
A GRAPH DECOMPOSITION APPROACH
TO WEB SERVICE MATCHMAKING

S. Lagraa, H. Seba, R. Khennoufa and H. Kheddouci
Lab. GAMA, Université Claude Bernard Lyon1, Université de Lyon, IUT Lyon1, Villeurbanne Cedex, France

Keywords: Web services, Semantic web services, OWL-S, Graph matching, Graph decomposition, Graph edit distance,
Graph kernel.

Abstract: Web service discovery is becoming a critical issue in several fields. The current approaches for service dis-
covery and mainly semantic web services such as OWL-S are limited primarily to the matching of their in-
puts/outputs at the level of an ontology. Recent studies show that this approach does not suffice to discover
web services and that the structure of web services has an important and necessary weight in the efficiency
of the matching. The structure of a web service can be represented by a graph. The problem of matching
semantic web services is then translated into a problem of graph matching. In this work, we propose a match-
ing approach that first decomposes the web service graph into more simple sub-structures then, the matching
process is achieved onto these substructures. The proposed algorithms achieve better time complexity than
existing ones. We also propose a semantic similarity to enhance our structural similarity.

1 INTRODUCTION

With the rapid development of e-commerce over In-
ternet, web services are becoming an essential tech-
nology for several enterprises. With the web service
technology, an enterprise publishes its activities and
services on the web and consequently has access to
more clients. The challenge is then how to simplify
service discovery to the potential clients? So, web
service discovery is becoming a critical research area.
The task of web service discovery implies comparing
web service descriptions and select the one that corre-
sponds to the demand. To address this problem many
simple search engines that provide keyword search on
web service descriptions have been proposed. This
approach is insufficient mainly because keywords do
not capture the underlying semantics of web services
and do no suffice for accurately specifying users’ in-
formation needs (Dong et al., 2004). To deal with
these limitations, researchers follow two complemen-
tary directions:

1. Explore new matching methods that use other in-
formation about web service descriptions that can
assist the user when selecting among similar web
services.

2. Enhance the description of web services by
adding more information that may be useful to the

matchmaking process. In this context semantic
descriptions of web services are of high impor-
tance. So web service description languages such
as OWL-S (Web Ontology Language for Web Ser-
vices) receive much interests.

This paper focuses on addressing the problem of
web service matchmaking in the context of both ap-
proaches. The contribution of this work can be sum-
marized as follows:

1. We propose two algorithms for web service
matching. The key part of our algorithms is a
decomposition approach that simplifies the com-
plexity of the matching process while using both
structural and semantic information in the match-
ing process.

2. Based on graph kernels to extract similar entities,
we propose a new semantic metric for the com-
parison of web services’ inputs/ouputs.

We have implemented a prototype and conducted sev-
eral experiments to evaluate the effectiveness and ef-
ficiency of our matching approach. Our results show
that our solution outperforms existing ones.
The rest of the paper is organized as follows: in Sec-
tion 2, we begin with a discussion of the current state
of the art in web service matching. Following, in Sec-
tion 3, we first present a general description of our
scheme and its theoretical foundations. Then, we pro-

31Lagraa S., Seba H., Khennoufa R. and Kheddouci H..
A GRAPH DECOMPOSITION APPROACH TO WEB SERVICE MATCHMAKING.
DOI: 10.5220/0003338200310040
In Proceedings of the 7th International Conference on Web Information Systems and Technologies (WEBIST-2011), pages 31-40
ISBN: 978-989-8425-51-5
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

vide the details of our similarity measures. Finally,
we present the results of our experiments that evaluate
our approach and compares it with existing solutions.
Section 4 concludes this paper and presents our future
work.

2 RELATED WORK

Web service matching is an active research area
were several solutions are proposed. We fo-
cus here on semantic web service matchmaking
where concepts of semantic has been introduced
to overcome the limitations of the simple string
matching provided by UDDI (Universal Descrip-
tion Discovery and Integration http://uddi.xml.org/)
and WSDL (Web Services Description Language
http://www.w3.org/TR/wsdl). This has been achieved
by the means of description languages such as
OWL-S (Web Ontology Language for Web Services,
http://www.w3.org/Submission/OWL-S/). OWL-S
(formerly, DAML-S) provides three facets to describe
a web service: Service Profile, Service Model and
Service Grounding that represent respectively De-
scription, Functionality and Access Mechanism of
web services (Bellur et al., 2008):

• Service Profile: describes inputs, outputs, precon-
ditions and effects of the web service. Input and
output terms of the service are expressed as con-
cepts belonging to a set of ontologies. The use
of an ontology allows to refer to a single concept
from several syntactically different terms.

