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Abstract: This paper presents a new background subtraction approach to identifying the various changes of objects in 
a sequence of images. A background is modelled as the probability distribution of pixel positions given 
intensity clusters, which is constructed from a given sequence of images. Each pixel position in a new image 
is then identified with either a background or a foreground, depending on its value from probability 
distribution of pixel positions representing a background. The presented approach is illustrated using two 
examples. As compared to traditional intensity-based approaches, this approach is shown to be robust to 
dynamic textures and various changes of illumination. 

1 INTRODUCTION 

Detecting a meaningful foreground from a sequence 
of images, known as background subtraction, has 
been studied intensively due to its wide area of 
application such as tracking, identification and 
surveillance. Two issues in developing background 
subtraction methods are how to resolve the change 
of illumination due to noise or light and how to 
manage dynamic textures such as swaying tree or 
flow of water.  

To manage the change of illumination, most of 
background subtraction methods have used intensity 
distributions (Wren, Darrelll and Pentland, 1997, 
Stauffer and Grimson, 1999, Elgammal, Harwood, 
and Davis, 2000, Power and Schoonees, 2002, 
Zivkovic and Heijden, 2006, Dalley, Migdal, and 
Grimson, 2008). Using intensity distributions, 
however, does not work very well when there is the 
large change of illumination in all pixels on the 
image. To resolve dynamic textures, a mixture of 
Gaussian (Stauffer and Grimson, 1999, Power and 
Schoonees, 2002, Zivkovic and Heijden, 2006, 
Dalley et al, 2008) and the kernel density estimation 
(Elgammal et al, 2000, Mittal and Paragios, 2004) 
have been suggested. To recognize the background 
having small motion correctly, spatial information of 
objects is necessary. A window formed with 

neighbours of a pixel may be used to reflect such 
spatial information (Elgammal et al, 2000, Dalley et 
al, 2008). Although the approach using windows 
reduces false detection of foreground for dynamic 
textures, it is not easy to define the exact size of a 
window in advance. Sheikh and Shah (2005) 
suggested joint distribution of positions and 
intensities to reflect the spatial information. Since 
this joint representation of image pixels reflects the 
local spatial structure, it works well on motion of 
background objects. However, it has a difficulty 
with the curse of dimensionality from its high 
dimensional data representation. 

This paper presents a new approach to relaxing 
those difficulties of the traditional background 
subtraction methods: A background is modelled as 
the probability distribution of pixel positions given 
intensity clusters. An image in a given sequence is 
assumed to have M intensity sources. From the 
image having M intensity sources, M intesity 
clusters can be formulated. Although it is not easy to 
figure out the optimal number of M from a given 
image, specially when the image is complex with 
various objects, the value of M is assumed to be not 
larger than six in general due to the range of grey 
level from 0 to 255.  

For each of the M intensity clusters, the distribu-
tion of pixel positions is then computed from the 
sequence of images. The computed distribution of 
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pixel positions, however, suffers from the disconti-
nuity between pixels due to the limited number of 
images in the sequence. By smoothing this disconti-
nuity using kernel density estimation, the probability 
distribution of pixel positions modelling a back-
ground is finally constructed. Each pixel position in 
the new image is then identified with either a 
foreground or a background, depending on its value 
from the probability distribution constructed.  

In the following section related previous works 
are visited. In section 3, generation of a probability 
distribution of pixel positions given intensity 
clusters from a sequence of images is described. The 
process to identify each pixel position in a new 
image with either a background or a foreground is 
explained in section 4. Finally the presented 
approach is illustrated and compared to the intensity-
based approach in section 5.  

2 RELATED WORKS 

Most of traditional background subtraction models 
estimate intensity distributions for each pixel 
position (Paccardi, 2004).  

Stauffer and Grimson (1999) have modelled the 
value of each pixel as a mixture of M Gaussian 
distributions in order to represent intensity variations 
caused by small motion of objects in the background 
like swaying trees or flow of water. The probability 
that a pixel position x has an intensity xt  at time t is 
estimated as  
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where wj is the weight for each Gaussian distribution, 
μj is the mean and Σj=σ

2I is the covariance of the jth 
Gaussian distribution, and M is the number of 
Gaussians. The M is selected from 3 to 5. This 
model assumes that the intensity value may result 
from some candidate sources each of which is 
modelled as a Gaussian. Therefore, an intensity 
value has several distributions where it may come 
from. This model can adapt to small change of 
intensity or shape in background but in the case 
where the background has slightly large variations, it 
fails to achieve correct identification. 

