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Abstract. Inthis work we focus on Electrocardiographic diagnosis based on epi-
cardial activation fields. The identification, within an activation map, of specific
patterns that are known to characterize classes of pathologies provides an impor-
tant support to the diagnosis of rhythm disturbances that can be missed by rou-
tine low resolution ECGs. Through an approach grounded on the integration of
a Spatial Aggregation (SA) method with concepts borrowed from Computational
Geometry, we propose a computational framework to automatically extract, from
input epicardial activation data, a few basic features that characterize the wave-
front propagation, as well as a more specific set of diagnostic features that identify
an important class of rhythm pathologies due to block of conduction.

1 Introduction

One of the most important application domains where imaging has proved extremely
useful is Medical Diagnosis. The process of identifying a pathological condition can be
greatly supported by signs of deviations from normality that can be drawn from images.
Within this context the term “imaging” usually refers to techniques to build images of
anatomical districts of the human body (e.g. radiographies, CAT, NMR); more broadly,
it can include methods that provide graphical representations of spatially referenced
variables related to specific organ functions (e.g. EEG, ECG signals, activation maps),
and in this case the term “functional” imaging is more appropriate.

Many functional images are graphical representations of a physical field: a potential
contour map, for instance, is the spatial representation of a potential field. Thereby, the
task of analyzing such images is not adequately tackled by traditional Image Process-
ing methods, which have been designed for raster images. The issue of unveiling the
salient physical events underlying a functional image is more appropriately and effec-
tively addressed through feature extraction methods that can exploit the domain-specific
knowledge at different abstraction levels. Such an issue is particularly relevant in view
of performing explanation and automated reasoning tasks.

Within the field of Qualitative Spatial Reasoning, Spatial Aggregation (SA) [1] pro-
vides an appropriate conceptual framework for feature extraction at multiple levels,
according to a powerful hierarchical abstraction strategy. In the direction of making
the approach more robust and integrating, within the basic SA framework, methods
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from quantitative research fields, several works have darterd to make it an attrac-
tive framework for the development of functional imagingl®[2, 3]. Any such tool
would ground on domain-specific knowledge, as the infereneehanisms rely on a
network of relations that, besides dealing with spatiapprties, explicitly encode such
knowledge.

This work contributes to the on-going research effort aimttegelivering novel tools
to support the assessment of the electric cardiac fundiimgnosing the cardiac elec-
tric function has always been a hard task for the difficulty mehe identification of
salient electrical events and their spatial associatidh wpecific epicardial sites. In
the clinical context, diagnosis of conduction pathologsestill carried out on the ECG
signals. Several tools exist for automated ECG segmentatid classification, most of
which are based on the integration of wavelet transformis métural/fuzzy-neural net-
works, to deal respectively with the signal decompositind elassification tasks (see
for example [5]). Within Al, Qualitative Reasoning has apdayed an important role in
providing a number of automated ECG interpretation tool8]6Unfortunately some
important rhythm disturbances may be incorrectly locatechissed by routine ECGs.
Even body surface high resolution mapping may fail becaigge ©f cardiac electrical
events on the torso surface are weak.

In recent years, model-based numerical inverse procedhares made it possible
to obtain non-invasively the epicardial activation fieldrfr body surface data. That
has engaged researchers in the effort towards novel mefbpétectrocardiographic
imaging [9, 10]. However, the interpretative rationale dardiac maps is only partially
defined, and the ability to abstract the most salient viseetifres from a map and relate
them to the complex underlying phenomena still belongswoeheperts. Due to the ex-
treme complexity of the physical system the task of automgadiagnosis of conduction
disturbances from a 2D/3D activation field is therefore hardl necessarily limited to
the current interpretation rationale. Within this field étional image-based diagnosis
is at its beginning, and, in accordance with the availabliomale, currently regards
only a few classes of conduction disturbances. The potaiti@ualitative Spatial Rea-
soning in contributing to its development is high: a tool foe automated extraction
of spatially referenced features of the cardiac electfizattion would bridge the gap
between established research outcomes and clinical geacti

