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Abstract: Micro aneurysms are one of the first visible clinical signs of diabetic retinopathy and their detection can 
help diagnose the progression of the disease. In this paper, we propose to use a hybrid evolutionary 
algorithm to evolve the structure and parameters of a Hidden Markov Model to obtain an optimised model 
that best represents the different contexts of micro aneurysms sub images. This technique not only identifies 
the optimal number of states, but also determines the topology of the Hidden Markov Model, along with the 
initial model parameters. We also make a comparison between evolutionary algorithms to determine the 
best method to obtain an optimised model. 

1 INTRODUCTION 

Micro aneurysms are one of the first visible signs of 
Diabetic Retinopathy (DR) and it is known that 
quantities of this clinical sign can help diagnose the 
progression of the disease. Micro aneurysms are 
swelling of the capillaries that are caused by the 
weakening of the vessel walls due to high sugar 
levels in diabetes and eventually leak to produce 
exudates. In retina images, micro aneurysms appear 
as small reddish dots with similar intensity as 
haemorrhages and blood vessels. This particular sign 
is an important early indicator of the disease and can 
contribute to helping ophthalmologists identify 
effective treatment for the patient at an early stage. 

However, an accurate detection of micro 
aneurysms is a challenge task. One of the main 
obstacles is the variability in the retinal image, 
depending on factors such as degree of pigmentation 
of epithelium and choroid in the eye, size of pupil, 
illumination, disease, imaging settings (which can 
vary even with same equipment), patients’ ethnic 
origin, and other variants. These factors affect the 
appearance of micro aneurysms. They tend to appear 
among other visual features and the difference 
between a micro aneurysm and its surroundings can 
be very subtle.  

Standard image processing and classification 
techniques alone are not able to deal with the 
ambiguity in micro aneurysm detection. They are 
often mistaken as other similar visual content in 
retinal images such as the fine ends of the blood 
vessels or noise. In the work reported by Niemeijer 
et al. (2005) and Sinthanayothin et al. (2002) image 
processing techniques were first adopted to extract 
useful features followed by recognition through a 
classifier. However, the single classifier used is 
unable to ensure scalability.  Walter et al. (2000) 
developed a technique that requires the blood vessels 
to be removed prior to micro aneurysm detection 
and as a result, true micro aneurysms near or on the 
blood vessels are removed as well. This suggests 
that the recognition procedure of this clinical sign 
cannot be treated in isolation. Instead, an integrated 
approach that dynamically combines detection 
evidence from various processing stages, and 
especially a contextual environment each time the 
clinical sign may appear should be constructed. In 
our research, we developed multiple classifiers 
together with a contextual reasoning model to 
address the scalability and ambiguity. In this paper 
we mainly discuss the contextual model. 

Hidden Markov Models (HMMs) is a statistical 
modelling tool for information extraction. While 
HMMs have been successful in many applications 
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such as speech recognition  (Morizana et al., 2009 
and Lu et al., 2009) DNA sequencing (Won et al. 
2006) and handwriting recognition (Parui et al. 
2008) very little work has been carried out to 
statistically model and understand the context in 
images. In speech recognition, HMMs can determine 
the statistical variations of utterance from 
occurrence to occurrence. However, a few 
outstanding issues remain. Firstly, how to determine 
the topology of the HMM and secondly, what is the 
optimised model parameters for accurate 
representation of the training data? Lastly, the 
training of HMM is computationally intensive and 
there is no known method that can guarantee an 
optimised model. 

Optimising an HMM is usually done through the 
refinement of the HMM after each training. 
Refinement can include changing the number of 
states, the initial distribution states and the transition 
probabilities before re-training the HMM and testing 
it for its accuracy. The most popular training 
algorithm for HMM is the Baum-Welch algorithm; 
however, this algorithm is a hill climbing algorithm 
and heavily depends on the initial estimates. It is 
also known that bad estimates for this algorithm 
usually lead to a sub-par HMM. Hence, the 
motivation behind this work is to obtain an optimised 
HMM based on the initial parameters used to train a 
HMM. 

Evolutionary algorithms (EAs) have shown to be 
powerful in solving difficult optimisation problems. 
Most of the published work such as Won et al. 
(2006), Kwong et al. (2001), Bhuriyakorn et al. 
(2008) and Xiao et al. (2007) uses EAs to optimise 
HMM using a combination of Genetic Algorithms 
(GAs) and the Baum-Welch Algorithm (BW). 
However, these techniques only determine the 
optimal number of states and improves BW 
generalisation. The main idea of this work is to 
optimise the topology of the HMM while adapting 
the parameters over the evolutionary process for an 
optimised model. 

