
insights into Google Docs document handling by
external applications, with a particular emphasis on
sharing options. Section 4 describes our solution to
the problem of encrypted document sharing,
focusing on Google Docs. Finally, section 5
concludes the paper and proposes future lines of
work.

2 BACKGROUND

In this section we describe some on-line
collaborative edition solutions related to our work,
emphasizing characteristics such as security and
sharing options.

From the point of view of SaaS, popular products
such as Zoho, Microsoft Office Live and Google
Docs itself support document sharing (H. Park et al.,
2009). However, they do not offer document storage
privacy. Zoho (www.zoho.com) expects to provide
additional features for document encryption,
although these have not yet been implemented. The
same holds for Microsoft Office Live
(workspace.officelive.com) and Google Docs
(docs.google.com). The complete API of the latter
simplifies the development of extensions such as
those described below.

DocCloak (DocCloak, 2010) is a commercial
product under development that encrypts Google
Docs documents. It has three options with different
features: individuals (free), groups and enterprises.
In the simplest free version, only three users can
share encrypted documents, but these cannot be
modified once shared. Furthermore, the ciphering
keys are kept on the user’s computer, so SaaS access
is not ubiquitous.

SeGoDoc (G. D’Angelo et al., 2010) is an
extension for the Firefox browser based on the
gDocsBar add-on (www.gdocsbar.com) to protect
on-line document privacy and integrity against
service providers. It works for Google Docs, but it
has few data encryption options (it only includes the
AES algorithm). In addition, this plugin is not
directly integrated with the Google Docs interface
and depends on third-party developers, meaning that
it is unstable and not completely transparent for
Google Docs users. Moreover, the password used to
encrypt the documents is saved locally, at the client
side, as in the previous case, and it currently does
not support encrypted document sharing.

In Y. Huang and D. Evans, 2010, a “Secure

Docs” Firefox add-on to enable private edition of
Google Docs is presented. It is a proof-of-concept
that allows users to access the Cloud editing service
from Google securely (ensuring both data
confidentiality and integrity) without the need for
trusting the service provider. The content of the
document that the user submits is incrementally
encrypted using a password that is hidden from the
service provider. However, as with the previous
tools, it does not yet support collaborative edition.

We conclude that a transparent solution to share
and edit secure documents in the Cloud is still
missing. For this reason we have focused on
improving such a popular Cloud application as
Google Docs. We thus offer the possibility of
working with personal or shared documents using a
public Cloud service, preventing access to third
parties.

3 HANDLING DOCUMENTS IN
GOOGLE DOCS

3.1 Google Docs API

The Google Docs API (Google, 2010) is intended
for programmers who wish to write client
applications accessing Google Docs. The protocol
used to interact with Google Docs documents is
based on XML and HTTP and allows client
applications to request a list of the users’ documents,
query their content, upload/download documents,
modify sharing permissions, view the revision
history, and organize documents into folders.

To request or upload documents, the client needs
an authentication token that can be obtained in
different ways depending on the type of client,
according to the options available through Google
Accounts. For example, to obtain the document list
of a particular user, a GET request is sent to the
URL:

https://docs.google.com/feeds/default/private/full
The result is an XML file containing a list of all

available documents, where each entry represents a
user document with a document identifier (docID).

As described, there is a mechanism for accessing
Google Docs from an external application, but we
need another mechanism to intercept information
from and towards the Google Docs interface in order
to encrypt/decrypt documents so that users can work
with their interface as usual. This mechanism is
described in the following section.

CLOSER 2011 - International Conference on Cloud Computing and Services Science

440

3.2 Listeners

To intercept and modify the content of the
documents that are sent from the Google Docs
interface to Cloud servers and vice versa, we have
defined two listeners. These listeners should be
embedded in the Internet browser (as a plugin or
add-on) to facilitate the capturing of data.

Each listener will be in charge of certain HTTP
requests:

 http-on-modify-request: output requests that are
sent from the client

 http-on-examine-response: requests that are
received from the server

By combining both types of requests, it is
possible to intercept all GET/POST requests and
responses. Two listeners may respectively capture
incoming and outgoing information. It is necessary
to filter the packets by IP address using the URI
field included in each request.