To detect salient spatiotemporal features in the epichadi@vation field, we ex-
ploit the inference mechanisms provided by a computatitowigrounded on Spatial
Aggregation and on Computational Geometry concepts: frgimen numeric field we
extract spatial objects that, at different abstractioelevqualitatively characterize spa-
tiotemporal phenomena, and discover and abstract patiexgeostically relevant.We
focus on epicardial activation maps, which convey infoiprabout the heart elec-
tric function in terms of the depolarization wavefront kinatics and are very useful to
diagnose rhythm disturbances. We describe how to abstrant,the given activation
data, such basic propagation features as the sites wheveattedront breaks through
and where it terminates, or its qualitative velocity patterand we define a set of dis-
tinctive features that identify an important class of rimgtHisturbances due to blocks
of conduction.



2 Feature Abstraction from a Numeric Field

The comprehension of physical phenomena benefits from sli@hzation of the spatial
course of relevant variables. A visual representationinbthfrom a given numeric
field can be further inspected, and searched for homogeseitid specific patterns that
have a physical meaning. This “imagistic” reasoning agtithat goes beyond mere
visualization, is performed at multiple levels through glsence of abstractions and
manipulations of spatial objects that capture key phygioaperties.

2.1 Spatial Aggregation

Spatial Aggregation (SA) is a general-purpose framewoek firovides a suitable
ground to capture spatiotemporal adjacencies at multgaies in spatially distributed
data. It was designed to derive and manipulate qualitapatia representations that
abstract important features of the underlying data, for tge in automated reasoning
tasks [1-3]. In outline, SA transforms a numeric input figltbia multi-layered sym-
bolic description of the structure and behavior of the ptglstariables associated with
it. This results from iterating transformations of lowex! objects into more abstract
ones through the exploitation of qualitative equivalenagpprties shared by neighbor
objects.

SA abstraction mechanisms are based on three main steps|yndggregation
Classification and Redescriptiopthat exploit domain-specific knowledge and spatial
adjacencies (see Fig.1):

1. AggregationSpatial adjacency of low-level objects is encoded withiremhbor-
hood graph.

2. ClassificationNeighbor objects are grouped by similarity, according t@emdin-
specific equivalence predicate that defines a feature okisite

3. RedescriptionSimilarity classes are singled out as new high-level objtt pro-
vide an abstract representation of the feature.

field primitive
objects

aggregation classification

neighborhood
graph

new higher-level
objects

Fig. 1. Basic inference steps in Spatial Aggregation.

equivalence
classes

redescription

Step 1 mostly exploits geometrical properties, either imatior topological. Its
robustness is ensured by taking into account also the blaiteon-geometrical knowl-
edge, associated with the objects to be aggregated anddatathe physical context
[2]. Step 3 is crucial in that a non-effectual redescriptibnew objects may jeopardize
subsequent abstractions stemming therefrom. Such stefis@ted over and over until
the behavioral and structural information about the urydegl physical phenomenon,
required to perform a specific task, is extracted from tha dat. The hierarchical struc-
ture of the whole set of the so-built objects defines a biddioeal mapping between



higher and lower-level aggregates, and, consequentbgilitates the identification of
the pieces of information relevant for a specific task.

2.2 TheRoleof Computational Geometry

Within the SA abstraction mechanismRedescriptionnstantiates visual features that
play arole in the spatial reasoning process. The geomepiesentation of new objects
must convey a meaningful effectual visual synthesis of tiadeunlying similarity class.
Computational Geometry methods and concepts play an i@pordle in providing
algorithms for the redescription of newly abstracted otsjec

An important class of objects whose representation pdatiuneeds to suit the rea-
soning task is that of 2D bounded regions. These latter cartréor example, from the
application of a similarity relation grounded on intervalwes to a set of contiguous
isopoints. The similarity classes correspond to regioas ieed to be instantiated as
new geometrical objects for further treatment. In manyatitns the qualitative topo-
logical structure of the region needs to be captured at plelsicales.