Dalley et al. (2008) have proposed a model 
modified from the Stauffer and Grimson(1999)’s 
one. In this model, a set of mixture components that 
lie at the local spatial neighbourhood of a pixel are 
suggested rather a mixture that lies at the same pixel. 

The probability that a pixel position i has an 
intensity ci is estimated as  
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where μj is the mean, Σj is the covariance of 
Gaussian distribution N at a pixel position j, and wj 
is a mixture weight of a neighbour j. This model 
considers intensity distributions at neighbours of a 
pixel simultaneously. Therefore, intensity variations 
caused by small motion of objects in background 
can be correctly identified with a background. 
However, the background subtraction result of this 
model is dependent on the size of a window applied 
to include neighbours but the optimal window size is 
hardly obtained. 

Elgammal et al (2000) suggested the kernel 
density estimation to model intensity distribution 
with multimodality. When there are n samples of 
intensities, the true distribution of these intensities 
may be dense where the samples are closely located 
and may be sparse where the samples are scattered. 
These characteristics are modelled as a sum of many 
kernels centred at each sample. Since this model is a 
data driven approach, the multimodality of 
distribution for these data is naturally reflected 
without any assumption of the number of modes. 
This model for intensity distribution of a pixel can 
be represented as follows 
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where xt  and xi are intensities of a pixel x at time t 
and i ,respectively, n is the number of samples, and 
K is a kernel function. The Gaussian function is 
usually used for the kernel function K. This model 
can handle situations where the background of 
scenes contains small motion but it still suffers from 
large motion and illumination changes. To overcome 
this difficulty, this model proposed additional policy 
considering the displacement probability PNeighbour. 
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where By is a background sample for a pixel y. This 
approach significantly reduced false detection of a 
background but it still has a difficulty in selecting 
optimal neighbours. 

All approaches discussed above are same in 
considering distribution of intensities for a given 
pixel position. In this framework, motion of objects 
in background was modelled as variations of 
intensities and neighbours of a pixel are introduced 
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to reflect more spatial variations. These approaches 
may be regarded as an indirect approach to handle 
spatial variations. In this paper, we model spatial 
variations directly using distribution of pixel 
positions given intensity values. 

3 MODELLING A BACKGROUND  

In this section we first describe how to generate M 
intensity clusters from a given image and then 
construct from a sequence of images the probability 
distribution of pixel positions for each of M intensity 
clusters modelling a background.  

3.1 Generation of M Intensity Clusters 

When a given image has M intensity sources with 
background, it is assumed that the image can be 
characterized with M different intensity clusters. The 
k-means algorithm (Bishop, 2006) is then used to 
generate the M intensity clusters: 

Let μi be a mean of intensity values of those 
pixels forming the ith cluster Ci where i=1, …, M. 
and let Ixy be an intensity value of a pixel at location 
(x,y) of the image I with height of H and width of W. 
The k-means algorithm defines the membership 
value rxyi of the intensity value Ixy with respect to the 
cluster Ci where x=1,2,…,W and y=1,2,…,H, to be  
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where j=1,2,…,M.  
The value of μi is initially set to a small value 

and the rxyi is computed by (5). With the computed 
value of rxyi , the μi is then updated by (6). This 
process is repeated until there is no change in the 
values of μi and rxyi. The value of rxyi indicates 
whether or not the pixel at (x,y) is associated with 
the cluster Ci. 

 

1 1

1 1

H W

H W

xyi xy
y x

i

xyi
y x

r I

r

  

 





 (6)

For example, the image with two objects, 
rectangle and circle, is characterized with three 
intensity clusters as shown in Fig. 1. 
 

    
(a)                                                 (b) 

    
(c)                                   (d) 

Figure 1: Three intensity clusters, (b), (c), and (d), shown 
as white areas, from a given image of (a). 

3.2 Probability Distribution of Pixel 
Positions for Intensity Clusters 

When M intensity clusters are generated from one 
image, the same number of clusters can be generated 
from each of images in a sequence. Once we obtain 
the same number of clusters from all images in the 
sequence, we can count the number of occurrence of 
each pixel position with respect to each of the M 
clusters. The occurrence of pixel positions for a 
given cluster may then represent statistical data for 
the intensity value associated with that cluster. 

