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Abstract. *Networks of Evolutionary Processors (NEPs) are one of the currently
most used new types of natural computers. This paper briefly describes the model
and some developing tools for NEPs. Then, it describes NEPs-Lingua, a new
textual programming language for NEPs. Its two main goals are: reducing the size
needed by other representations and keeping the syntax as close as possible to the
one used to define NEPs in the literature. Some examples and future research
lines are also discussed.

1 Motivation

A great deal of research effort is currently being made in the so called “natural comput-
ing” realm. “Natural computing” is mainly focused on the definition, formal descrip-
tion, analysis, simulation and programming of new models of computation (usually with
the same expressive power as Turing Machines) inspired by Nature. Their bio-inspired
nature makes these models specially suitable for the simulation of complex systems.

Some of the best known natural computers are Lindenmayer systems (L-systems, a
kind of grammars with parallel derivation), cellular automata, DNA computing, genetic
and evolutionary algorithms, multi agent systems, artificial neural networks, P-systems
(computation inspired by membranes) and NEPs (or networks of evolutionary proces-
sors). This paper is devoted to this last model.

There are two main areas in which these models could be useful: as new architec-
tures for computers, different from von Neumann’s machine; and as modelling tools
to simulate complex systems for which “conventional approaches” (usually based on
differential equations) are, in practice, difficult to handle.

Two steps are needed in both scenarios: 1) design a particular instance of the consid-
ered model able to solve the task under study (this step is equivalent to “programming”
the model) and 2) “run” the model.
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Several attemps have been made to build hardware deviceppmis these bio-
inspired models. Some research groups are currently ingsléngin silico the basic
components of P-systems [4]. [9] describes other exam[flbardware implementa-
tions of cellular automata, CAM-6 and its derivatives, thave been used for the simu-
lation of complex systems (see [8]). But, unfortunatelyr¢h@re no real computers for
almost all bio-inspired models. So, step 2 usually impliesgimulation of the model
in a “conventional” (von Neumann) computer.

Informally, and assuming that NR@¢ndeterministic polynomial timez P, NP is a
complexity class that includes those problems whose swilty means of algorithms
run on conventional computers requirasre than polynomiaime. We can informally
understananore than polynomiaasexponentialOne of the most interesting features
of these hio-inspired computers is their intrinsic patelfa. We can design algorithms
for them that could improve the exponential performancéeirclassicversions. Nev-
ertheless, when the models have to be simulated on conmahtiomputers, the total
amount of space needed to simulate the model and to actualtye algorithm usually
becomes exponential. This may be one of the main reasons athyahcomputers are
not widely used to solve real problems. Most of the simukatme not able to handle
the size of non trivial problems. Grid, cloud computatiom afusters offer an inter-
esting and promising option to overcome the drawbacks di botutions: “specific”
hardware, and simulators run-on-von Neumann’s machines.

There are several research groups interested in progragrioofs for natural com-
puters. These tools include textual and visual programda@nguages, compilers, se-
guential and parallel simulators.

P-Lingua ([5] andht t p: / / www. p- | i ngua. or g) is a programming language for
membrane computing which aims to be a standard to define &sysOne of its main
characteristics is to remain as close as possible to thealaratation used in the liter-
ature to define P systems. Once he has formalized his P systenmogrammer does
not need any additional effort to describe them with P-LegR-Lingua is also the
name of a software package that includes several builtinisitors for each supported
model, as well as the compilers needed to simulate P-Lingugrams.

