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Abstract: Path planning is one of the critical tasks for autonomous robots. In this paper we study the problem of 
finding the shortest path for a robot collecting waste spread over the area such that the robot has a limited 
capacity and hence during the route it must periodically visit depots/collectors to empty the collected waste. 
This is a variant of often overlooked vehicle routing problem with satellite facilities. We present two 
approaches for this optimisation problem both based on Constraint Programming techniques. The former 
one is inspired by the operations research model, namely by the network flows, while the second one is 
driven by the concept of finite state automaton. The experimental comparison and enhancements of both 
models are discussed with emphasis on the further adaptation to the real world environment. 

1 INTRODUCTION 

Recent advances in robotics have allowed robots to 
operate in cluttered and complex spaces. However, 
to efficiently handle the full complexity of the real-
world tasks, new deliberative planning strategies are 
required. In this paper, we deal with the robot 
performing a routine task of collecting waste for 
example in large department stores where the remote 
control is boring for humans and hence error prone. 
In particular, we solve the problem of planning a 
route for a single robot such that all waste is 
collected, robot’s capacity is never exceeded, and 
the route is as short as possible. We assume the 
environment to be known and not changing, in 
particular, the location of waste and depots is known 
and the robot knows how to move between these 
locations. To handle changes in the environment we 
focus on anytime planning algorithms that can be re-
run when the initial task changes, for example, the 
distances between the navigation points change due 

to cluttered areas. We propose to use Constraint 
Programming (CP) to solve the problem because of 
the flexibility of CP. This allows us to use a base 
model describing the core task and to add new 
constraints later when necessary. Such a new 
constraint could be the restriction on allowed 
combinations of entrance and exit routes when 
collecting the waste or visiting the depot for robots 
with limited manoeuvring capabilities. Figure 1 
gives an example of the initial environment (left) 
and the found path for the robot (right). 

 

Figure 1: Example of 6+3 robot planning task. The robot 
(the big circle) collects waste (six small circles) and uses 
collectors (three squares) to empty the bin when it is full. 
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The task we are dealing with is to develop a 
robot solving a specific routing problem – an often 
overlooked variant of the standard Vehicle Routing 
Problem (VRP). In our setting, the robot has to clean 
out a collection of waste spread in a building, but 
under the condition of not exceeding its internal 
storage capacity at any time. The storage tank can be 
emptied in one of available collectors. The goal is to 
come up with the routing plan minimising the 
travelled trajectory. This is a similar setting to a 
Vehicle Routing Problem with Satellite Facilities 
(VRPSF) studied in (Bard et al., 1998), where the 
task is to deliver goods rather than to collect waste. 
Our primary goal is to develop an algorithm that 
returns good solutions in a short time (almost 
anytime algorithm) and that can be easily extended 
by additional constraints. Hence ad-hoc exact 
techniques are not appropriate due to long runtime 
and limited extendibility and we decided to use 
Constraint Programming (CP) to solve the problem. 
Neither of existing CP-oriented works solves the 
above problem, but we can use them as the initial 
motivation for the design of our constraint model. 
Most of the routing models are based on the 
formulation of the problem using network flows 
(Simonis, 2006) so we also proposed a constraint 
model based on this standard technique. 
Nevertheless, the performance of this model was not 
satisfactory in our experiments so we proposed a 
radically new approach to model the problem using 
a finite state automaton. In our preliminary 
experiments, this model outperforms the traditional 
model and can solve larger instances of the problem. 

The paper is organised as follows. We will first 
formally describe the problem to be solved. Then we 
will formulate the traditional model based on 
network flows that we customised to solve our 
problem. After that we will describe the novel model 
based on finite state automata. The paper will be 
concluded by the preliminary experimental results. 