Let lI  be the lth image, l=1,2,…,N, from a 
sequence of N images. The histogram hN(x,y;Ci), 
defined to be the number of times from the N images 
that each position (x,y) is located in the cluster Ci, is 
then  

 

( , ; ) | { : 1, 1, 2,..., } |l
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where l
xyir  is the value of xyir  in the lth image lI . 

Since each pixel considered as a background in a 
new image has its intensity value similar to those of 
the associated pixels in all of the N images in a 
sequence, its h value becomes large for one of M 
clusters. Each pixel considered as a foreground, 
however, has its intensity value different from those 
of the associated pixels in all the N images so that its 
h value becomes small for the associated cluster. A 
foreground comes from an unusual event and objects 
formed with those pixels considered as foregrounds 
may be observed in a few of the N images. 
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(a) 

 
(b-1)  (b-2) 

 
(c-1)  (c-2) 

 
(d-1)  (d-2) 

Figure 2: Histograms and Probability distributions of 
positions for each intensity cluster constructed from for a 
sequence of 30 images of (a): (b-1) hN(x,y;C1), (b-2) 
P(x,y|C1), (c-1) hN(x,y;C2), (c-2) P(x,y|C2), (d-1) hN(x,y;C3), 
and (d-2) P(x,y|C3). 

Since the histogram reflects the direct result from 
a given sequence of images, it suffers from its 
discontinuity for small motion of objects due to the 
limited number of images in the sequence. To 
overcome such difficulty,  the kernel density estima- 

tion is suggested to smooth the discontinuity. 
The kernel density estimation (KDE) is one of 

well-known nonparametric density estimation 
methods (Elgammal et al, 2000, Bishop 2006). The 
KDE has many kernels centred at each data point so 
as to construct a probability distribution of the data. 
The KDE has the property to relax discontinuity of 
data and make smooth change between data. Thus 
we propose a kernel density estimation weighted by 
the histogram to obtain the smooth and continuous 
distribution of pixel positions. 

When there is a histogram hN(x,y;Ci) of an 
intensity cluster Ci, the position distribution for the 
cluster Ci , P(x,y|Ci), is given by the following kernel 
density estimation. 
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where K is a two dimensional kernel function. The 
Gaussian kernel is usually used for the kernel 
function as follows:  
 

 
  2 2

2
2

1

2

1 1
( , ) exp

2
2

u v u v
b

b
  K  (9)

 

where b is a bandwidth of the kernel function. 
As one example, suppose that a sequence of 30 

images shown in Fig. 2 (a) is given where each 
image has three intensity sources. Three intensity 
clusters can then be generated. For each of three 
intensity clusters, the histogram and the associated 
probability distribution of pixel positions are 
computed as shown in Fig. 2 (b-1), (b-2), (c-1), (c-2), 
(d-1), and (d-2). As compared to each of histograms, 
the associated probability distribution is smoother 
and normalized.   

4 DETECTING A FOREGROUND 

Once the pixel position distribution for each of 
intensity clusters is constructed, the identification of 
each pixel position in a new image as a background 
or a foreground is achieved by labelling it as 
follows: 

Let the new image be IN+1. The 1N
xyir  , the cluster 

membership  value  for  IN+1, is computed using  the 
k-means algorithm described in section 2. Each pixel 
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position (x,y) on the IN+1 is then labelled with L(x,y) 
defined to be   
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(a)         (b) 

Figure 3: (a) A given new image and (b) a detected 
foreground shown as a white area. 

where fT is a threshold function given by 
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with a predefined value T. 
Suppose that a given pixel position (x,y) on the 

new image IN+1 is one of them forming the jth 

intensity cluster. Then the value of 1N
xyir  becomes 1 

only when i=j. If its value from P(x,y|Cj) is less than 
T, then it is detected as a foreground. Otherwise, it is 
a background.  

For example, given a sequence of thirty images 
in Fig. 2 (a), if a new image in Fig. 3 (a) is given, 
those pixels forming triangle shown in Fig. 3 (b) are 
detected as a foreground. 

5 EXAMPLES 

Our approach is illustrated using two examples 
having dynamic textures and large change of 
illumination, respectively. It is also compared to the 
intensity-based approach using KDE (IBA-KDE) 
(Elgammal et al, 2000) and to the intensity-based 
approach using Gaussian Mixture Model (IBA-
GMM) (Dalley et al, 2008).  

As the first example having dynamic textures, a 
sequence of 30 images shown in Fig. 4 and four new 
images shown in Fig. 5 are assumed. From each 
image in the sequence where four intensity sources 
are assumed, four intensity clusters are generated. 
For each of the four intensity clusters, the proba-
bility distribution of pixel positions is then computed 
from 30 images in the sequence. 

