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Abstract: In 2001, a team of researchers at IBM published a paper in IJCAI which reported on the first experiments 
that systematically studied the interactions of human traders and software-agent traders in electronic 
marketplaces running the continuous double auction (CDA) mechanism. IBM found that two software-agent 
strategies, known as GD and ZIP, consistently outperformed human traders. IBM's results received 
international press coverage, probably because the CDA is the mechanism that is used in the main electronic 
trading systems that make up the global financial markets. In 2002, Tesauro & Bredin published details of 
an extension to GD, which they named GDX, for which they wrote: "We suggest that this algorithm may 
offer the best performance of any published CDA bidding strategy". To the best of our knowledge, GDX 
has never been tested against human traders under experimental conditions. In this paper, we report on the 
first such test: we present detailed analysis of the results from our own replications of IBM's human vs. ZIP 
experiments and from our world-first experiments that test humans vs. GDX. Our overall findings are that, 
both when competing against ZIP in pure agent vs. agent experiments and when competing against human 
traders, GDX's performance is significantly better than the performance of ZIP. 

1 INTRODUCTION 

At the 2001 International Joint Conference on 
Artificial Intelligence (IJCAI-01), a team of IBM 
researchers presented a paper (Das, Hanson, Kephart 
& Tesauro, 2001) that generated press coverage 
around the world (e.g. Graham-Rowe, 2001). Das et 
al.’s paper was the first to apply the laboratory 
methods of experimental economics (e.g. Kagel & 
Roth, 1997) to the systematic comparative 
evaluation of adaptive autonomous software-agent 
“robot” trader strategies, in controlled experiments 
that pitted the robot traders against human traders in 
a continuous double auction (CDA) mechanism. The 
IBM team explored their own robot strategy, a 
modified form of the Gjerstad-Dickhaut algorithm 
(Gjerstad & Dickhaut, 1998) which we will refer to 
as EGD (Extended GD), and a version of the Zero-
Intelligence Plus (ZIP) algorithm developed by Cliff 
at Hewlett-Packard Labs (Cliff & Bruten, 1997). Das 
et al. reported on results from six experiments 
involving a number of human subjects being pitted 
against a similar number of a particular type of 

trading-agent: EGD in four experiments, and ZIP in 
the remaining two. The results from all six of these 
experiments were conclusive: the average efficiency 
of the robot traders, i.e. their ability to enact 
profitable transactions, was consistently higher than 
that of the human traders, and this was true for both 
the trading strategies. The IBM paper concluded 
with the following memorable passage: 

“[…] the successful demonstration of machine 
superiority in the CDA and other common 
auctions could have a much more direct and 
powerful financial impact—one that might be 
measured in billions of dollars annually” 

Somewhat curiously, in the decade since that 
paper was first published, as far as we can determine 
no-one has yet reported on a replication of those 
results. We speculate here that this is because, back 
in 2001, to set up an experimental economics 
laboratory such as that used by the IBM team 
required a considerable investment. However, as the 
real cost of personal computers (PCs) and data-
networking hardware has fallen dramatically in the 
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past ten years, we observed that it is now possible to 
re-create the necessary laboratory apparatus using 
low-cost “netbook” PCs for a total cost of only a few 
thousand dollars. With that motivation, we have 
designed and implemented an experimental 
economics laboratory network trading system, where 
“trader terminal” netbooks communicate with a 
central “exchange” server, with the potential for 
multiple instruments to be traded simultaneously in 
varying quantities, and with every quote in the 
marketplace, and details of all transactions, written 
to a database as a single “consolidated tape” record 
of the trading events (to sub-second timestamp 
accuracy) over the course of a trading experiment. 
This trading system, which is called “OpEx” (from 
Open Exchange) will be open-sourced under a 
creative commons license in the near future (De 
Luca, forthcoming 2011). In this paper, we report on 
the use of OpEx to replicate IBM’s IJCAI-01 results 
from testing human traders against ZIP and the most 
recent evolution in the “GD” class of algorithmic 
traders: GDX (Tesauro & Bredin, 2002). To the best 
of our knowledge, these are the first results from 
testing GDX against humans. We find that our 
results agree with IBM in the respect that the GDX 
and ZIP robot traders consistently out-perform the 
human traders, but our results differ from IBM’s in 
that we find that GDX outperforms ZIP, while in the 
IBM study ZIP slightly outperforms EGD on 
average. Our results are also in line with those 
achieved by Tesauro & Bredin: in pure robot vs. 
robot competitions, GDX outperforms ZIP and 
proves to be a major improvement of the original 
GD algorithm. 