• Service Model: It describes a service as a process,
either atomic or composite. Composite processes
have a set of sub-processes associated with a con-
trol structure. The control structure will specify
the order in which different sub-processes are ex-
ecuted. Different types of control structures are:
Sequence, Split, Split+Join, Any-Order, Choice,
If-Then-Else, Iterate, Repeat While and Repeat
Until.

• Service Grounding: Grounding deals with the re-
alization of services. It provides concrete details
necessary to invoke the service such as message
format, transfer protocol, etc.

The earlier matching approaches of OWL-S web ser-
vices (Mandell and McIlraith, 2003) use only service
profile in the matching process and mainly inputs and
outputs parameters. In (Bellur and Vadodaria, 2008),
Bellur et al. present a comprehensive review of cur-
rent approaches in semantic web service matchmak-
ing. One of the pioneers in this context is the work of
Paloucci et al. (Paolucci et al., 2002) that defines four

similarly degrees between concepts: Exact, Plug-in,
Subsume and Fail. Let AdOp be one of the concepts
of the outputs of an advertisement and QOp be one of
the concepts of the outputs of a query. Exact means
that QOp and AdOp are equivalent. Plug-in means
that QOp is a superclass of AdOp in the ontology, so
AdOp can be plugged in place of QOp. Subsumes
means that AdOp is a superclass of QOp, so the ad-
vertised service may fulfill the requirements of the re-
quest. Fail means that no relation is found between
the compared concepts.

In (Bellur and Kulkarni, 2007), the authors ex-
tends the algorithm of (Paolucci et al., 2002) by com-
puting a matching in a bipartite graph composed of
the concepts of the published services and those of
the query. In (Bellur et al., 2008), the authors con-
sider pre-condition matching in addition to inputs
and outputs. In (Guo and Chen, 2005), the authors
present a similarity measure that allows advertise-
ments and requests to be expressed in different on-
tologies. In (Beck and Freitag, 2006), the authors
present a method for semantic matchmaking which
takes into account the preference of concepts pro-
vided by the user. (Vu et al., 2006) consider the QoS
information through the matching process. For this,
the author suppose the existence of an interface where
users can submit their feedback on the perceived QoS
of consumed services. Wand and Stroulia (Wang and
Stroulia, 2003) were the first researchers that intro-
duced the structure of web service operations dur-
ing web service discovery. Their matching method is
based on the hierarchical structure of the XML syn-
tax of WSDL specifications. For this, they adapted a
tree edit distance algorithm (Garofalakis and Kumar,
2003) to the matching of WSDL specifications. In
(Dong et al., 2004), Dong et al. built Woogle, a web
service search engine that uses a clustering algorithm
to group names of parameters of web-service oper-
ations into semantically meaningful concepts. Then
these concepts are used to measure similarity of web-
service operations. In (Shen and Su, 2005), Shen and
Su formally define a behavior model for web service
by automata and logic formalisms. In (Dijkman et al.,
2009), the authors use graphs to represent web ser-
vice operations. Then, they use graph matching al-
gorithms proposed in (Messmer and Bunke, 1999)
to compare graphs. However, these algorithms are
space search based and consequently have an expo-
nentiel time complexity. In (Corrales et al., 2008),
authors also use graphs to match semantic web ser-
vices. To match web service graphs, they use an A*
based algorithm proposed in (Messmer, 1995). A* is
an algorithm that uses a depth first search approach to
traverse a tree representing all the possible matching

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

32

situations of the compared graphs. Hao et al. (Hao
and Zhang, 2007) discover similar web services by
matching the XML trees corresponding to data types
in WSDL. In (Mbareck and Tata, 2006), authors use
Petri nets to represent and compare web service op-
erations. In (Nejati et al., 2007) and (Wombacher,
2006), authors use finite state machine to represent
web service operations.