Therefore, the following combinations help us
achieve our target:

 http-on-modify-request + POST: request to
save a document on the server

 http-on-modify-request + GET: request to
retrieve a document from the server

 http-on-examine-response + POST: data
returned after saving a document

 http-on-examine-response + GET: response
from a document retrieval request

3.3 Sharing Documents in Google Docs

One of the most interesting features of Google Docs
is the document sharing option. This allows a group
of users to access a specific document when the
owner configures its permissions properly,
maximizing productivity.

The Google Docs API allows the management of
shared documents through an Access Control List
(ACL) feed. ACLs are simply basic lists that show
who has access to a given resource. We can find the
following roles in the ACL feed for a given
document:

 owner: the owner of the document. This role
can modify the ACL feed, delete or modify
the document, etc.

 writer: a collaborator. This role can modify but
not delete the document.

 reader: a viewer (equivalent to read-only
access).

The API supports multiple levels of sharing
permissions. It describes four levels (user, group,
domain and default), which refer to the different

scopes that the shared document may have.
Documents containing the user attribute are private
while those containing the default attribute are
public.

As the ACL feed is the list that allows to share
documents, the API supports several operations with
the feed using the common HTTP operations GET,
POST, PUT and DELETE through
https://docs.google.com/feeds/default/private/full/do
cID/acl.

In the context of our work, the most relevant
interactions with the ACL feed are related to
retrieval, modification, update and removal of the
permissions assigned to a document.

4 “SECURE GDOCS”: SECURING
SHARED AND PRIVATE
CLOUD DOCUMENTS

4.1 Encrypting Documents

The Secure GDocs add-on for the Firefox browser
allows the encryption of Google Docs documents,
meaning that the encrypting process is transparent to
users. As explained in our previous work (L.
Adkinson-Orellana et al., 2010), Secure GDocs
provides seven symmetric key algorithms for data
ciphering: AES, DES, Triple DES, Blowfish, RC4,
TEA, xxTEA (S. Rinne et al., 2007 and A. Nadeem
and M.Y. Javed, 2005), each of which has different
characteristics of speed and security. Thus, users can
choose one or another depending on their particular
needs.

In order to encrypt and decrypt the content of
documents, certain information must be stored, such
as the password used to cipher each document. For
this purpose, a hidden index document containing
this critical information is created through the
Google Docs API. In this way, Cloud Computing
ubiquity is respected, as the information required for
deciphering the documents is preserved on-line.
Figure 1 shows a line of an index document. This
structure is repeated for every encrypted document.

Figure 1: Example of index structure.

SHARING SECURE DOCUMENTS IN THE CLOUD - A Secure Layer for Google Docs

441

To strengthen the security of the process, the
content of the index document is ciphered with the
AES algorithm using a 128-bit key, meaning that its
sensitive information will not be exposed when
stored on Google servers. Thus, an additional
security layer for the ciphered documents is
provided, since the password needed to access the
information for deciphering the documents is
different from the Google account password or the
password used to encrypt each document.

Thanks to the listeners explained in the previous
section, combined with the selected algorithm and a
master password, the documents are decrypted and
presented to the user as plain text when requested. In
most cases, the document will be received in
packets, meaning that it will have to be stored
temporarily in a buffer until it is ready to be
deciphered.

As expected, the size of the documents increases
after encryption. Depending on the algorithm used,
this size can double. The documents are thus
compressed before they reach the servers as the
current storage limit of Google Docs is 512 KB.
Thus, we can assume that the ciphering process does
not have a significant effect on typical editing in
terms of size. Furthermore, there are even cases in
which the compressed ciphered document is smaller
than the original, unciphered version.

4.2 Encrypted Document Sharing

To address the encrypted document-sharing
problem, we have extended our previous work and
proposed a new solution based on the creation of a
new index for each new document to be shared. This
new shared index document must contain a unique
line with data related to the encryption of the shared
document, as it appears in the general index. This
data will be created as a hidden file.

The names of the different indices follow a
particular notation to identify them:

 plugin.doc: the general index. This contains
data related to all ciphered documents,
regardless of their status (shared or private).

 plugin_<docID>.doc: shared index for the
shared document with the identifier docID. Its
content is also included in the general index.