2 PROBLEM FORMULATION 

Recall that we are solving a single robot path 
planning problem with the capacity constraint. The 
robot’s environment consists of the navigation 
points defined by the locations of waste and 
collectors. We use a mixed weighted graph (V, E) 
with both directed and undirected edges to represent 
this environment. The reason for using undirected 
edges is minimising the size of the representation. 
The set of vertices V = {I}  W  C  {D} consists 
of the initial position I, the set W of waste vertices, 

the set C of collectors and the destination vertex D. 
From the initial position the robot has to visit some 
waste so we have directed arcs from I to all vertices 
in W. The robot can travel between the waste 
vertices so we assume a complete undirected graph 
between vertices in W. From any waste vertex the 
robot can go to a collector so we use a directed edge 
there and from any collector we can go to any waste 
which is again modelled using a directed edge. We 
need directed edges here as we need to count the 
number of incoming and ongoing edges for the 
collectors. There are no edges between the collector 
vertices. As mentioned, we use a dummy destination 
vertex that is connected to all collector vertices by a 
directed edge. The weight of each edge describes the 
distance between the navigation points. The edges 
going to the dummy destination vertex D has zero 
weight so the robot can actually finish at any 
collector. The task to find a minimal-cost path 
starting at I, finishing at D and visiting each vertex 
in W exactly once such that the number of any 
consecutive vertices from W does not exceed the 
given capacity of the robot. Figure 2 shows the 
schema of the graph with the navigation points. 
 

 

Figure 2: A schema of the graph describing the robot’s 
environment with the navigation points. 

3 CP MODEL BASED ON 
NETWORK FLOWS 

The first model that we propose resembles the 
traditional operations research models of vehicle 
routing problems based on network flows and 
Kirchhoff’s laws. Basically, we are describing 
whether or not the robot traverses a given edge. For 
every edge e we introduce a binary decision variable 
Xe stating whether the edge is used in the path (value 
1) or not (value 0). 

Let IN(v) and OUT(v) denote the set of incoming 
and outgoing directed edges for the vertex v. For 
example, for v  W the set IN(v) contains the arc 
from the vertex I and the arcs from the vertices in C. 
Let ICD(v) be a set of undirected edges incident to 
vertex v. This set is empty for the collector vertices; 
for waste vertices it contains undirected edges 
connecting the vertex with other waste vertices. The 
following constraints describe that the robot leaves 
the initial position I, reaches the destination position 
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D, and enters each collector c the same number of 
times as it leaves it: 

eOUT(I) Xe = 1,  eIN(D) Xe = 1, (1)
 

c  C: eOUT(c) Xe = eIN(c) Xe (2)
 

Let us now describe the constraint that each waste 
vertex w is visited exactly once. It means that 
exactly two edges incident to a waste vertex w are 
active (used in the solution path) and there can be at 
most one active incoming and outgoing directed 
edge connecting the waste with the collectors or 
with the initial node. 

w  W: eOUT(w)  IN(w)  ICD(w) Xe = 2 , (3)
 

w  W: eOUT(w)  Xe  1, (4)
 

w  W: eIN(w)  Xe  1, (5)
 

The above constraints describe any path leading 
from I to D, but they also allow isolated loops as 
Figure 3 shows. This is a known issue of this type of 
model that is usually resolved by additional sub-tour 
elimination constraints forcing any two subsets of 
vertices to be connected. 
 

 

Figure 3: An ineligible loop (left) satisfying the routing 
(Kirchhoff’s) constraints. 

In our particular setting, we need to carefully 
select these pairs of subsets of vertices because there 
could be collector vertices that are not visited. 
Hence, we consider any pair of disjoint subsets 
S1, S2  (W  C), such that neither S1 nor S2 
consists of collector vertices only. More precisely, 
we assume the pairs of subsets S1, S2 such that: 

S2 = (W  C) \ S1, S1  W  , S2  W   (6)

The sub-tour elimination constraint can then be 
expressed using the following formula ensuring that 
there is at least one active edge between S1 and S2. 

eE: e  S1    e  S2   Xe  1. (7)

Clearly, there is an exponential number of such pairs 
S1 and S2, which makes it impractical to introduce 
all such sub-tour elimination constraints. Some 
authors (Pop, 2007) propose using single or multi-
commodity flow principles to reduce the number of 
constraints by introducing auxiliary variables. 