2 BACKGROUND 

Today, the vast majority of financial products are 
traded electronically: following exact rules, buyers 
and sellers, collectively known as traders, interact in 
a common virtual “marketplace” to trade those 
products. The numerous organisations that are in 
place to allow electronic trading of financial 
securities are known as exchanges, or sometimes 
markets. The set of rules that define the exchange 
process between traders on a market forms its 
market mechanism, of which the continuous double 
auction (CDA) is the most used due to its high 
efficiency: 

“Markets organised under double-auction trading 
rules appear to generate competitive outcomes 
more quickly and reliably than markets organised 

under any alternative set of trading rules.” (Davis 
& Holt, 1993) 
In a CDA, traders can make bids and accept 

offers asynchronously at any time during the trading 
day (that is, the fixed-duration trading period during 
which trading is allowed). All the offers are usually 
publicly visible by all market participants, and a 
trade is made whenever the outstanding bid is 
greater than or equal to the outstanding ask. 
Although it is made up of simple rules, the 
nonlinearities of the CDA are too complex to be 
analysed by traditional mathematical methods such 
as game theory: as a results, researchers have turned 
to empirical approaches. 

In his Nobel-prize-winning work, Vernon Smith 
(1962) ran several experiments with human traders, 
and demonstrated that markets governed by the 
CDA can reach close-to-optimal efficiency. Also, he 
proved that transaction prices converge to the 
market’s theoretical competitive equilibrium price, 
where the supply and demand curves intersect. 
Furthermore, he found that if the supply and demand 
of markets suddenly changed, the transaction prices 
would rapidly converge to the new equilibrium 
price. In many of his experiments, Smith studied the 
dynamics of CDA-based markets by assigning one 
unit to sell(buy) at no less(more) than a specific 
price to each of the traders. The price of the unit, 
known as limit price, represents the maximum 
amount of money l a buyer can spend to buy the 
unit, or the minimum value c for which a seller can 
sell the unit. As a consequence, buyers make a profit 
l-p if they buy at a price p that is less than their limit 
price, whereas sellers make a profit p-c if they sell 
for a price p higher than their limit price. The limit 
prices are private, each trader knowing only her 
limit. The traders interact by quoting the price at 
which they are willing to trade their units. In Smith’s 
early experiments this happened by speaking the 
number out loud, thus the public quotes in a CDA 
are often referred to as shouts. A random player is 
selected every turn to make a shout, and the game 
finishes after a fixed number of turns. Following the 
rules of the CDA, a trade occurs when the 
outstanding bid is greater than or equal to the 
outstanding ask. Smith measured the performance of 
a trader in terms of allocative efficiency, which is the 
total profit earned by the trader divided by the 
maximum theoretical profit of that trader, expressed 
as a percentage. The maximum theoretical profit of a 
trader is the profit that trader could have made if all 
the market participants would have traded their units 
at the theoretical competitive market equilibrium 
price. A further measure of the performance of a 
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market is the profit dispersion: this is defined as the 
cross-sectional root mean squared difference 
between the actual profits and the maximum 
theoretical profits of individual traders. Formally, if 
ai is the actual profit earned by trader i, and pi is the 
theoretical equilibrium profit for that trader, then for 
a group of n traders the profit dispersion is given by: 

ඩ1݊ ෍(ܽ௜ − ௜)ଶ௡݌
௜ୀଵ  (1) 

3 OPEN EXCHANGE 

We ran our experiments on Open Exchange (OpEx), 
an experimental algorithmic trading platform 
developed by De Luca (forthcoming 2011). OpEx 
was designed to resemble closely the structure and 
the behaviour of modern commercial financial-
market electronic trading systems, and to be generic 
enough to support experimental economics 
simulations of arbitrary complexity. Figure 1 
illustrates the interaction between the core 
components in a simple configuration. The 
connections  between  the  components  on  the  left  

 
Figure 1: An instance of Open Exchange. The solid lines 
and the dotted lines represent the flow of order data, 
respectively the requests and the replies. The sparsely 
dotted lines indicate the market data flow, from the 
Exchange back to the order generators through the Market 
Data Bus. 