One of the current topics of interest of the authors of thpés the development of
programming tools for NEPs, which will be briefly describadhe following sections.
The current paper introduces NEPs-Lingua, the first texgtaramming language for
NEPs. It is a first step to extend the P-Lingua approach tordtteeinspired models
of computation. Our goal is to provide the researchers witlormogeneous family of
languages for programming natural computers. The progmfamiliar with a model
will not have to learn a very different syntax if he tries t@wusther models. This is the
reason why NEPs-Lingua is designed to be similar to P-LindiEps-Lingua has two
main goals that will also be described in detail later: 1)d#&Lingua, it aims to provide
the researchers with a syntax as close as possible to thesedgaidescribe NEPs in
the literature. 2) It tries to ease some usually boring, raaial and time-consuming
tasks needed to describe NEPs with the input formalismseo@viilable tools.
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2 NEPs

A Network of evolutionary processors (NEP [1]) can be defiagd graph whose nodes
are processors which perform very simple operations onggrand send the resulting
strings to other nodes. Every node has filters that block sstnmegs from being sent
and/or received.

NEPs-Lingua also support PNEPs (Parsing NEPs), an extettsiEPs introduced
in [7] to handle context free grammars.

NEPs and PNEPs: Definitions and Key Features.Following [1] we introduce the
basic definition of NEPs.

Definition A Network of Evolutionary Processors of sizds a construct:
I'= (‘/7 N13N27 coog NnvG)»
where:

— Vis an alphabet and for eac¢hvith 1 < i < n,
= N; = (M, A;, PL;, PO;) is the i-th evolutionary node processor of the network.
The parameters of every processor are:

e M, is a finite set of evolution rules of just one of the followirayns:
i. a — b, wherea,b € V (substitution rules),

ii. a — e, wherea € V (deletion rules),

ii. ¢ — a,whereq € V (insertion rules),

iv. a — s, wherea € V, s € V* (context free rules applied to change a
symbol by a string) PNEPs replace substitution rules bykinid of rules.
PNEPs add this kind of rule to reduce the amount of equivalertations.

e A; is afinite set of strings ovér. The set4; is the set of initial strings in the
i-th node.

e PI; and PO; respectively representing the input and the output filfEhgse
filters are defined by the membership condition, namely agtri € V* can
pass the input filter (the output filter)i#f € PI;(w € PO;). In this paper we
will use two kind of filters:

*x Those defined as two componeiif3 F') of Permitting andForbidding
contexts (a wordv passes the filter ifalphabet oiv C P)A (Fn alphabet
of w = 0)).

+x Those defined as regular expressionia wordw passes the filter ifv €
L(r), whereL(r) is the language defined by the regular expressjon

— G = ({N1,Ns,...,N,}, E)is an undirected graph called the underlying graph of
the network. The edges 6f, that is the elements @&, are given in the form of sets
of two nodes. The complete graph withvertices is denoted bi(,,.

Further formal details on the way in which NEPs evolve candemd in [1].
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3 Programming Tools for NEPs

The authors of this paper have proposed a development envéat for programming
NEPs that includes a Java NEP simulator (jJNEP), a Java grapyiewer of its sim-

ulations (JNEPview), and a domain specific visual languageNEPs designed with
AToM3 (NEPVL) In the following paragraphs we will briefly introdethese modules.
NEPs-Lingua and its compilers will be integrated in thisiemvment as its textual pro-
gramming language.

JNEP and jNEPview. JNEP [3] reads the definition of the NEP from an XML configu-
ration file that contains special tags for any relevant camepds in the NEP (alphabet,
stopping conditions, the complete graph, every edge, thkigonary processors with
their respective rules, filters and initial contents). Desfhe complexity of these XML
files, the interested reader can see that the tags and thidgiuts have self-explaining
names and values.

We show below, as an example, the configuration file of a vempkd NEP. It has
two nodes that, respectively, delete and insert the symbdhe initial word A B travels
from one node to the other. The first node removes the sydifmdm the string before
leaving it in the net. The other node receives the stringnd adds again the symbol
B. The resulting string comes back to the initial node and #meesprocess takes place
again.
<NEP nodes="2">