3 A DECOMPOSITION
APPROACH TO WEB SERVICE
MATCHMAKING

3.1 Overview

To address the challenges involved in searching for
web services more information must be considered.
Among these information, the structure of web ser-
vice operations is perhaps the most important. With
OWL-S, this structure can be represented by a graph.
A graph of an OWL-S process is a labeled directed
graphG= (VA,VC,E) where:

• VA is the set of vertices that represent the atomic
activities of the service.

• VC est the set of vertices that correspond to control
structures such as choice, sequence, if-then-else,
etc. These structures can be represented by logic
connectors namely XOR et AND. For instance, a
choice is represented by an XOR.

• E is the set of edges that bind the different ver-
tices.

Furthermore, a process graph can have a vertex "start"
and one or several vertices "end" (Mendling et al.,
2006). Figure 1 gives un example of an OWL-S pro-
cess and its corresponding graph.

In the case of non cyclic operations, an OWL-S
process can also be represented by a tree where the
root and the internal nodes are the different control
structures (choice, sequence, if-then-else,. . . , etc.)
and the leafs are the atomic services.

When web service operations are represented by
graphs, the problem of their matching is a problem of
comparing the corresponding graphs. The problem of
graph comparison received a lot of interest (Bunke,
2000). The main traditional algorithmic approaches
to graph comparison are graph isomorphism and inex-
act matching (Borgwardt and Kriegel, 2005). Graph
isomorphism checks for topological identity. Inex-
act matching or error-tolerant matching does not en-
force strict matching of graphs. Inexact matching al-
gorithms generally computes a distance between the

compared graphs. This distance measures how much
these graphs are similar and is associated to a cost
function. Graph edit distance is the most used inex-
act matching measure. Similarity or edit distance be-
tween two graphs is the minimum number of edit op-
erations needed to transform one graph into the other
(Bunke and Allermann, 1983; Sanfeliu and Fu, 1983).
An edit operation is an insertion, a suppression or a re-
labeling of a vertex or an edge in a graph. To each edit
operationei is associated a costc(ei) and the edit dis-
tance between two graphsG1 andG2 is then the min-
imum cost related to the set of operations that trans-
form G1 into G2.

d(G1,G2) = min
(e1,...,ek)∈ϒ(G1,G2)

k

∑
i=1

c(ei) (1)

whereϒ(G1,G2) is the set of edit operations that
transformG1 into G2. However, finding the minimal
edit distance is NP-hard (Bunke, 1999) and it is of-
ten difficult to find the appropriate costs for individual
edit operations (Borgwardt and Kriegel, 2005). So,
searching for other graph matching approaches is still
an open question. Graph kernels is one of the most re-
cent approaches to graph comparison that is presented
as an alternative to existing solutions. Graph kernels
have the particularity of integrating concepts from all
former approaches to graph comparison. Graph ker-
nels belong to a class of kernels on structured data
called R-convolution kernels or decomposition ker-
nels (Haussler, 1999). Roughly speaking, the idea
of graph kernels is constructing similarity of graphs
based on the similarity of small parts, i.e. sub-graphs,
of the compared graphs. The concept of decomposing
a discrete compound objectx into parts(x1,x2, ...,xd)
can be formally modeled by a predicateR that re-
turns true if(x1, . . . ,xd) is a valid decomposition of
x. The set of all valid decompositions ofx is noted
R−1(x) = {(x1, . . . ,xd) : R(x1, . . . ,xd)}. The kernel
function k between two objectsx andx′ is given by
(Haussler, 1999):

k(x,x′) = ∑
(x1,...,xd)∈R−1(x)

(x′1,...,x
′
d)∈R−1(x′)

d

∏
i=1

ki(xi ,x
′
i) (2)

whereki is a kernel that gives the similarity be-
tween two parts.

For graphs, the natural and most generalR-
convolution kernel would decompose each of the two
compared graphsG andG′ into all of their subgraphs
and compare them pairwise. This all-subgraphs ker-
nel is defined as follows (Borgwardt and Kriegel,
2005):

k(G,G′) = ∑
S⊆G

S′⊆G′

ki(S,S
′) (3)

A GRAPH DECOMPOSITION APPROACH TO WEB SERVICE MATCHMAKING

33

<Choice>
<AtomicProcess ID = GetCoordinatesByCityAndState>
<AtomicProcess ID = GetDistanceBetweenTwoCoordinates>
<sequence>

<Choice>
<AtomicProcess ID = GetAddress>
<AtomicProcess ID = GetStateAndProvince>
<AtomicProcess ID = GetZone>
</Choice>
<AtomicProcess ID = Coordinates>

</sequence>
</Choice>

Start

XOR

XOR

GetCoordinatesBy
CityAndState

GetDistanceBetween
TwoCoordinates

XOR

XOR

GetAddress
GetStateAnd
Province

GetZone

End

Coordinates

Figure 1: A graph representation of an OWL-S process.