The choice of the most appropriate format and scale for tHeseibed object is
always task-driven. For qualitative reasoning tasks, eredescriptor should be:

i) robust and stable with respect to-noise and small pertiottisof the region bound-
ary,
ii) capable to roughly capture the location and global eixdéthe region,
iii) capable to capture the topological structure of thaaa@t an appropriate scale of
details with respect to the task, and of course
iv) computationally feasible.

An effectual representation of a region can be provided $ygtoss skeleton”, as
defined in the following. The concept of gross skeleton isveerfrom the “medial
axis”, which is geometrically defined as the locus of the eentf circles that are inter-
nally tangent to the region’s boundary. The medial axis israaf geometric skeleton
of the figure, and its complexity, given by the number of bfeex; corresponds to the
boundary complexity, defined as the number of its curvatuteema. Unfortunately,
that makes it very sensitive to small perturbations of therfalary: noisy contours pro-
duce many secondary branches. For its instability the rhadia is not suitable as a
figure descriptor in contexts affected by noise, and as sushliso inappropriate where
finer scale details are irrelevant and need to be ignored.

Exact computation of the medial axis is difficult in generah approximation of
the medial axis of a region can be obtained from the Vororamjigim related to a finite
set of points that sample the region’s boundary [11]. Theodghg algorithm builds
a robust simplified topological skeleton of a given polygargion, namely the gross
skeleton, by exploiting a relevance measure [12] to selelgtprune the approximated
Voronoi medial axis.

Algorithm (gross skeleton construction)

Given{Py,..P,}, vertices of a polygonal regiof), and a threshol@g* < (0, 1),

1. ComputeM, Voronoi approximation of the medial axis 6f as follows:



(a) Build the Voronoi diagram related to the set of verti¢és, .. P, },
(b) Retain only the edges that are completely interndl.to
2. Compute the “index of relevancg( E) of each edgé’ € M, as

f: M —(0,1)  B(E)=2[l]/[0L]

where if P;, P, are the generators of Voronoi edgg || is the length of shortest
polygonal path connecting; with P, along the region’s boundafy, and|0L]| is
the regions’s perimeter (Fig.2).

3. (Selective pruninginitialize £* := M, andvE € M do

if B(E)< f*then £*:= L*\{E}.

Fig. 2. Steps in the construction of the gross skeleton of a polylgaggon. VerticesP;, Py of
the region’s boundary generate Voronoi edgédthicker line). Part of the Voronoi tessellation
(thin lines), and of the approximated medial a®is (thick line) are also shown.

Selective pruning of the medial axi%t is performed according to an edge rele-
vance criterion by which irrelevant boundary details arepged: edges with a very
low 3 value have a negligible effect on the region’s boundary.Biselt is a connected
linear structure that reflects the global topological dtrice of the region, as well as its
rough location and spatial extent. The choice of the relewdhresholds* affects the
complexity of the resulting gross skeletdii, and adjusts the descriptor to the scale
required by the reasoning task: as greateis, as more simplification is required.

In Fig. 3 a few perturbations of a smooth sample region arerteg: in each case
both the Voronoi medial axis and the gross skeleton are ctedpiihe figure clearly
shows how more robust the gross skeleton is with respeciet®honoi medial axis
approximation, and how the global shape of the region isuragt

CCILC

Fig. 3. A set of perturbations of the smooth region shown on the llefeach panel: the Voronoi
based medial axis (left), and the gross skeleton obtaingmunying with3* = 0.25 (right).




3 Functional Imaging of the Cardiac Electric Function

The heatrt is site of cyclic electrical activity which causiee muscle to rhythmically
contract. The propagation of the electric excitation witthie myocardium is a quite
complex 4D spatiotemporal process that electrocardistegixplore on reference sur-
faces (epicardial, endocardial) by means of relevant kiba$a such as the electric po-
tential, the activation time and the wavefront propagatielocity. Due to the difficulty
of combining spatial and temporal aspects, exploring therg@lu(x, t), a function of
space and time, is a hard task. A more global and synthetic sethe spatiotemporal
process of excitation is provided by the epicardial represteon of theactivation time
7(x), defined as the instant at which an epicardial sitthanges its electric state from
resting to activated. Such an instant is commonly estimasethe point of minimum
derivative extracted from the electrogram- u(x,t). Therefore, the activation time
embeds a qualitatively significant event in the electrieptiil time course, and, when
spatially represented on the whole epicardial surfacegltisha powerful diagnostic
potential.