<ALPHABET synbol s="A B"/>
<GRAPH> <EDCE vertex1="0" vertex2="1"/> </ GRAPH>
<EVOLUTI ONARY_PROCESSORS>
<NODE i ni t Cond="A _B">
<EVOLUTI ONARY_RULES>
<RULE rul eType="del eti on" acti onType="RI GHT" synbol ="B"
newSynbol =""/ ></ EVOLUTI ONARY_RULES>
<FI LTERS> <I NPUT type="2" perm ttingContext="A B"
f or bi ddi ngCont ext=""/>
<QUTPUT type="2" perm ttingContext="A B"
f or bi ddi ngCont ext =""/ ></ FI LTERS>
</ NODE>
<NODE i ni t Cond="">
<EVOLUTI ONARY_RULES>
<RULE rul eType="insertion" actionType="RlI GHT" synbol ="B"
newSynbol =""/> </ EVOLUTI ONARY_RULES>
<FI LTERS> <I NPUT type="2" permittingContext="A B"
f or bi ddi ngContext=""/>
<QUTPUT type="2" permttingContext="A B"
f or bi ddi ngCont ext =""/ ></ FI LTERS>
</ NODE>
</ EVOLUTI ONARY_PROCESSORS>
<STOPPI NG_CONDI TI ON>
<CONDI Tl ON t ype="Maxi nuntt eps St oppi ngCondi ti on" maxi num="8"/>
</ STOPPI NG_CONDI Tl ON\>
</ NEP>

(XML configuration file for a simple NEP with just two processdhat send the words A and B
back and forth)
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Figure 2 contains, as an example, the windows used by [NEReishow the net-
work topology of one of the NEPs under study. Further detaiigNEPview can be
found in [2].

NEPVL. AToM? is a python platform to develop domain specific visual larggasaWe
have used it to design NEPVL.

AToM2 v0.2.2berliner using: NEPs

File Model Transformation Graphics Layout

NEPs Model ops | Edientiy| Connect| Delete| Insert model| Expand model Exit
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Fig. 1. NEPVL program for the NEP with two processors.

Figure 1 shows the NEPVL program that defines the same NERwdtprocessors
previously described. Further details about ATodhd NEPVL can be found in [6].

4 The NEPs-Lingua Syntax

In the following paragraphs we describe, mainly by exampies syntax of NEPs-
Lingua. A full ANTLR 2 description of the complete grammar may be asked from the
authors. The main components of a NEPs-Lingua program angi@tlata, comments,
nodes, the alphabet, the initial contents of the nodesugweohary rules, filters, the
connections of the NEP graph and stopping conditions.

Atoms. There are two classes of atomic data: alfanumeric stringgrabols (they have
to start with an alphabetic character); and integer aritimespressions, with the usual
mathematical notation, that include the operators in th¢ s&ower), +, —, , /}

Comments. The typical G++ comments are also available in NEPs-Lingua.

2 ANTLR is a Java tool to design top-down parsers and languageepsors, developed by
Terence Par. Further information can be found at http://vamtir.org/
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Line CommentsFor examplé / Conment .
The comment includes every symbol until the end of the line.

Multi Line commentsFor example

[ * ... Comment
* [

Where the comment includes everything (even¢hd of linemarkers) between the
symbols “/*" and “*/".

Alphabet. It is the alphabet of the NEP, a set of strings of symbols. Ttpression
@={ X S, a, b, o, & defines an alphabet that contains the elements “X”, “S”, “@",
“0”, and “0".

Nodes. This is the most complex type of NEPs-Lingua data. Therewaoectasses of
nodes: with and without indexes. There are two kinds of irderumeric (defined by
a range) and symbolic (defined by a set of strings of symbols®.syntax of indexes
with numeric ranges is borrowed from P-Lingua.

Non Indexed NodesThe expressiofi nitial/, final} defines two nodes without
indexes with nameimitial andfinal.

Indexed NodesThe example defines a family of nodes with two indexes. Onbarit
(i) takes its values from the interv@ll, 10]. The values of the other (j) are taken from
the set{o, a, b}.