However, our combination of directed and 
undirected edges makes it complicated to use this 
approach so we rather applied another approach 
based on lazy (on-demand) insertion of sub-tour 
elimination constraints. Briefly speaking, we start 
with the model without the sub-tour elimination 
constraints and we find a solution. If the solution 
forms a valid path then we are done. Otherwise we 
identify the isolated loops, add the sub-tour 
elimination constraints for them and start the solver 
with the updated model. This process is repeated 
until a valid path is found. Obviously, it is a 
complete procedure because in the worst case, all 
sub-tour elimination constraints are added. 

It remains to define the constraints describing the 
limited capacity of the robot. For this purpose we 
introduce auxiliary non-decision capacity variables 
Cv for every waste vertex v  W. These variables 
indicate the amount of waste in the robot after 
visiting the particular vertex. The non-decision 
character of the variables means that they are not 
instantiated by the search procedure, but they are 
instantiated by the inference procedure only. In 
particular, if their domain becomes empty during 
inference then it indicates inconsistency. The 
following constraints are used during the inference 
(w  W). First, if the waste vertex w is visited 
directly after the collector then there is exactly one 
waste in the robot: 

eIN(w) Xe = 1  Cw = 1 (8)

Second, if the waste vertices u and v are visited 
directly before respectively after w (or vice versa) 
then the following constraints must hold between the 
capacity variables: 

e,f  ICD(w), e = {u,w}, f = {w,v}: 
Xe + Xf = 2  | Cu – Cv | = 2 (9)

 

e = {u,w}  ICD(w): 
| Cu – Cw | = 1 

(10)
 

Finally, to restrict the capacity of the robot by 
constant cap we use the following constraints for the 
capacity variables: 

w  W: 1  Cw  cap. (11)

The objective function to be minimised is the total 
cost of edges used in the solution path: 

Obj = eE  Xe . weight(e), (12)

where weight(e) is the weight of edge e. 
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3.1 Search Procedure 

The constraint model describes how the inference is 
performed so the model needs to be accompanied by 
the search procedure that explores the possible 
instantiations of variables Xe. 

Our search strategy resembles the greedy 
approach for solving Travelling Salesman Problems 
(TSP) (Ausiello et al., 1999). The variable Xe for 
instantiation is selected in the following way. If the 
path is empty, we start at the initial position I and 
instantiate the variable X{I,w} such that weight({I,w}) 
is the smallest among the weights of arcs going from 
I. By instantiating the variable we mean setting it to 
1; the alternative branch is setting the variable to 0. 
If the path is non-empty then we try to extend it to 
the nearest waste. Formally, if u is the last node in 
the path then we select the variable X{u,w} with the 
smallest weight({u,w}), where w is a waste vertex. If 
this is not possible (due to the capacity constraint), 
we go to the closest collector. 

The optimisation is realised by the branch-and-
bound approach: after finding a solution with the 
total cost Bound, the constraint Obj <  Bound is 
posted and search continues until any solution is 
found. The last found solution is the optimum. 

4 CP MODEL BASED ON  
FINITE STATE AUTOMATA 

The second model that we propose brings a radically 
new approach not seen so far when modelling VRPs 
or TSPs. Recall that we are looking for a path in the 
graph that satisfies some additional constraints. We 
can see this path as the word in a certain regular 
language. Hence, we can base the model on the 
existing regular constraint (Pesant, 2004). This 
constraint allows a more global view of the problem 
so the hope is that it can infer more information than 
the previous model and hence decreases the search 
space to be explored. 

First, it is important to realise that the exact path 
length is unknown in advance. Each waste vertex is 
visited exactly once, but the collector vertices can be 
visited more times and it is not clear in advance how 
many times. Nevertheless, it is possible to compute 
the upper bound on the path’s length. Let us assume 
that the path length is measured as the number of 
visited vertices, the robot starts at the initial position 
and finishes at some collector vertex (we will use the 
dummy destination in a slightly different meaning 
here), and the weight/cost of arcs is non-negative. 

Let K = |W| be the number of waste vertices and 
cap  1 be the robot’s capacity. Then the maximal 
path length is 2K+1. This corresponds to visiting a 
collector vertex immediately after visiting a waste 
vertex. Recall that each waste vertex must be visited 
exactly once and there is no arc between the 
collector vertices. 