For the owner, sharing a ciphered document with
other users involves the same process as in the case
of unciphered documents; there is no difference in
the use of the Google Docs interface.

When an owner shares a document, the request is
intercepted by the listeners. If this is the first time
the owner is sharing a ciphered document, a new

popup will appear asking for a new password: the
shared key. Once this value has been set, it will be
written in the general index for future operations.
Moreover, the first time a specific encrypted
document is shared, a new associated shared index
will be created using the Google Docs API.

The new shared index will contain the
information associated with the encryption of the
document, copied from the general index. The
content of this index is also ciphered using AES with
a 128-bit key, as occurs with the general index. The
password to encrypt the index will be the shared
key, which will preferably be different from the
master key. Accordingly, when an owner shares a
document he will simply have to give the shared key
to the rest of the users (using a secure channel),
meaning that the master key will remain private and
safe.

It is important to highlight that the information
relating to the shared and general index must be
synchronized at all times. If any kind of incoherence
occurs, the data from the owner’s general index will
be prioritized, and the shared index information will
be updated accordingly.

4.2.1 Sharing the New Index

After the sharing of the ciphered document and the
creation of its shared index, the index itself needs to
be shared with the users who have access to the
corresponding document. To share this index, a new
petition will be made through the Google Docs API
with all the necessary information. This petition will
be repeated for every user who has access to the
document, keeping the owner’s general index with
its critical information private.
As shown in Figure 2, the owner of the documents
will have as many shared indices as documents that
are being shared, each distinguishable by its name,
which contains the document identifier. In the
example, the owner has four encrypted documents,
two of which (UD1 and UD2) are private; their
ciphering information is stored in the hidden index
file plugin.doc. The other two documents, with
docID values SD1 and SD2, are shared with three
different users. For each document a new hidden
document is created, plugin_<docID>.doc,
containing the same ciphering information as in the
general index, plugin.doc. The general index is
ciphered with the private master key (MK), while
the shared indices use the same shared key (SK). If
the owner decides to assign a different encryption
key to SD1 or SD2, it would be transparent to the
rest of the users, who would only need to know the

CLOSER 2011 - International Conference on Cloud Computing and Services Science

442

Figure 2: Private and shared indices of the owner of the
documents. MK indicates master key; SK, shared key.

shared key to decipher their shared indices. Thus,
the users are unaware of the options used to encrypt
each document.

4.2.2 Modifying Document Permissions

The plugin extends some Google document-sharing
features for encrypted documents, namely adding
new permissions to a previously shared document
and making a shared document private again for its
owner.

Adding new permissions to a document. Providing
access for additional users to an already shared
document is similar to the first time the owner
decides to share it. The main difference is that the
shared index with the necessary data for decrypting
the document already exists, meaning that this step
is skipped.

When the owner of the document shares it
through the Google Docs interface, the listeners will
detect the petition; a new request will thus be issued
to the Google Docs API, modifying the document’s
ACL feed and offering the new user access to the
shared index content.

In this case, the shared key must be distributed
using methods that are external to the add-on (i.e. a
secure channel). A remarkable aspect in which our
implementation outperforms others is that the

number of users accessing a shared document is
limited only by Google Docs, as the add-on does not
impose any restrictions on the number of users
accessing a shared document.

Removing Sharing Permissions. If the owner of a
document decides to no longer share it with other
users, it would suffice to remove their permissions in
the corresponding shared index through the
appropriate request to the API. The rest of the users
would still have the original document on their list,
but it would be undecipherable, since the data
needed to decrypt it would be restricted.

When the owner removes the document
permissions via the Google Docs interface, this
action is detected by the listeners and a new request
is sent to the API to remove public access from the
shared index. If the number of users with access to
the document drops to zero, the shared index will be
deleted from the list of the owner’s documents.
However, the owner will still be able to work on the
encrypted document because the corresponding
ciphering information will still be stored in the
general index.

5 CONCLUSIONS

Google Docs is one of the main tools for document
edition in the Cloud. Moreover, the Google API
simplifies its extension.

In this context, Cloud privacy can be guaranteed
by ciphering the documents at the client side. A
system with this functionality is conceptually
simple. It simply requires the user to enter an initial
password. In L. Adkinson-Orellana et al., 2010 we
presented one of the first on-line encryption plugins
based on the Google API.