hand side show the flow of order data. Orders 
represent the agents' instructions to buy or sell a 
specific quantity of a given product at a particular 
price condition. Human traders enter their orders in 
the Trading GUI, a graphical application that allows 
users to view the market order book (i.e. the 
descending-ordered list of currently outstanding 
bids, and the ascending-ordered list of currently 
outstanding offers), their “blotter” (personal history 
of orders and trades), and their assignments. Agents, 

on the other hand, produce orders automatically, 
without the need of human intervention, on the basis 
of the market conditions that they observe. Once 
generated, orders are sent to the Order Manager, 
which routes them to the appropriate order processor 
(in this example, the single Exchange) depending on 
the destination specified by the sender. Once 
received by the Exchange, orders are processed 
according to the specific order matching logic 
implemented (the order matching logic that we will 
cover in detail here is the price-time priority 
matching logic, which constitutes the foundation of 
the CDA) and order completion data is passed back 
to the Order Manager, which in turn dispatches it to 
the appropriate sender. It is worth noting that order 
data are private, as only the originator of an order 
receives the order completion data relative to that 
specific order, which will let him/her know its 
progress. Conversely, market data are published on 
the Market Data Bus and can be seen by every 
market participant. 

4 AGENTS 

In the Open Exchange framework, automated 
trading agents are implemented as individual plug-
ins running on an instance of the Agent Host. In line 
with the distributed architecture of OpEx, there can 
be multiple instances of the Agent Host, each one 
running a particular set of Agents. Every Agent 
implements one specific algorithm and has its own 
configuration settings, loaded at start-up. One 
instance of the Agent Host is capable of running 
multiple instances of the same Agent, so that more 
than one automated trader following a specific 
strategy can participate in the market 
simultaneously. The behaviour of an OpEx Agent 
consists of cyclically listening to stimuli and reacting 
to them sequentially by performing one or more 
actions. Agents are idle as they wait for the next 
stimulus, whereas they perform calculations and 
they can send a signal to the market when they are 
active. Each stimulus represents a precise event (e.g. 
“the activation timer has expired”, “an order has 
been sent”, or “there has been a trade”) and it is 
produced by a specific source asynchronously. 
Unprocessed stimuli are convoyed to a common 
collector, and then the resulting queue, sorted 
chronologically, is processed sequentially. Our 
choice of timing mechanism is consistent with the 
previous IBM work (Das et al., 2001), where similar 
timing rules were used to regulate the activity of the 
Agents. However, while the results presented in 
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(Das et al., 2001) are from experiments run using 
two different timer periods (“fast”, 1 second; and 
“slow”, 5 second) for the different algorithms, in our 
work reported here we used the same timing across 
all the experiments in order to simplify the 
comparison of the performances of the different 
trading agents. In particular, our Agents primary 
timer period is set to 1 second, equivalent to the 
“Fast” configuration used in (Das et al., 2001). On 
the other hand, OpEx schedules the activity of the 
Agents in a much more basic way when running in 
“Discrete Event Simulator” (DES) mode. DES 
simulations are turn-based (300 turns in one trading 
day), and at each turn only one Agent is chosen at 
random among the active Agents, each of which has 
the same probability of being selected. 

4.1 ZIP 

In 1996, Cliff invented the Zero-Intelligence Plus 
(ZIP) algorithm to investigate the minimum level of 
intelligence required to achieve convergence to 
market equilibrium price (Cliff & Bruten, 1997). ZIP 
has been used in several subsequent studies, e.g. 
(Tesauro & Das, 2001) and (Das et al., 2001), as a 
benchmark for evaluation of strategy efficiency, and 
it was subsequently extended to ZIP60 by Cliff 
(2009). Each ZIP trader agent maintains a real-
valued profit margin and employs simple heuristic 
mechanisms to adjust their margin using market 
data. In this context, the profit margin represents the 
difference between the agent’s limit price and the 
shout price, which is the price that the agent sends to 
the market to buy or sell the commodity. By 
observing market events, ZIP buyers (sellers) 
increase their profit margin, and therefore make 
cheaper bids (more expensive offers), when a trade 
at a lower (higher) price than their current shout 
price occurs. Conversely, ZIP buyers that observe an 
accepted offer (bid) at a price higher (lower) than the 
one they have put on the market move towards that 
price by lowering their profit margin, that is bidding 
(offering) a higher (lower) price. The same applies 
to buyers (sellers) that witness a rejected bid (offer) 
at a higher price than the one they are advertising. 
The profit-margin adaptation rule used in the ZIP 
algorithm to dynamically respond to the market 
conditions is based on the Widrow-Hoff “delta rule” 
with an additional noise-smoothing “momentum” 
term. The profit margin of the ZIP traders is adjusted 
by a small random quantity, proportional to the 
learning rate of the individual agent. Consistently 
with (Preist & Van Tol, 1998) and (Das et al., 2001), 
we altered the original ZIP implementation to fit in 

the OpEx infrastructure by introducing an “inactivity 
timer”. The timer triggers a procedure that adjusts 
the shout price of the agents moving it towards the 
best price on the opposite side of the order book. As 
a result, the piece of information “nothing is 
happening in the market” is used by the agents as an 
additional pricing heuristic. 