Our model is based on four types of constraints. 
First, there is a restriction on the existence of a 
connection between two vertices – a routing 
constraint. This constraint describes the routing 
network (see Figure 2). It roughly corresponds to the 
constraints (1)-(5) from the previous model. Note 
that the sub-tour elimination constraints (6)-(7) are 
not necessary here. Second, there is a restriction on 
the robot’s capacity stating that there in no 
continuous subsequence of waste vertices whose 
length exceeds the given capacity – a capacity 
constraint. This constraint corresponds to the 
constraints (8)-(11) from the previous model. Third, 
each waste must be visited exactly once, while the 
collectors can be visited more times (even zero 
times) – an occurrence constraint. This restriction 
was included in the constraints (1)-(5) of the 
previous model, while we model it as a separate 
constraint. Finally, each arc is annotated by a weight 
and there is a constraint that the sum of the weights 
of used arcs does not exceed some limit – a cost 
constraint. This constraint is used to define the total 
cost of the solution as in (12). 

In the constraint model we use three types of 
variables. Let N = 2K + 1 be the maximal path 
length. Then we have N variables Nodei, N variables 
Capi, and N variables Costi  (i = 1,...,N) so we 
assume the path of maximal length. Clearly, the real 
path may be shorter so we introduce a dummy 
destination vertex that fills the rest of the path till the 
length N. In other words, when we reach the dummy 
vertex, it is not possible to leave it. This way, we can 
always look for the path of length N and the model 
gives flexibility to explore the shorter paths too. 

The semantic of the variables is as follows. The 
variables Nodei describe the path hence their domain 
is the set of numerical identifications of the vertices. 
We use positive integers 1,...,K  (K = |W|) to identify 
the waste vertices, K+1,...,K+L for the collector 
vertices (L = |C|), and 0 for the dummy destination 
vertex. In summary, the initial domain of each 
variable Nodei consists of values 0,..., K+L. Capi is 
the used capacity of the robot after leaving vertex 
Nodei (Cap1 = 0 as the robot starts empty), the initial 
domain is {0,…, cap}. Costi is the cost of the arc 
used to leave the vertex Nodei (CostN = 0), the initial 
domain consists of non-negative numbers. Formally: 
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i = 1,…,N (N = 2K + 1): 
0  Nodei  K+L 

0  Capi  cap, Cap1 = 0 
0  Costi, CostN = 0 

(13)

We will start the description of the constraints with 
the occurrence constraint saying that each waste 
vertex is visited exactly once. This can be modelled 
using the global cardinality constraint (Régin, 1996) 
over the set {Node1,…, NodeN}. The constraint is set 
such that the each value from the set {1,.., K} is 
assigned to exactly one variable from  {Node1,…, 
NodeN} – each waste node is visited exactly ones. 
The values {0, K+1,…, K+L} can be used any 
number of times. Formally: 

gcc({Node1,…, NodeN}, 
{v:[1,1] v = 1,…,K, 

0:[0,], 
v:[0,] v = K+1,…,K+L} 

(14)

where v:[min,max] means that value v is assigned to 
at least min and at most max variables from 
{Node1,…, NodeN}. 

The gcc constraint allows specifying the number 
of appearances of the value using another variable 
rather than using a fixed interval as in (14). Let D be 
the variable describing the number of appearances of 
value 0 (identification of the dummy vertex) in the 
set {Node1,…, NodeN}, then we can use the 
following constraints instead of (14): 

gcc({Node1,…, NodeN}, 
{v:[1,1] v=1,…,K, 
  0:D, 
  v:[0,] v=K+1,…,K+L}) 

NodeN-D > 0 

(15)

(16)

The constraint (16) says that NodeN-D is not a 
dummy vertex; actually it is the last real vertex in 
the path. We can also set the upper bound for D by 
using the information about the minimal path length 
(MinPathLength is a constant computed in advance): 

D  N – MinPathLength (17)

These additional constraints (16) and (17) are not 
necessary for the problem specification but they 
improve inference (we use them in experiments). 
The cost constraint can be easily described as 

Obj = i=1,…,N Costi (18)

so we can use the constraints Obj < Bound in the 
branch-and-bound procedure exactly the same way 
as in the previous model. 