In (Gartner et al., 2003) the authors show that
the problem of computing this all-subgraphs kernel
is NP-hard. So, several other alternatives have been
defined in the literature. These alternatives focus on
proposing simpler decompositions such as sequences
of vertices (Neuhaus and Bunke, 2006), paths (Suard
and Rakotomamonjy, 2007), shortest paths (Borg-
wardt and Kriegel, 2005), trees (Ramon and Gart-
ner, 2003),etc. The idea of decomposing the graphs
to be matched prior to the matching process has also
been used with graph edit distance and the results are
promising. In (Jouili and Tabbone, 2009; Riesen and
Bunke, 2009) the authors use a star decomposition of
the graphs and then define graph edit distance onto
the obtained sub-structures.

3.2 Our Approach

It follows from the above description of graph match-
ing approaches that graph decomposition allows to
have more efficient solutions either via graph kernels
or graph edit distance. The question here is what is the
decomposition to use when matching web services?
To attempt to give a satisfactory answer, we pro-
pose here two kinds of decomposition of web service
graphs through two matching algorithms: Algorithm
1 and Algorithm 2. Both of them focus on the main
characteristic of the graphs of web service business
processes: directed edges. Algorithm 1 uses graph
kernels and Algorithm 2 uses graph edit distance. We
also attempt to reduce the matching delay by avoiding
redundancy in the obtained sub-structures.

3.3 Algorithm 1

In this algorithm, we extend an existing graph decom-
position, the star decomposition, to take into account
edge-direction. We call this star, where all edges are
out-coming edges, aFaS for Father and Sons sub-
structure. AFaSsubstructure is composed of a node
connected to its sons by out-coming edges. This de-
composition is adapted for web services which graphs
do not contain cycles. So we apply it for trees of web
service operations. Figure 2 shows an example of a
decomposition of an OWL-S process tree intoFaS
substructures.

Figure 2: Decomposition of a service tree intoFaSs.

3.3.1 Principle

To compare two OWL-S processes, we first decom-
pose their corresponding trees intoFaSs. Then, each
FaSof the first process is compared to everyFaSof
the second process (see Algorithm 1). Comparing a
pair of FaSs FaSi andFaSj consists to compute the
kernel function

k(FaSi,FaSj) = exp−d(FaSi,FaSj) (4)

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

34

which allows us to find for a givenFaSi of the first
tree the most similarFaSj of the second tree given by
the best value ofk(FaSi ,FaSj) notedSim(i, j). Then,
we compute the kernel of the two compared trees by
summing all these best values :

K(A1,A2) =
nA1,nA2

∑
i=1, j=1

Sim(i, j) (5)

Algorithm 1: Matching algorithm using a decomposi-
tion intoFaSs and tree kernels.

Input:Two OWL-S process treesA1 andA2
Output: similarity degree betweenA1 andA2 computed as
a tree kernel
Begin
DecomposeA1 andA2 into FaSs.
For i = 1,nA1 do For j = 1,nA2 doSim(i, j) = 0; EndFor
EndFor;
For i = 1,nA1 do //nA1 is the number ofFaSs inA1
For j = 1,nA2 // nA2is the is the number ofFaSs inA2.
do /* compareFaSi andFaSj */

df ather(FaSi ,FaSj) =

{

0 i f f atherFaSi = f atherFaSj

1 otherwise

dson(FaSi ,FaSj)) =

max(‖FaSi‖ ,
∥

∥FaSj
∥

∥)−
∥

∥FaSi ∩FaSj
∥

∥

dedge(FaSi ,FaSj) = |‖edge(FaSi)‖−
∥

∥edge(FaSj)
∥

∥ |
d(FaSi ,FaSj) = df ather(FaSi ,FaSj)+dson(FaSi ,FaSj))+

dedge(FaSi ,FaSj) k(FaSi ,FaSj) = exp−d(FaSi ,FaSj)

If k(FaSi ,FaSj)> Sim(i, j) Then
Sim(i, j) = k(FaSi ,FaSj); EndIF
EndFor EndFor

K(A1,A2) =
nA1,nA2

∑
i=1, j=1

Sim(i, j) //tree kernel ofA1 andA2.