In imaging of the cardiac electric function, an importaréris played by activation
maps: such maps are contour maps of the activation time oinaeg information about
the wavefront structure and propagation. In [4], in accoogawith the existing rationale
of interpretation, the problem of defining and-abstractimighin the SA framework, a
set of spatial objects that capture a few important basitifea of activation was tack-
led: isochrones, whose spatial sequence depicts the spfeaditation by snapshots,
wavefront breakthrough and exit locations, fast propaggtathways.

U

Fig. 4. Activation map as obtained from noisy data.

As an example, Fig. 4 shows an activation map obtained frasyrsimulated data
related to a case of normal propagation elicited by singéesicing. Let us remark that
the activation time field is actually related to a 3D modelh#f epicardium; in order to
have a unigue global planar view with minimal spatial digtar, we operate on an axial
cylindrical projection (Fig. 5). After preliminary noisemoval, from the activation field
the main wavefront propagation features are detected:etpeemice of isochrones, the
breakthrough and extinction sites, which respectivelykwanere excitation starts and
ends on the epicardial surface, and the fast propagatibmvpss (Fig. 6).

Our work focusses on an important class of pathological itimmd, namelyreen-
try ventricular tachycardia (VT), and provide SA-based definitions and algorithms for
the abstraction and spatial redescription of the featunasvied. Reentry VT is usually
triggered by the presence of post-infarction scar tissaeslows conduction (propaga-
tion velocity < 0.1 m/sec, [13]). When this happens, an anomalous activatitiarpa
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Fig. 5. Isopoints (black dots) on the epicardial surface: the serfaesh is shown. Left panel: 3D
geometry. Right panel: 2D cylindrical projection.

Sy

Fig. 6. Main wavefront propagation features abstracted from thgpgadata of Fig. 4: activation
isochrones, breakthrough (B) and exit sites (e/E), andofagiagation pathways (thick vectors).

called “reentry”, can appear: the excitation wavefrontéia in single/multiple circu-
lar patterns, and reenters the area where it arose from. Masgiarch effort has been
devoted to the study and characterization of this disoftié+16].

The key components of the reentrant VT pattern, in terms okfvant kinematics,
are (i) acul-de-sac-like region (isthmus), bounded by lines of block; (ii) a &kéhrough
site in the isthmus area; (iii) a reentry propagation pattév) an excitation end site
located proximal to the breakthrough, outside the blocked.a

Given the discretized epicardial geometty, and the activation time field =
7(x3), xi € 25, the main steps carried out to map it to a structural spafaksentation
of the salient propagation features, including the possistesence of a reentry VT

pattern, are here very briefly summarized:

1. Breakthrough and exit sites, isopoints, and the timeesecgi of the isochrones are
first obtained [4];

2. The velocity field is computed as/(x) = V7(x)/|V7(x)|?> whereV is the
gradient operator [17]. By mapping the velocity module migo a small set of
qualitative values, e.gery-dow, slow, medium, high, in accordance with threshold
values suggested by the experts, the epicardial surfasggsitioned into homo-
geneous subregions, each of them labeled by the qualitziue of the velocity
module. In this context, the valwery-slow marks a pathological condition. Then:

3. Ifthe regionZ, labeledvery-slow , is not empty,
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(a) it gets redescribed by its gross skeletdi, which represents the abstracted
“conduction block’line;

(b) a set of propagation lines, obtained as stream lineseofeltor field, are gen-
erated from a neighborhood of the ends of the block line, daskified into
“main propagationtlasses according to their ending site;

(c) among the ending sites associated with the main projoegadths, the nearest
to the isthmus area is located (loop pattern).

Step 3 aims at discovering and abstracting a possible yeeintuit by singling out
its key components. Let us remark that noisy data should dyeeply pre-processed to
reduce noise to acceptable levels and allow reliable andgstdbature extraction. Data
smoothing actually corresponds to how the expert appraabieevisual reasoning task,
by getting rid of minor or spurious details to catch the maitigrns.