{m{i,j}: O<=i<=10, j->{o0,a,b}}

The EXp”Cit set of the 33 defined nodes{'mg_ﬂ, mo,b, Mo,c, - - - T10,a5 1210,b, mlo,c}.
Different kinds of nodes can be mixed by means of the uniorraipe The next
example shows the definition of a set of nodes that contamsith previous examples.

@&{initial, final}+{n{i,j}: O<=i<=10, j->{o0,a,b}}

Initial Content. It describes the set of strings that a given node initiallptams.
Notice that the node is written as a parameter otthrgent directiveg . The expression
@{n{X}} ={X, S} sets the initial content of the nodg; to {X, S}

Rules. Each type of rule has a different notation. Notice that, & lringua, the symbol
# stands for the empty string and the string> separates the left and right sides of
the rule. The sentences - - >a, a --># andS- - >aSh are examples of respectively
insertion, deletion, and substitution (or deriving) rules

All the rules for a given node are given together in the sameesee. The sentence
@{n{S}} ={S-->aSh, S--=>ab} assigns two deriving rules to the nodg.
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Filters. Each processor needs an input and an output filter. Diffgrapérs previously
mentioned define three components in the filters: their tyyoethe permitting and for-
bidding contexts. We have grouped the different filters @&f literature in six types
(depending on the way in which they are applied): types fraim4 and filters defined
by means of regular expressions or by means of sets of stidajs contexts are just
sets of symbols described by means of regular patterns diciéxgets of strings. The
following examples define several filters:

@i f{n{S}}= {1, {abc, oo}}
@of{initial} = {@egular_pattern, ( ((a[lb)+) 1[ (c*) )I[ # }
@i f{n{2,a}}= {@®et, {a, ab, aabb}}

where @i f and @ of stand respectively for permitting input and forbidding atip
filter (the same for forbidding input and permitting outpiigfis). In regular expressions
[1., 1[., + =, #representintersection, union, + and *, and the empty string

Connections. This element makes it possible to get a compact represemi@tNEPS.
There are two ways of defining connections: the directivenpl et e, that stands for a
complete graph; and an explicit set of connections definetiégns of pairs of nodes.
The next examples show both options:

@=@onpl ete
@={ (final,n{X), (n{X,n{9, a}) }

Stopping conditions. The stopping conditions are written in a set after the divect
@5. Each kind of condition is represented by its nhame and itsired parameters. Both
names and parameters are easy to identify in the followiagte:

@={ @o_change, @mux_steps = 3+4, @on_entpy_node={n{C, n{X}} }

where@o_change stands for two consecutive equal configuratia@six_st eps re-
quires an expression to define the number of steps (the NIBB atter taking the given
number of steps); an@on_enpt y_node includes a set of nodes whose contents are
initially empty (the NEP stops when one of these nodes resewme string).

5 Examples

In this section we will show some complete NEPs-Lingua paags. Our main goal is to

highlight the two main characteristics of NEPs-Lingua:ueidg the size and keeping
close to the formal notation. For this purpose we will congpseveral NEPs-Lingua
programs with NEPs examples taken from the literature. paces reasons, we refer to
the original papers for the detailed definition of the exasspl

Reducing the Size of the RepresentationsFirst we show the NEPs-Lingua program
for the example with two processors previously describegl cah appreciate with this
simple example that the NEPs-Lingua program is more comthact the other two
representations (see the corresponding XML source andefigur
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@={A B}

@={ n{i}: 0 <=1i <=1}
@{n{0}}={A B}
@{n{0}}={B-->#}
@{n{1}}={#-->B}

@={ @mex_steps = 8 }
@={ @onpl et e}

The reduction in size is greater as the complexity of the Nieeiases. NEPs usu-
ally have complete graphs.