Memetic Algorithms (MAs) are a class of hybrid 
algorithms that combine a population-based global 
heuristic search strategy with a local refinement 
(Ong et al. 2010). MAs have been reported to be 
successful in multiple domains such as scheduling 
(Lim et al. 2005), machine learning (Liu et al., 2007 
and Abbass, 2002) and even aerodynamic design 
optimization (Ong et al. 2003).  

Our previous work (Goh et al. 2010) has 
demonstrated the effectiveness of HMMs in the 
detection of micro aneurysms as a contextual 
analysis model. In this paper, we extend our 

previous work by using a combination of a Genetic 
Algorithm and Particle Swarm Optimisation 
(referred as Memetic Algorithm from here on) to 
optimise the structure of the HMM.  In Section 2, we 
give a brief description of the Memetic Algorithm 
and HMMs. The technique used for optimising the 
HMM is presented in Section 3. Section 4 describes 
the experiments and we summarise our work in 
section 5. 

2 EVOLUTIONARY 
ALGORITHMS & HIDDEN 
MARKOV MODELS 

Memetic algorithms use different search techniques 
in a combined approach and maintain a population 
of solutions. The main difference is that for every 
solution, a local-improver will be used to further 
enhance the solution.  

A Genetic Algorithm is used to perform the 
global search, as it is a population-based stochastic 
search method whereas for the local search, we use 
Particle Swarm Optimisation (PSO). At each 
generation of the GA, a new set of solutions is 
created by a process of selecting individuals 
according to their strengths (fitness) in the problem 
domain and genetically modifying them to produce 
offspring. This process leads to the generation of a 
new population of individuals that are better suited 
for the problem than the individuals that they are 
created from, eventually reaching an optimal 
solution.  

For each solution, PSO will be carried out to 
further optimise the solution. PSO functions by 
propelling the particle (individual solution) through 
the search space with a velocity that is dynamically 
modified based on its own strength and the strength 
of other particles in the swarm.  

Ideally, after the termination criteria have been 
met, the final population would consist only of the 
best individuals which would be decoded as the 
optimised set of solutions. 

In our work, each solution would be encoded 
into a chromosome which represents the HMM 
structure. Typically, a HMM is characterised by: 

a) Number of states, M 
b) Transition probability distribution matrix A. 

A={aij}, where aij is the transition probability 
of the Markov chain transiting from state i to 
state j. 

c) Observation sequence, O.  
d) Initial state distribution, π. 
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Hence, the HMM is represented by: λ = (A, O, 
π). In order for the HMM to represent the image 
effectively, we need to decide upon the topology of 
the HMM, the number of states of the model and the 
transitions that are allowed between states.   

Training of the HMM can be carried out using 
the BW algorithm which is an expectation 
maximisation algorithm that adjusts the model 
parameters to locally maximise the likelihood of the 
training data based on an initial estimate of the 
parameters.  

Recognition of the image is performed using the 
Viterbi algorithm which finds the most likely state 
sequence given the HMM model, λ and a sequence 
of observations.  

The percentage accuracy is calculated as the total 
number of correctly predicted images over the total 
number of images. 

3 HMM EVOLUTION 

In order for a HMM to effectively represent the 
training data, the number of states and the structure 
of the connecting states are crucial.  

In the following sections, we demonstrate the 
use of the memetic algorithm to optimise HMMs 
using sub-images of micro aneurysms (MA), 
background (BG) and blood vessels (BV) as the 
training data. A GA will be used to evolve the 
structure of the HMM while PSO will be used to 
optimise the parameters for the HMM as detailed in 
the pseudo code in Figure 1. By performing a hybrid 
search using the memetic algorithm, a balance 
between exploration and exploitation can be 
achieved. This evidently not only automates the 
discovery of HMM structures along with the initial 
model parameters, the resulting model can also 
attain a better accuracy while avoiding overfitting, 
as we will discuss later on in the section. 

Initialise Population 
While iteration < Max_Generation 

SelCh = Selection(population); 
SelCh = CrossOver(SelCh); 
FitterSolutions = bestSolutions(SelCh); 
For all_of_FitterSolutions 
New_solution = PSO(FitterSolutions) 

If New_solution > SelCh 
SelCh = New_solution 

endIf 
endFor 

population = recombination(SelCh); 
endWhile 

Figure 1: Pseudo code of Algorithm. 

3.1 Feature Extraction for HMM 

The training data used for this research are 15 by 15 
pixel images which are the output from the 
ensembles in our earlier work (Goh et al. 2010), 
which comprise of micro aneurysms (MA), 
background (BG) and blood vessels (BV).   

Each sub-image is divided into nine 5x5 pixel 
smaller sub-images as seen in Figure 2, which are 
used as observation sequences for the HMM. 

 
Figure 2: States of Sub-Image. 