For the cost constraint to work properly we need  

to set the value of Costi variables. Recall that Costi is 
the cost/weight of the arc going from vertex Nodei to 
vertex Nodei+1. Hence, we can connect the Cost 
variables with the Node variables when specifying 
the routing constraint. In particular, we use the 
ternary constraints over the variables Nodei, Costi, 
Nodei+1 i=1,…N-1. This set of constraints 
corresponds to the idea of slide constraint (Bessiere 
et al., 2007). We implement the constraint between 
the variables Nodei, Costi, Nodei+1 as a ternary 
tabular (extensionally defined) constraint; let us call 
it link, where the triple (p, q, r) satisfies the 
constraint if there is an arc from the vertex p to the 
vertex r with the cost q. In other words, this table 
describes the original routing network with the costs 
extended by the dummy vertex. Formally: 

link(p,q,r)  eE: e = (p,r), q = weight(e) (19)
 (q = r = 0  (p = 0  p > K)  

i = 1,…,2K: link(Nodei, Costi, Nodei+1) (20)

It remains to show how the capacity constraint is 
realised. Briefly speaking, we use a similar approach 
as for the routing constraint. The capacity constraint 
is realised using a set of ternary constraints over the 
variables Capi, Nodei+1, Capi+1 i=1,…N-1, again 
exploiting the idea of slide constraint. The constraint 
is implemented using a tabular constraint, let us call 
it capa, with the following semantics. Triple (p, q, r) 
satisfies this constraint if and only if 

 q is an identification of a collector vertex (q > K) 
or a dummy vertex (q = 0) and r = 0 

 q is an identification of a waste node (0 < q  K) 
and r = p+1. 

Recall that the domain of capacity variables is 
{0,…,cap} so we never exceed the capacity of the 
robot. Formally: 

capa(p,q,r)  q = r = 0 (21)
 (q > K  r = 0)  
 (0 < q  K  r = p+1)  

i = 1,…,2K: capa(Capi, Nodei+1, Capi+1) (22)

Any solution to the above described constraint 
satisfaction problem defines a valid solution of our 
single robot path planning problem with the capacity 
constraint. Vice versa, any solution to the path 
planning problem is also a feasible solution of the 
specified constraint satisfaction problem. We omit 
the formal proof due to limited space. 

4.1 Search Procedure 

Similarly to the previous model, it is important to 
specify the search strategy. In this second model, 
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only the variables Nodei are the decision variables – 
they define the search space. It is easy to realise that 
the inference through the routing constraints (20) 
decides the values of the Costi variables and the 
inference through the capacity constraints (22) 
decides the values of the Capi variables provided 
that the values of all variables Nodei are known. 

When searching for the solution we first use a 
greedy approach to find the initial solution (the 
initial cost). This greedy algorithm instantiates the 
variables Nodei in the order of increasing i in such a 
way that the arc with the smallest cost is preferred. 
We select the node to which the least expensive arc 
from the previously decided node leads. Naturally, 
the capacity constraint is taken into account so only 
the nodes such that the capacity is not exceeded are 
assumed. This search procedure corresponds to the 
search strategy of the previous model. The 
difference in models allows us to use a fixed 
variable ordering in the model based on finite 
automata which simplifies implementation of the 
search procedure. This second model also has fewer 
decision variables but a larger branching factor. 

To find the optimal solution we use a standard 
branch-and-bound approach with restarts. To 
instantiate the Node variables we use the min-dom 
heuristic for the variable selection, that is, the 
variable with the smallest current domain is 
instantiated first. We select the values in the order 
defined in the problem (the waste nodes are tried 
before the collector nodes). Exactly like in the first 
model after finding a solution with the total cost 
Bound, the constraint Obj <  Bound is posted and 
search continues until any solution is found. The last 
found solution is the optimum. Note that using the 
well known and widely applied min-dom heuristic 
for the variable selection is meaningful in this model 
because we have larger domains, while the same 
heuristic is useless for the previous model which 
uses binary domains. 