In this paper, we go a step further and propose a
solution that guarantees the privacy of shared
documents. Document sharing is one of the most
demanded SaaS features, with many applications in
business, e-learning and professional Web 2.0
applications in general.

As future work we plan to provide new features
such as document ownership changes and support
for public or asymmetric cryptography, which would
eliminate the need for password exchanging between
users. In our current implementation, real-time
collaborative edition with Google Docs encrypted
documents works, but has not been fully tested. We
are currently working on a new stable version
including this feature.

SHARING SECURE DOCUMENTS IN THE CLOUD - A Secure Layer for Google Docs

443

ACKNOWLEDGEMENTS

This research has been supported by the ACETIC
consortium and the SAFECLOUD grant
(09TIC014CT), funded by Xunta de Galicia, Spain.

REFERENCES

Adkinson-Orellana, L., Rodríguez-Silva, D., Gil-
Castiñeira, F. and Burguillo-Rial J. C. (2010). Privacy
for google docs: Implementing a transparent
encryption layer. In Proceedings of the CloudViews
2010 - 2nd Cloud Computing International
Conference, pages 21–22, Porto, Portugal.

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz,
R.H., Konwinski, A., Lee, G., Patterson, D.A., Rabkin,
A., Stoica, I. and Zaharia, M. (2009). Above the
Clouds: A Berkeley View of Cloud Computing, Tech.
Rep. UCB/EECS-2009-28, EECS Department,
University of California, Berkeley, USA.

CSA (2010). Domain 10: Guidance for Application
Security V2.1. Cloud Security Alliance Whitepaper.
Retrieved December 16, 2010 from
http://www.cloudsecurityalliance.org/guidance/csagui
de-dom10-v2.10.pdf.

D’Angelo, G., Vitali, F. and Zacchiroli, S. (2010). Content
cloaking: Preserving privacy with Google Docs and
other web applications. In 2010 ACM Symposium on
Applied Computing, pages 22–26, Sierre, Switzerland.

DocCloak (2010). DocCloak website. Retrieved December
16, 2010 from http://www.gwebs.com/doccloak.html.

Google (2010). Google Docs API website. Retrieved
December 16, 2010 from

 http://code.google.com/intl/es-ES/apis/documents/.
Huang Y. and Evans D. (2010). Secure Google Docs

Extension website. Retrieved December 16, 2010 from
http://www.mightbeevil.org/securedocs/.

Lederer, S., Hong, J. I., Dey, A. K. and Landay, J. A
(2004). Personal Privacy through Understanding and
Action: Five Pitfalls for Designers. Personal and
Ubiquitous Computing 8/ 6, pp. 440-54.

Nadeem, A. and Javed, M.Y. (2005). A Performance
Comparison of Data Encryption Algorithms. In
Information and Communication Technologies 2005,
ICICT 2005, Cairo, Egypt

O’Reilly, T. (2004). The Fuss About Gmail and Privacy:
Nine Reasons Why It's Bogus. Retrieved December 16,
2010 from http://oreillynet.com/pub/wlg/4707.

O’Reilly, T. (2007). What is Web 2.0: Design Patterns and
Business Models for the Next Generation of Software.
Communications & Strategies, 1st Quarter 2007, p. 17.

Park H., Lee K., Lee Y., Kim S. and Won D (2009).
Security Analysis on the Online Office and Proposal
of the Evaluation Criteria. World Academy of Science,
Engineering and Technology. Issue 59, pp. 198-204.

Rinne, S., Eisenbarth, T. and Paar, C. (2007). Performance
Analysis of Contemporary Light-Weight Block

Ciphers on 8-bit Microcontrollers. In ECRYPT
Workshop SPEED - Software Performance
Enhancement for Encryption and Decryption,
Amsterdam, Netherlands.

Ristenpart, T., Tromer. E., Shacham, H. and Savage S.
(2009). Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds. In
CCS’09: Proceedings of, the 16th ACM Conf. on
Computer and Comm. Security, pp. 199–212.

CLOSER 2011 - International Conference on Cloud Computing and Services Science

444