Figure 7 shows, for the data set corresponding to Fig. 5, a@lddtthe area where
isochrones are spatially denser: the bounddalpf a criticalvery-dow region is shown,
as well as the Voronoi based medial axi$, and the gross skeletafr (left panel). In
the right panel, the abstracted conduction block complesulade-sac region where
isochrones get more crowded, bounded by a line of block whéparates a break-
through and an extinction sites, spatially close to eacbrofthe line of block, extracted
as gross skeleton of thery-slow area, corresponds to merging the locally crowded
isochrones.

oL
e r*

Fig. 7. Left panel: the approximated medial axid (thick line), and its pruned versiofi* (dark
thick line) are shown within the very-low-velocity area Imoied byo L. Right panel: the conduc-
tion block, extracted as a line of block (gross skeleton efdtitical velocity area) which leaves
a breakthrough and an extinction site at opposite sides.

B

Figure 8 shows the global outcome of the abstraction prese#sconsists of: the se-
guence of activation isochrones, the breakthrough andségg, the discovered block
of conduction, and the reentrant propagation patterngjrgiaat the ends of the block
arc.

4 Discussion and Conclusions

The approach herein proposed to automatically capturefgpaspects of cardiac elec-
trical activity is of broad methodological interest to d@tecardiography, and more in
general, to medical imaging. It results from the integnaid standard computational
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Fig.8. Outcome of the abstraction processes: activation isoesrd@thin solid lines), break-
through/exit sites (B/E labels), and the block of conduc{ihick solid line). A couple of wave-
front propagation lines, starting at the ends of the block are shown (dashed thick lines).

geometry concepts with a spatial aggregation methodoldgg. latter, that aims at in-
terpreting a numeric input field, allows us to capture strcadtinformation about the
underlying physical phenomenon, and to identify its glgisterns and the causal rela-
tions between them. Thanks to its hierarchical strategxtiraeting objects at different
scales, it facilitates the definition of inference rulest tfazor automated reasoning on
spatiotemporal phenomena to perform a specific task.

Tested on a few sample data sets regarding cases of both Inmmchabnormal
propagation, the proposed methodology proved effectitkendentification, from in-
put activation data, of the salient epicardial wavefromknatics, and of specific spa-
tiotemporal features that characterize an important déasrhythmias. At the current
stage of development, the analysis is limited to simplifieghgrios, for which an inter-
pretative rationale is available. However, the resultsivigtd even in presence of mild
noise make us confident about the feasibility of the reafimain the long term, of an
intelligent system for electrocardiac image understagdiased on such an approach.
Further work will regard:

() the validation of the methodology on measured data, sessits weaknesses and
strengths when applied in a clinical context. To this regashsitivity to noise
should be more deeply investigated;

(ii) the study of more complex phenomena, such as thosevimgthe Purkinje net-
work or multiple stimuli, and the proper characterizatiow adentification of all
propagation aspects;

(iii) the definition of a strategy for the comparison of thatigres of a given map against
those of enominal one, with the aim to detect and explain possible deviaticors f
the expected patterns.

As for the realization of a complete diagnostic tool for gaccelectric activity, fur-
ther insight into the electric function could be drawn frone tanalysis of temporal
sequences of potential data. From these data, especittiyniural measurements, we
could derive information about the electrical activitygrrio its surface breakthrough
that is complementary with respect to that obtainable frarfase activation data. That
would allow us to locate intramural components of reentrthpays associated with
arrhythmogenic activity. However, the challenge of conmigrspatial and temporal as-
pects in a full 4D analysis goes with the still incompleteaadle of interpretation of
such maps, and makes advances in this direction more remote.
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From a broader application perspective, besides coninigpud a diagnostic tool
specifically designed for rhythm disturbances, the methlagjowe propose could be
used in a therapeutical context to evaluate the efficacy ofig therapy aimed at nor-
malizing the rhythm, through the detection of its effectstloa spatial activation pat-
terns.
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