 
 

  
 

  
 

  
 

  
 

  

Figure 4: A sequence of 30 images. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5: Four new images with different shapes of a 
walking man. 

(a-1) 
 

(a-2) (a-3) 

(b-1) 
 

(b-2) (b-3) 

(c-1) 
 

(c-2) (c-3) 

(d-1) 
 

(d-2) (d-3) 

Figure 6: Results from images in Fig. 5 by ours, IBA-KDE, 
and IBA-GMM. 

From the first new image in Fig. 5(a), the result by 
our approach is shown in Fig. 6(a-1), the result by 
the IBA-KDE is in Fig. 6(a-2), and the result by the  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 7: Five new images with different illumination. 

 
(a-1) 

 
(b-1) 

 
(c-1) 

 
(d-1) 

 
(e-1) 

 
(a-2) 

 
(b-2) 

 
(c-2) 

 
(d-2) 

 
(e-2) 

 
(a-3) 

 
(b-3) 

 
(c-3) 

 
(d-3) 

 
(e-3) 

Figure 8: Results from images in Fig. 7 by ours, IBA-KDE, and IBA-GMM. 

IBA-GMM is in Fig. 6(a-3). Similarly, from the next 
three new images in Fig. 5(b), 5(c), 5(d), the result 
by ours is in Fig. 6(b-1), 6(c-1), 6(d-1), the result by 
the IBA-KDE in Fig. 6(b-2), 6(c-2), 6(d-2), and the 
result by the IBA-GMM in Fig. 6(b-3), 6(c-3), 6(d-
3). As noticed by comparing three results in Fig. 6, 
our approach detected the foreground successfully 
but the IBA-KDE and the IBA-GMM did not. 

As the second example having large change of 
illumination, a sequence of 30 images in Fig. 4 and 
five new images in Fig. 7 are assumed. All of the 
five new images represent the same scene with 
different illumination where the image in (a) is an 
original image and others in (b), (c), (d), and (e) are 
modified in their intensities with +10, +30, -10, and 
-30, respectively. The same probability distribution 
of pixel positions computed in the first example is 
then used for detecting a foreground from the five 
new images.  

From Fig. 7(a), the result by ours is in Fig. 8(a-1), 
the result by the IBA-KDE is in Fig. 8(a-2), and the 
result by the IBA-GMM is in Fig. 8(a-3). Similarly, 
from Fig. 7(b), 7(c), 7(d), 7(e), the result by ours is 
in Fig. 8(b-1), 8(c-1), 8(d-1), 8(e-1), the result by 
IBA-KDE in Fig. 8(b-2), 8(c-2), 8(d-2), and the 
result by the IBA-GMM in Fig. 8(b-3), 8(c-3), 8(d-
3), 8(e-3). As shown in Fig. 8, our approach detected 

a foreground successfully from four of the five 
images except (c) with a little false detection. 
However, both of the IBA-KDE and the IBA-GMM 
failed to detect a foreground from each of (c) and (e). 
Further the IBA-GMM results in false detection 
from both of (b) and (d). 

From these two examples, our approach is shown 
to be robust to dynamic textures and also large 
change of illumination as compared to the IBA-KDE 
and the IBA-GMM.  

Finally, the results from using five different 
values of threshold with four different numbers of 
clusters are shown in Fig. 9 where as the number of 
clusters gets larger, the smaller value of threshold 
becomes more appropriate. Note however that the 
number of clusters is closely related to the number 
of intensity sources in the given image. 

6 CONCLUSIONS 

For modelling a background from a sequence of 
images, we presented the probability distribution of 
pixel positions for intensity clusters. To detect a 
foreground from a given new image, probability of 
each pixel position is obtained from the probability  
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M=3 

     

M=4 
 
 

     

M=5 

     

M=6 

     
 T=0.00000025 T=0.0000005 T=0.000001 T=0.000002 T=0.000004 

Figure 9: Results from an image in Fig. 7-(a) using different values of threshold with different numbers of clusters. 

distribution. If it is less than some predefined 
threshold, it is detected as a foreground. Otherwise, 
it is a background. Our approach is illustrated to be 
not to suffer from dynamic textures and large change 
of illumination, as compared to the intensity-based 
approaches. Finally the work to find the general 
formula to find the optimal number of intensity 
sources from a given image is left as the future work. 
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