JNep Visualizer
Archive Simulation
Backward step Fordward Siep To.. | Evolution Step: 0 Communication Step: 0
NODE D
_——
. e e ‘," MRS
. : l, el | 7:
\-i,;_/_/ £ f" ¥ =
e g 1 4 - N
/ —1 i S Ul
= | Bt e L “LEC b— N
el | .
= i ] | \ 1 =
\ i LY L g ) | S 2
] T = |
A s — & & /\ﬁ i
g s ) [ S
7 [l Ise” S\
T \ T S /‘\( i
X v e

Fig. 2. NEPVL program for the NEP that solves the 3 SAT problem.

Figure 2 shows the NEPview window for a NEP with a completapgrwith 9
nodes.

The XML configuration file for this NEP is forced to explicitijontain all the
nodes and connections (see the XML sample previously shaWilg the NEPs-Lingua
source has to contain just the following two sentences:

ON{ n{i}: 0 <=i <= 8}
@=@onpl ete

[1] shows a NEP able to solve a small instance of the well kngvaph coloring
problem with three different colours. It needs a completgpgrwith more many nodes
than in the previous example.
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The jJNEPview window for this NEP is not shown in this paperdaese it is difficult
to handle: it looks like a ball of yarn. Once again the NEPsgluia program needs just
the following two sentences:

@{ n{i}: 0 <=i <=501} \\ Definition of 51 nodes
@c=@onpl ete

Keeping NEPs-Lingua as Close as Possible to the Formal Notah used in the Lit-
erature. The interested reader can easily see in the referencesftastttwo examples
(3-SAT and 3 coloring) that NEPs-Lingua syntax is mainlypinsd by the formal no-
tation used in the literature to describe NEPs.

[7] contains another example: a NEP associated with thesgbfree grammar for
axiom X with the derivation rule§X — SO,S — aSbh,S — ab,0 — 0,0 —
00,0 — Oo}

It is easy to see that the following NEPs-Lingua program fos tNEP is quite
similar to its formal definition.

@={X, S, a,b,0, G // Al phabet

@&= {final}+ {n{synbol }:synbol ->{X, S, G} /+* Nodes associ at ed
wi-th non terminal synbols x/

@{n{X}}={X} // Initial content of the axi om node

@{n{X}}= {X-->SC // Deriving rules for the axiom

@{n{S}}= {S-->aSh, S-->ab}

@{n{C}={0->, O->00 O->00}

@=@onplete // The graph is conplete

@={ @on_entpy_node={final} } // Stopping conditions

6 NEPs Lingua Semantics

The semantic constraints that every NEPs-Lingua prograsrtdaatisfy are outlined
below:

It has to contain exactly one alphabet and one set of nodarddicins.
It needs at most one of the following elements:
e Connection declaration set. By default, the graph is camsidicomplete.
e Set of stopping conditiongho_change is assumed by default.
Filters, rules and initial contents are optional.
Nodes have to be defined before their use.
Each symbol representing rules, filters and initial corgtéuats to be included in the
alphabet.

NEPs-Lingua compilers should ensure these conditionsushal way of control-
ling the last one is by means of a symbol table that is filledevpiocessing the decla-
ration sentences and is consulted by the sentences thadbdes and symbols.

We have used differemasht abl e Java objects to check these constrains.

The following example shows some semantic mistakes:
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@\={ A}

@={ n{i}: 0 <=j <=1}
@{n{0}}={A B}
@{n{0}}={B-->#}
@{n{2}}={#-->B}

@={ @mex_steps = 8 }
@={ @onpl et e}

— The third, fourth and fifth lines contain the symlBlwhich is not in the alphabet.
— The second line defines the indiexwhile the declared one is
— The fifth line defines the rules for the node, but the value for index (2) is invalid

7 Further Research Lines

Code Generatorsln the future we intend to provide our system with some code ge
erators. The first one will translate NEPs-Lingua programts the XML configuration
files that ]NEP uses as input. It could also be used to gentlimtame python programs
that the NEPVL software uses.

Extensions.Although thissimplesyntax seems to be expressive -enough for the NEPs
we have found in the literature, we are considering the ¥alig extensions, usually
present in programming languages: global variables arahpetrized sub-NEPs.
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