END

3.3.2 Example

Figure 3 illustrates a matching example of two web
service treesA1 andA2 with Algorithm 1. The de-
composition gives 2FaSsubstructures for each tree.
The best value of the kernel function forFaS1(A1)
is the one that matches it withFaS1(A2) and it is
equal toe−2. The best value of the kernel function
for FaS2(A1) is the one that matches it withFaS2(A2)
and it is also equal toe−2. So, the final value of the
similarity between the two trees ise−2+e−2 = 2e−2.

3.3.3 Time Complexity

The algorithm has a complexity ofO(△n3) time steps
wheren is the number of vertices in the largest tree
and△ is the maximum degree in the tree. In fact
the complexity of the decomposition intoFaS sub-
structures is polynomial. In the worst case it is

O(△n). To match the obtained sets ofFaSs, we need
O(△n3) time steps. This gives a global complexity of
O(△n3+△n=△n3) time steps. As in the worst case
△= n, we have a complexity ofO(n4).

3.4 Algorithm 2

In this algorithm, we propose a new graph decom-
position that emphasizes edges and their direction.
This decomposition, calledEaSfor (Edge and its end-
point Stars) is a graph sub-structure composed of a
directed edge, its endpoint vertices and all the out-
coming edges from the two endpoints. Figure 4 shows
an example of decomposition of a graph intoEaSs.

3.4.1 Principle

To compare two OWL-S processes, we first decom-
pose their corresponding graphs intoEaSs. Then
eachEaSof the first process is compared to every
EaSof the second process (see Algorithm 2). Com-
paring a pair ofEaSs: EaSi and EaSj consists to
compute the edit distance between two sub-graphs
Sim(i, j) = d(EaSi ,EaSj). Sim is a nG1 × nG2 ma-
trix, wherenG1(resp.nG2) is the number ofEaSs in
G1(resp.G2), that saves the computed distances (see
Figure 5). Then, the distance between the two graphs
is the sum of the minimal distances betweenEaSs.

Algorithm 2 : Matching algorithm based onEaS. and
Edit distance.
Input: Two OWL-S process graphsG1 andG2
Output: similarity degree betweenG1 andG2 computed as
a graph edit distance
Begin
DecomposeG1 andG2 into EaSs.
For i = 1,nG1 do For j = 1,nG2 do Sim(i, j) = 0; EndFor
EndFor;
For i = 1,nG1 do
For j = 1,nG2 do
do /* compareEaSi andEaSj */
d(EaSi ,EaSj) = c(f atheri , f atherj)+c(soni ,sonj)+

|‖E(EaSi)‖−
∥

∥E(EaSj
∥

∥ |
wherec(x,y) is the cost of the substitutingx by y.
Sim(i, j) = d(EaSi ,EaSj)
EndFor
EndFor

d(G1,G2) =

NG1,NG2
∑

i=1, j=1
min Sim(i, j)

|nG1−nG2|
+ |‖G1‖−‖G2‖|

wherenG1(resp.nG2) is the number ofEaSs inG1(resp.
G2)
End

A GRAPH DECOMPOSITION APPROACH TO WEB SERVICE MATCHMAKING

35

Figure 3: A matching example with Algorithm 1.

Figure 4: Example of decomposing a graph intoEaSs.

Figure 5: Similarity matrix betweenEaSs.

3.4.2 Example

Figure 6 illustrates a matching example of two graphs
G1 and G2 with Algorithm 2. The decomposition
gives 5EaSsubstructures forG1 and 3EaSsubstruc-
tures forG2. The matrix of similaritySimbetween
EaSs is 5× 3. In Figure 6, eachEaSis represented
by the directed edge that determines it i.e. a pair
of nodes(f ather,son). Each cell of the matrix con-
tains the edit distance between twoEaSs. For exam-
ple Sim(1,1) = 2 because if we consider that all edit
operations have the same cost 1, then the distance be-
tweenEaS1(G1) andEaS1(G2) is equal to the cost of
two re-labelling operations: 2 to 1 and 3 to 2. By sum-
ming the minimal distance between all pairs ofEaSs,
we obtain a distance between the two graphs equal to
7.