5 EXPERIMENTAL RESULTS 

In this section we will present the preliminary 
experimental evaluation of the presented solving 
techniques. As there is no standard benchmark set 
for the studied problem, we generated own problem 
instances. We used a square-sized robot arena where 
the positions of the waste and the initial location of 
the robot were uniformly distributed. The collectors 
were uniformly distributed along the boundaries of 
the arena and the weights set up as a point-to-point 
distance using the Euclidean metric. All the 

following measurements were performed on Intel 
Xeon CPU@2.5GHz with 4 GB of RAM, running a 
Debian GNU Linux operating system. 

5.1 Performance of the 
Network Flow Model 

As stated earlier, the model based on network flows 
corresponds to the traditional operations research 
approach, but we modified the model to describe 
specifics of our robot routing problem. The model 
was implemented in Java using Choco 
(http://choco.emn.fr), an open-source constraint 
programming library. The optimisation search 
strategy uses the built-in branch-and-bound method, 
while all constraints correspond to the mathematic 
formulations described earlier. 

Figure 4 shows the runtime (a logarithmic scale) 
to obtain the optimal solution as a function of the 
instance size measured by the number of waste and 
by the number of collectors. We generated 15 
instances for each problem size and the graph shows 
the average time the solver needs for finding and 
proving the optimality of the solution. The capacity 
of robot was 3. 
 

 
Figure 4: Runtime (seconds) for the network flow model. 

As already mentioned in (Bard et al., 1998), the 
satellite facilities in VRP (or collectors in robotics 
case) heavily increase the complexity of the 
problem. The initial experiment shows that the 
runtime increases exponentially with the number of 
waste but the runtime is not significantly affected by 
the increased number of collectors. In fact it seems 
that for different quantities of waste there are 
different numbers of collectors where the best 
runtime is achieved. This is an interesting 
observation claiming that for a given number of 
waste there is some number of collectors that gives 
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the best result. Nevertheless, this observation 
requires additional experiments to confirm it. 

5.2 Performance of the Finite State 
Automaton Model 

The network flow model represents a standard 
approach to solving the Vehicle Routing Problems 
so we compared our novel constraint model based 
on the finite state automaton directly to this 
approach. The second model was implemented in 
SICStus Prolog (http://www.sics.se/sicstus). Figure 
5 shows the runtime (a logarithmic scale) to obtain 
the optimal solution using the constraint model 
based on finite state automata using the same 
problems as for the model based on network flows 
(Figure 4). The result also shows the exponential 
grow with the increased number of waste and 
weaker dependence on the number of collectors. 
 

 
Figure 5: Runtime (seconds) for the FSA model. 

 

Figure 6: Time difference (seconds) between the CP 
models. Positive values means that the model based on 
finite state automata is faster. 

To directly compare both models, we generated a 
difference graph showing the difference of runtimes 

for the network model and for the automata model – 
the values above zero mean faster automata model, 
while the times below zero mean faster network 
model. Figure 6 shows these difference times. The 
conclusion drawn from this graph is as follows. The 
automata-based model is visibly better for a smaller 
number of collectors where the problem is more 
constrained and the capacity constraints can prune 
more of the search space. A bit surprisingly, it seems 
that the network-based model is better when the 
number of collectors becomes larger. This feature 
will require a further investigation. 

6 CONCLUSIONS 

We proposed two constraints models for deliberative 
planning of the robot picking up all waste in a 
known environment and putting them to collectors 
while assuming a limited capacity of the robot. We 
used a constraint model based on network flows that 
is traditionally applied to this type of routing 
problems and we developed a completely new model 
based on finite state automata. Using the constraint 
programming techniques allowed us to naturally 
define the underlying model for which the solver 
was able to find the first solution in hundreds of 
microseconds on problems of reasonable size. The 
preliminary experiments showed some interesting 
behaviour of the model in relation to the number of 
collectors that we shall further investigate. 
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