The Discrete Cosine Transform (DCT) is 
performed to obtain the features for each of the 5x5 
pixel sub-image. The DCT is used as it can represent 
an image in terms of sum of sinusoids of varying 
magnitude and frequencies, thus obtaining the most 
important information in terms of just a few 
coefficients. Once the DCT has been applied for 
each observation, the result from the DCT process 
for each state is reshaped into a 25x1 column and 
used as part of a sequence for inputting into the 
HMM. 

3.2 Global Search - GA 

For optimisation, the solution has to be encoded into 
a chromosome for evolution. In this work, since 
HMM uses real-valued numbers, a real-valued string 
was used as the chromosome in the GA. The 
chromosome consists of the following information: 

1. Number of states 
2. Type of states as seen in Figure 3 
3. Transition probabilities 

3.2.1 Initial Population 

The initial population was generated randomly. For 
each candidate solution, a number of states, which is 
an integer between 4 and 11, was randomly 
generated. This is based on Bakis’ (1976) 
assumption that the number of states is usually 
identical to the number of the observed sequences. 
In this work, nine observation sequences are used to 
represent the various sub-images, thus the minimum 
number of states is set to 4 and the maximum 
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number of states to 9. With the initial number of 
states, the transition between states can be set.  

For each state, there are a few different kinds of 
transitions that can be assigned to them as listed in 
Figure 3 and they are randomly assigned to each 
state. Initial state transition probabilities are also 
randomly assigned between the initiating states and 
the transiting states. 

Transitions Models 

Type 1 

 

Type 2 

 

Type 3 

Type 4 

Type 5 

 

Figure 3: Transition types. 

3.2.2 Fitness Evaluation 

In order to measure the generalisation capability of 
the HMM for recognising micro aneurysm sub-
images, we use a fitness evaluation mechanism to 
gauge the confidence level of each solution. Initially, 
we used the average maximum likelihood that is 
calculated by the BW algorithm to measure the 
fitness used in selecting fitter individuals from the 
population. The average maximum likelihood pn of 
the HMM, λ , that generates the observation 
sequence O1, O2 ... On is calculated using the 
following equation: 

pn = p(On
n = i

T

∑ | λ)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ /T  

where T is the number of observation sequences for 
training. 

However, our analyses showed that generalising 
the average maximum likelihood does not 
necessarily produce a better accuracy due to over-
fitting of the training data. Hence, in this work, we 
use the accuracy obtained from the last re-estimation 
of the BW algorithm as the fitness value.  

3.2.3 Selection 

Selection is the phase used to determine which 
parents to choose for reproduction. In this work, we 
chose to use the Roulette Wheel Selection (RWS). 
The advantage of RWS is that they may allow 
weaker individuals still to be selected for 
reproduction as they may have important 
components that may be useful during the 
recombination process. The parameter used in 
selection is set at 0.8, that is to say, 80% of the 
population are selected for crossover and mutation. 
However, local search using the PSO is applicable 
only to the top 20% of the best individuals after 
selection. 

3.2.4 Crossover  

This operation represents the major driving force in 
the canonical GA for optimizing the structure of the 
HMM. In crossover, we need to decide on a 
crossover point to swap parts of chromosome of the 
parents to produce offspring. In this work, we 
adopted the 1-point crossover. 

If both parents have the same number of states, 
the creation of offspring is straightforward. 
However, if the two parents have different number 
of states, there must be a decision on how many 
states the offspring will have. For simplicity, we 
assume that the offspring shall have the average 
number of states between the two parents. To make 
up for the additional state, the offspring will inherit 
the additional state for the parent as illustrated in 
Figure 4. 

Crossover: 

1 2 5 3 2  1 

1 43 1

Parent 1

Parent 2

1 53 3 2 

1 2 4 1 2  Offspring 1

Offspring 2
 

Figure 4: Crossover Operation. 

3.3 Local Search - PSO 

As the BW algorithm is very sensitive to the initial 
model parameter, in order to exploit the local search 

nth  nth+1  

nth  nth+1  

nth  nth+1  nth+2 nth+1  

nth  nth+1  nth+2 

nth  nth+1  nth+2  nth+n  
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Table 1: Comparison between different Evolutionary Algorithms. 

Pop Gen Average Maximum Likelihood/Accuracy 
Memetic Trained HMM (M-HMM) GA Trained HMM (GA-HMM) 

MA Models BV Models BG Models MA Models BV Models BG Models 
30 30 -8.1209/ 96.41% -8.3076/93.25 -8.0949/91.04% -8.1253/96. 19% -8.294/92.64 -8.1241/90.49% 
30 60 -8.1430/ 96.86% -8.2997/93.36 -8.1038/91.04% -8.1109/ 96.19% -8.304/92.33 -8.1297/91.22% 

50 30 -8.1273/97.04% -8.3076/94.79 -8.07650/91.41 -8.1256/ 93.95% -8.3035/93.25 -8.0969/91.22 
50 60 -8.1394/97.09% -8.3132/92.64 -8.0783/91.77% -8.1366/96.86% -8.298/94.17 -8.0978/91.6% 

Table 2: Comparisons among various methods. 