3.4.3 Complexity

The complexity of Algorithm 2 isO(n4) wheren is
the number of vertices in the largest graph. In fact,
to decompose a graph ofn nodes intoEaSswe need
O(n2) time steps. To compare twoEaSs, we need
2△2 time steps where△ is the maximum degree in
the graph. So, if we consider that, in the worst case
a graph ofn nodes has 2n EaSs then to construct the
matrix Simof all comparisons between theEaSs, of
two graphs, we needO(4n2 ∗2△2) = O(n2△2) time
steps.

To compute the minimum distance betweenEaSs,
we needO((2n)2) = O(4n2) time steps.

So, the complexity of the algorithm isO(n2△2).
As in the worst case△= n, we have a complexity of
O(n4).

3.5 Semantic Similarity

To obtain an accurate similarity measure, we also con-
sider semantic similarity of inputs and outputs. To do
so, we extended the semantic similarity of (Paolucci
et al., 2002) with Kernels. In fact, we propose a
kernel function to evaluate the four degrees of simi-
larity Exact, PlugIn, SubsumeandFail introduced in
(Paolucci et al., 2002). We affect a weightw to each
of the four degrees. This weight is either given by the
user or determined according to the application. So,
we compare two conceptscx1 andcx2 that correspond
to the inputs or outputsx1 andx2 of the compared ser-

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

36

Figure 6: A matching example with Algorithm 2.

vices by the following function:

kSem(x1,x2) =



























wExact i f Exact(cx1,cx2)

wPlugIn∗
1

d(cx1,cx2)
if PlugIn(cx1,cx2)

wSubsumes∗
1

d(cx1,cx2)
if Subsumes(cx1,cx2)

wFail otherwise

(6)

whered(cx1,cx2) is the number of edges that separate
the two conceptscx1 andcx2 in the ontology.

Thus, our semantic similarity of two servicesS1
andS2 measures the sum of the most similar inputs
and outputs of the two services as follows:

k(S1,S2) =
nbS1,nbS2

∑
x1∈S1,x2∈S2

max kSem(x1,x2) (7)

where nbS1 (resp. nbS2) is the number of in-
puts/outputs ofS1 (resp. S2) andkSem(x1,x2) is the
similarity between two concepts.

3.5.1 Example

Let S be a published service with two input param-
eters: "vehicle" and "parts" and one output "price".
Let Q a query with input parameters "Car" and "parts"
and one output "price". We suppose that the ontology
is the one presented on Figure 7 and thatwExact = 1,
wPlug−In = 0.8, wSubsumes= 0.5, wFail = 0.

The similarity between the inputs of the published
service and the query is :











kSem(car,vehicle) = wPlugIn∗
1
1 = 0.8

Max
⇒ 0.8

kSem(car, parts) = wFail = 0

(8)











kSem(parts,vehicle) = wFail = 0
Max
⇒ 1

kSem(parts, parts) = wExact= 1

(9)

The similarity between the outputs of the two services
is:

kSem(price, price) = wExact= 1
Max
⇒ 1 (10)

This gives the following similarity between the two
services:

k(S1,S2) = 0.8+1+1= 2.8 (11)

Thing

Vehicle

CarBus

Sedan coupe Jeep

Thing

Vehicle

CarBus

Sedan coupe Jeep

Figure 7: Vehicle ontology.

3.6 Evaluation

We implemented our matching scheme to evaluate its
performance and compare it with the performance of
exiting matching approaches of web services. In this
section, we provide an overview of our experiments
and some of the results we obtained. The experiments
were conducted on a Windows XP Laptop with a 1.73
GHz Pentium IV CPU and 1Gb main memory. The
data set used in our tests is a web service repository

A GRAPH DECOMPOSITION APPROACH TO WEB SERVICE MATCHMAKING

37

Figure 8: Execution time vs. the size of the graph.

collected by (Gater et al., 2010). We evaluated our
scheme by comparing it with two other methods that
embed structure matching within web service match-
making: (Corrales et al., 2008) and (Hao and Zhang,
2007) described in Section 2.