4.2 GD/GDX 

In 1998 Gjerstad & Dickhaut introduced a bidding 
algorithm, now widely referred to as GD, centred on 
“belief” functions that agents form on the basis of 
observed market data. GD agents collect the orders 
(rejected shouts) and trades (accepted shouts) 
occurred during the last M trades, and store them in a 
history H. When a GD agent prices an order, from 
the history H it builds the belief function f(p), which 
represents the probability that an order at price p 
will result in a trade. For example, the belief 
function for a GD buyer is: ݂(݌) = (݌)ܮܤܶ + (݌)ܮܤܶ(݌)ܮܣ + (݌)ܮܣ +  (2) (݌)ܩܤܴ

Here, TBL(p) represents the number of accepted 
bids found in H at price ≤ p, AL(p) is the number of 
asks in H with price ≤ p, and RBG(p) is the number 
of rejected bids in H at price ≥ p. Note that f(p) 
depends on H, and therefore it can potentially 
change every time a market participant sends an 
order to the market. Because f(p) is defined only for 
some values of p, the function is interpolated to 
provide values over the domain of all the valid 
prices. Finally, the price p that maximises the 
product of the interpolated f(p) and the profit 
function of the agent (equal to l - p for buyers and p - 
l for sellers) is chosen as the order price. The 
original GD algorithm was modified by Tesauro & 
Bredin (2002), who christened their version “GDX”. 
GDX substantially differs from GD in that it makes 
use of Dynamic Programming (DP) to price orders. 
The pricing function takes into account both the 
effect of trading the current unit immediately, and 
the effect of trading it in the future, discounting the 
latter by a parameter γ. As a result, GDX agents do 
not just maximise the immediate profit, but instead 
optimise the pricing process in order to achieve 
overall higher returns over the entire trading period. 

5 EXPERIMENTAL SETUP 

All of our human vs. robot experiments involved 6 
human traders and 6 robot traders, both equally split 
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Figure 2: Trade price time series for a humans-vs.-GDX experiment. The vertical lines represent the start of a new round. 
The 10 rounds of 3 minutes each were divided into 5 phases, each of which with its own set of limit prices. The theoretical 
equilibrium price for each phase is indicated by the horizontal dashed lines. Trades between two humans are marked with 
open squares, between two agents with open circles, and between an agent and a human with solid circles. Mean efficiency 
per phase (vertical bars) and per rounds are shown for Agent Buyers (AB), Agent Sellers (AS), Human Buyers (HB) and 
Human Sellers (HS). 

into 3 buyers and 3 sellers, a structure used in the 
original IBM experiments. Before each experiment, 
the human subjects were briefed about the rules, and 
were given some time to familiarise with the Sales 
Trading GUI (briefing and tutorial typically took 
less than 30 minutes). The subjects had no previous 
professional experience in electronic trading, and 
they were only allowed to participate in one 
experiment. We motivated all 6 participants by 
giving each of them a token worth £20, plus a bonus 
of £40 and £20 to the first and the second best 
trader, respectively. An experiment consisted of 10 
consecutive “rounds” 3 minutes long. At the 
beginning of a round, each of the 12 players 
received a fresh supply of 13 units to buy or to sell 
during that round, according to their role. At the end 
of the round the unused units were discarded, 
without any profit or loss for the traders. Players had 
to trade their units sequentially, and the sequence of 
their limit prices was arranged in an arithmetic 
progression. Only 3 “generator” sequences were 
actually used to produce the prices for all the 

players: a human and his/her robot counterparty had 
the same limit prices; and buyers and sellers share 
the same values except for the order, that is 
increasing for sellers and decreasing for buyers. The 
progressions had the same slope, and they were 
chosen so that each player had approximately the 
same maximum theoretical surplus in a given round. 
In line with (Das et al., 2001), we introduced market 
shocks by periodically altering the limit prices 
adding or subtracting a constant to them every 2 
rounds. Thus, a 30 minutes simulation was 
constituted by 5 consecutive trading periods at 
different equilibrium prices. 