Models 

Average Maximum Likelihood 
Optimised
M-HMM 

(9) 

Optimised
GA-HMM 

(9) 

BW Trained HMM 
7 

States 
8 

States 
9 

States 
MA -8.1394 -8.1366 -8.215 -8.209 -8.150 
BV -8.3076 -8.2928 -8.378 -8.342 -8.328
BG -8.0783 -8. 0978 -8.274 -8.252 -8.186 

 
region for better solutions, we apply the PSO to the 
top few individuals obtained after selection. 

The PSO starts from individual chromosomes 
resulting from the GA search and the its goal is to 
find optimised transition probabilities for potentially 
good solutions. For the states which were inherited 
during evolution, no new transition probabilities are 
generated. For the newly generated states, the 
transition probabilities are randomly generated to 
allow the PSO to search the locally around the 
solutions. 

For PSO, we use a swarm size of 10 particles for 
30 iterations. 

4 EXPERIMENTAL RESULTS 

4.1 Data Set 

The 15 by 15 training samples used to train Hidden 
Markov Models are obtained from 100 retina images 
of various sources including the Optimal Detection 
and Decision-Support Diagnosis of Diabetic 
Retinopathy database.  

4.2 Experiment Setup 

700 background (BG) sub-images, 700 micro 
aneurysms (MA) sub-images and 700 blood vessel 
(BV) sub-images are used to train the different 
HMMs. In order to test the accuracy of the models, 
we have a test set that contains the 3 categories with 
each one consisting of 500 sub-images.  

4.3 Experiment Results 

The Memetic-HMM (M-HMM) algorithm was run 
according to the parameters setup given in Table 1 
for optimising the various models and their average 
maximum likelihood along with their accuracy are 
listed after the relevant generations were reached. 

Considering the results listed in Table 1 along 
with the algorithm parameters, we compare these 
results with those obtained by using a GA only,  
termed HMM (GA-HMM). The GA-HMM follows 
the same steps described in Section 3.2.1 – 3.2.3, the 
only difference is that in the latter  GA handles the 
mutation of the Transition Probabilities instead of 
the PSO.  

Our results show that although the Average 
Maximum Likelihood is higher, it does not 
necessarily mean a better accuracy as we    can    see 
that the MA models labelled in grey has a lower 
average maximum likelihood compared to the GA 
HMM but a higher accuracy.   

This suggests that by using the memetic 
algorithms, the parameters for each solution are 
adaptive over the evolutionary process allowing for 
the optimised structure of the HMM while adapting 
the transition probabilities for the optimised 
structure. It also suggests that this technique reduces 
the risk of over-fitting the training data since the 
fitness evaluation is the accuracy rather than 
continuous training for the highest average 
maximum likelihood that may eventually causes 
overfitting. 

For the rest of the models, the memetic 
algorithm is able to obtain both better accuracy and 
generalisation compared to the GA only approach. 
Naturally, for each model, we use the model with the 
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highest accuracy. The performance listed in Table 2, 
indicates that the optimal number of states found by 
the both evolved HMMs are identical to a manually 
trained HMM. It also indicates that they are far more 
optimised than a manually hand designed HMM 
using the BW algorithm. 

4.4 Experimental Performance 

While the difference between the M-HMM and the 
GA-HMM is not significantly large, comparing the 
number of generations for the population based 
search, using memetic algorithms to evolve the 
HMM results in a faster convergence to an optimal 
solution as illustrated in Table 3. 

Table 3: Convergence Times. 

Model (Pop/Gen) Convergence Generation 
M-HMM GA-HMM 

MA (50/60) 4th 34th 
BV (50/30) 13th 27th 
BG (50/60) 15th 43rd 

5 CONCLUSIONS 

In summary, a novel way to represent images using 
a fully automated structure discovery technique 
involving Memetic Algorithms and HMM was 
presented in this paper. A comparison was made 
between various methods and the experimental 
results have shown that M-HMM is capable of 
searching for a more optimal structure than that 
resulting from either the GA only approach or the 
BW Algorithm.  

By using  evolutionary algorithms to evolve the 
HMM, we can not only find the optimal number of 
states to represent the image, but also manage to 
optimise the initial transition probabilities for a 
better trained model as indicated by its average 
maximum likelihood. Although the recognition rate 
of the M-HMM is just slightly better than the GA-
HMM, the former converged quicker to optimal 
solutions suggesting that memetic algorithms can be 
applied to situations where time is of an essence. 
These results demonstrate that the EA evolved 
HMMs are capable of context reasoning for 
detecting micro aneurysms and thus facilitate finer 
analysis during clinical sign detection on retina 
images.  
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