We first evaluated the execution time performance
of the four algorithms. The time performance is tested
with the increase of the number of nodes of the com-
pared graphs. Figure 8 shows the variation of exe-
cution times according to the size of target graphs.
The results reported in this graphic represent the aver-
age execution times found for each given target graph
size. It can be seen that the execution times of Algo-
rithm 1 and Algorithm 2 are less than those of (Cor-
rales et al., 2008) and (Hao and Zhang, 2007). The ex-
ecution time is polynomial w.r.t the number of nodes
in the target graph. Moreover, the slope of Algorithm
1 id higher than for Algorithm 2.

We then evaluated the effectiveness of our ap-
proach by computing the recall and precision ratios
(Dong et al., 2004). The precisionp and recallr are
defined as follows:

p=
A+B

B
(12)

r =
A

A+C
(13)

whereA stands for the number of returned relevant
services,B stands for the number of returned irrel-
evant services,C stands for the number of missing
relevant services,A+C stands for the total number
of relevant services, andA+ B stands for the total
number of returned services. As shown in Figure 9,
the precisions of our schemes is 93% for Algorithm 1
and 92% for Algorithm 2 outperforming the two other
methods. As it can be seen in Figure 10, the recall of
our schemes is 96% for Algorithm 1 and 95% for Al-

gorithm 2 also outperforming the two other methods.

Figure 9: Precision.

Figure 10: Recall.

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

38

4 CONCLUSIONS

In this paper, we presented two decomposition-based
web service matchmaking methods. The main ad-
vantage of decomposing the web service graph into
smaller sub-structures is to reduce the time complex-
ity of the matching. The proposed algorithms take
into account the main characteristic of web service
graphs: directed edges and use the most efficient
graph matching tools: graph kernels and graph edit
distance. We also augmented our structural match-
ing by a semantic similarity measure that enhance the
matching precision. Experimental results show that
the proposed algorithms are efficient and outperform
existing ones. An interesting future extension con-
sists in using this approach with large web service
databases.

ACKNOWLEDGEMENTS

This work was funded by the ANR AOC and the CCI
de l’Ain.

REFERENCES

Beck, M. and Freitag, B. (2006). Semantic matchmaking
using ranked instance retrieval. InSMR ’06: 1st In-
ternational Workshop on Semantic Matchmaking and
Resource Retrieval, Co-located with VLDB.

Bellur, U. and Kulkarni, R. (2007). Improved matchmaking
algorithm for semantic web services based on bipar-
tite graph matching. InICWS’07, IEEE International
Conference on Web Services.

Bellur, U. and Vadodaria, H. (2008). On extending seman-
tic matchmaking to include precondition and effect
matching. InInternational Conference on Web Ser-
vices, 2008, Beijing, China.

Bellur, U., Vadodaria, H., and Gupta, A. (2008).Seman-
tic Matchmaking Algorithms, chapter Greedy Algo-
rithms. Witold Bednorz, InTech, Croatia.

Borgwardt, K. and Kriegel, H.-P. (2005). Shortest-path ker-
nels on graphs. In5th Int. Conference on Data Mining,
page 74–81.

Bunke, H. (1999). Error correcting graph matching: On the
influence of the underlying cost function.IEEE Trans.
Pattern Anal. Mach. Intell., 21(9):917–922.

Bunke, H. (2000). Recent developments in graph matching.
In ICPR, pages 2117–2124.

Bunke, H. and Allermann, G. (1983). Inexact graph match-
ing for structural pattern recognition.Pattern Recog-
nition Letters, 1:245–253.

Corrales, J. C., Grigori, D., and Bouzeghoub, M. (2008).
Behavioral matchmaking for service retrieval: Ap-
plication to conversation protocols.Inf. Syst., 33(7-
8):681–698.

Dijkman, R., Dumas, M., and Garcia-Banuelos, L. (2009).
Business Process Management, LNCS 570, page
48–63. Springer.

Dong, X., Halevy, A., Madhavan, J., Nemes, E., and Zhang,
J. (2004). Simlarity search for web services. In
VLDB2004, pages 372–383.

Garofalakis, M. and Kumar, A. (2003). Correlating xml
data streams using tree-edit distance embeddings. In
ACM PODS’2003. San Diego, California, June 2003,
pages 143–154. ACM Press.