6 EXPERIMENTAL RESULTS 

6.1 Agents vs. Humans 

The results of the four agent-human experiments, 
summarised in Table 1, present several significant 
findings, all  of  which  are  in  line  with (Das et al.,  
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Table 1: Summary of the four agent-human experiments. For each experiment, the table displays: the strategy employed by 
all six agents; the percentage of trades made between two Agents, an Agent and a Human, and two Humans; the average 
efficiency of Agents and Humans; the percentage difference between Agents surplus and Humans surplus; the market 
efficiency and the profit dispersion. The mean maximum theoretical profit per trader per simulation is 2107. Lower profit 
dispersion and higher mean efficiency values are better. 

Experiment Trades Performance Market 
ID Strategy A-A A-H H-H Eff(A) Eff(H) Δ Profit (A-H) Eff Profit Disp 

UoB01 ZIP 35% 35% 30% 1.010 0.965 5% 0.987 536 
UoB04 ZIP 39% 30% 32% 1.037 0.931 11% 0.984 468 
UoB05 GDX 36% 40% 24% 1.055 0.789 36% 0.923 707 
UoB06 GDX 33% 44% 22% 1.074 0.809 35% 0.943 704 

 

2001). 
First, the agents as a group consistently 

outperformed the humans in all four experiments: 
the total surplus extracted from the market by the 
agents was on average ~22% more than the total 
surplus extracted by the human counterpart. Also, 
the efficiency achieved by the agents is constantly 
above 100%, which evidently implies that the agents 
managed to exploit human flaws. 

Second, there was a substantial interaction 
between agents and humans: on average, ~37% of 
the trades happened between an agent and a human, 
which confirms that the humans as a group were 
well integrated in the mixed humans-agents market. 

Third, we found that for each experiment, either 
all the buyers (but one) did better than all the sellers, 
or vice versa. Because this pattern was found neither 
in the numerous robot vs. robot experiments we ran 
under identical conditions, nor in the many human 
vs. human trials documented in (Smith, 1962), we 
speculate that this asymmetry is due to the 
heterogeneous nature of our market. 

Finally, our analysis shows that although GDX 
agents as a group achieve higher values of allocative 
efficiency than ZIP agents when competing against 
humans, both the overall market efficiency and the 
profit dispersion values are better for ZIP. 

6.1.1 GDX Agents vs. Humans 

The trade price time series of the human vs. GDX 
experiment UoB06 is shown in Figure 2. We will 
refer to this specific experiment, although the 
observations we made on UoB05 are very similar. 
The dashed vertical lines separate the 10 trading 
periods, whereas the dashed horizontal lines mark 
the theoretical equilibrium price p*. The time series 
exhibits a recurring pattern of convergence towards 
a price that is often somewhat lower than p*. Most of 
the trades were made at lower prices than p*, since 
buyers closed deals at reasonably lower prices than 
their limit prices, and therefore kept a higher profit 

margin than their sellers counterparty. This is 
confirmed by the fact that the five best traders in 
terms of mean allocative efficiency are buyers, for 
both the human vs. GDX experiments. 

A more detailed analysis of the efficiency per 
trading period reveals that the discrepancy between 
buyers and sellers is accentuated by the raising of 
the equilibrium price (e.g. between trading periods 6 
and 7), and attenuated by the drop (e.g. between 
trading periods 2 and 3, and 8 and 9). We explained 
this by looking at the first few trades made in the 
trading period following the market shock: their 
prices tend to remain close to the previous value of 
p*, resulting in better opportunities for buyers or for 
sellers, if there was a raise or a drop of p* 
respectively. This confirms that the GDX strategy 
requires a few samples before it can adapt to the new 
market condition. 

6.1.2 ZIP Agents vs. Humans 

Figure 3 illustrates the first four trading periods of 
experiment UoB04, which are quite representative 
for the two human vs. ZIP experiments we ran. By 
visual inspection, it can be verified that human-ZIP 
markets display better capabilities of tracking the 
equilibrium price, as convergence to p* is more 
pronounced than in human-GDX markets. It is clear 
that the patterns displayed by this time series are 
quite different from those in Figure 2. It can be 
noted that, qualitatively, the shape of the time series 
is reasonably consistent across the trading periods, 
and that the curve presents a higher price excursion 
in a shorter time than GDX before converging to p*. 
We ran a detailed quantitative analysis of the time 
series to confirm this, and found that the mean trade 
time relative to the trading period is ~45 seconds for 
ZIP-humans and ~69 seconds for GDX-humans 
markets. Moreover, by isolating the trades between 
two agents (A-A), between two humans (H-H), and 
between a human and an agent (A-H), we found that 
the mean  trade  time of  the three  types of trades is 
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Figure 3: The first four trading periods of experiment UoB04. 

Table 2: Summary of three sets of robot vs. robot experiments between GDX & ZIP agents. For each set of experiments, the 
table presents: the type of experiment, the value of the discount parameter γ, the number of experiments won by the two 
agents, and the mean number of rounds per experiments won by GDX (±1 s.d.). 

Type γ ZIP GDX GDX rounds won 
DES 0.0 46 1011 8.567 (± 1.817) 
DES 0.9 14 985 9.094 (± 1.273) 
RT 0.9 316 654 5.736 (± 1.518) 

 
consistently higher in GDX than in ZIP. Also, the 
mean trade time of A-A trades is the smallest and 
that of H-H trades is the largest consistently across 
trading periods in the experiments involving ZIP, 
while this relationship does not hold for some 
trading periods of experiments UoB05 and UoB06. 

6.2 Robots vs. Robots 

In order to further benchmark ZIP and GDX, we ran 
three sets of experiments between the two agents, in 
a pure robot vs. robot market. The results are 
outlined in Table 2. 

Qualitatively in line with (Tesauro & Bredin, 
2002), GDX clearly outperforms ZIP in discrete 
event simulations, both when run in optimal mode (γ 
= 0.9) and when degenerated to GD (γ = 0); in 
particular, the performance of GDX improves 
slightly for γ = 0.9. However, the win-lose ratio 
changes radically when the experiment is run in 
Real-Time (RT) mode, that is using the same set-up 
described for human vs. robot markets. This is also 
confirmed by the values of the mean number of 
rounds won by GDX. 

We speculate that the difference between the 
DES and the RT results is mostly due to the very 
nature of the two simulators: DES simulations are 
essentially single-threaded, and the agent selected 

for the current move has a virtually unlimited time to 
perform its calculation before ending the move. 
Conversely, each agent is represented by (at least) 
one thread in a RT simulation: agents are woken up 
asynchronously, therefore two or more of them may 
happen to operate “simultaneously” (compatibly 
with the software and hardware scheduling policies 
in force on the system running the simulation). This 
discrepancy is particularly relevant when comparing 
GDX and ZIP because the calculations performed by 
the latter are much more light-weighted than those 
performed by the former: while the GDX strategy 
may fare overwhelmingly better than ZIP if it is 
given all the required time to execute the pricing 
calculations, the difference between the performance 
of the two is dramatically reduced when time is 
critical, and the fastest agent to hit a price makes 
more profit. 

7 DISCUSSION & CONCLUSIONS 

We were pleased to employ our low-cost, portable 
experimental economics laboratory to, for the first 
time ever, pit humans against what is known to be 
the most evolved version of the “GD” class of 
algorithms. The results we obtained are, at the best 
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of our knowledge, unique, and they present several 
noteworthy characteristics. 

The application of Dynamic Programming 
techniques indeed proves its validity in terms of 
overall efficiency achieved by the agents as a group, 
against both human and automated rivals. The 
advantage of GDX over its predecessor is also 
confirmed by comparing our results to those realised 
in the IBM study, which present consistently lower 
values of mean efficiency of the trading agents. 

On the other hand, human-ZIP markets certainly 
display better overall performance, in terms of 
market efficiency and profit dispersion. This 
suggests that ZIP agents would be better companions 
for human traders in a CDA-regulated market where 
the objective is to maximise the whole profit 
extracted, whereas GDX would be a better choice in 
a scenario where humans and agents are pitted 
against each other as two separate teams, each one 
trying to exploit their rivals’ weaknesses to 
maximise their own profit. 

Moreover, we note here that several features of 
the market dynamics observed in our experiments 
deserve further investigation: the curved price 
trajectories and their convergence to the theoretical 
equilibrium price; the distinct separation between 
buyers and sellers in terms of overall performance; 
and the effect of timing constraints on the 
algorithmic traders. 

Ultimately, it would be interesting to test our 
algorithmic traders in two additional scenarios, 
compatibly with the time and money issues related 
to running the experiments. One where the period of 
the agency interventions is forced to be comparable 
to the estimated reaction time of the human traders: 
this would reveal in what measure the superiority of 
the agents is bound to their speed. And a second 
scenario where professional traders are used instead 
of amateurs, which would explain whether solid 
trading skills in the global financial markets make 
any difference in a competition against automated 
traders. 
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