Gartner, T., Flach, P., and Wrobel, S. (2003). On graph
kernels: Hardness results and efficient alternatives. In
Springer, editor,Annual Conf. Computational Learn-
ing Theory, page 129–143.

Gater, A., Grigori, D., and Bouzeghoub, M. (2010). Owl-
s process model matchmaking. InIEEE Interna-
tional Conference on Web Services, July 5-10, Miami,
Florida, USA.

Guo, J. L. R. and Chen, D. (2005). Matching semantic web
services across heterogenous ontologies. InCIT 05,
the Fifth international conference on computer and in-
formation technology.

Hao, Y. and Zhang, Y. (2007). Web services discovery based
on schema matching. Inthe thirtieth Australasian con-
ference on Computer science - Volume 62.

Haussler, D. (1999). Convolution kernels on discrete struc-
tures. Technical Report UCSC-CRL-99-10, Univer-
sity of California, Santa Cruz.

Jouili, S. and Tabbone, S. (2009). Attributed graph match-
ing using local descriptions. InACIVS 2009, LNCS
5807, page 89–99.

Mandell, D. and McIlraith, S. (2003). A bottom-up ap-
proach to automating web service discovery, cus-
tomization, and semantic translation. InProceedings
of the Twelfth International World Wide Web Confer-
ence Workshop on E-Services and the Semantic Web
(ESSW),Budapest.

Mbareck, N. O. A. and Tata, S. (2006). Bpel behavioral
abstraction and matching.Business Process Manage-
ment Workshops, pages 495–506.

Mendling, J., Lassen, K., and Zdun, U. (2006). Transfor-
mation strategies between block-oriented and graph-
oriented process modelling languages.F. Lehner,
H. Nsekabel, P. Kleinschmidt, eds. Multikonferenz
Wirtschaftsinformatik, pages 297–312.

Messmer, B. (1995).Efficient Graph Matching Algorithms
for Preprocessed Model Graphs. PhD thesis, Univer-
sity of Bern, Switzerland.

Messmer, B. T. and Bunke, H. (1999). A decision tree ap-
proach to graph and subgraph isomorphism detection.
Pattern Recognition, 32:1979–1998.

Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S.,
and Zave, P. (2007). Matching and merging of state-
charts specifications. InICSE 2007, page 54–63.

A GRAPH DECOMPOSITION APPROACH TO WEB SERVICE MATCHMAKING

39

Neuhaus, M. and Bunke, H. (2006). A convolution edit ker-
nel for errortolerant graph matching. InIEEE interna-
tional conference on pattern recognition, Hong Kong,
page 220–223.

Paolucci, T., Kawmura, T., and Sycara, K. (2002). Semantic
matching of web service capabilities. InSpringer Ver-
lag, LNCS, Proceedings of the International Semantic
Web Conference.

Ramon, J. and Gartner, T. (2003). Expressivity versus effi-
ciency of graph kernels. InFirst International Work-
shop on Mining Graphs, Trees and Sequences.

Riesen, K. and Bunke, H. (2009). Approximate graph
edit distance computation by means of bipartite graph
matching.Image and Vision Computing, 27:950–959.

Sanfeliu, A. and Fu, K. (1983). A distance measure be-
tween attributed relational graphs for pattern recogni-
tion. IEEE Transactions on Systems, Man, and Cyber-
netics (Part B), 13(3):353–363.

Shen, Z. and Su, J. (2005). Web service discovery based on
behavior signatures.SCC, 1:279–286.

Suard, F. and Rakotomamonjy, A. (2007). Mesure de sim-
ilarité de graphes par noyau de sacs de chemins. In
21e colloque GRETSI sur le traitement du signal et
des images, Troyes.

Vu, F. P. L.-H., Hauswirth, M., and Aberer, K. (2006). A
search engine for qosenabled discovery of semantic
web services.International Journal of Business Pro-
cess Integration and Management, 1(4):244–255.

Wang, Y. and Stroulia, E. (2003). Flexible interface match-
ing for web-service discovery. InWISE’2003.

Wombacher, A. (2006). Evaluation of technical mea-
sures for workflow similarity based on a pilot study.
Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS,
4275:255–272.

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

40

