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Abstract: Cardiac auscultation is a traditional, yet highly sensitive and specific diagnosis technique for cardiovascular 
diseases. We present a Matlab framework for cardiac signals processing and analysis, which includes a new 
toolbox specifically designed for the main processing tasks related to heart sound analysis. Existing 
frameworks for acoustic cardiac signal analysis usually limit themselves to noise contamination detection, 
S1 and S2 segmentation and murmur diagnosis. Besides these operations, the proposed framework includes 
algorithms developed for segmentation of the main heart sound components capable of handling situations 
with high-grade murmur, S3 detection and identification, S2 split identification as well as systolic time 
intervals (STI) measurement using heart sound. Methods for cardiac function parameter extraction based on 
STI are also included. Most of the algorithms outlined in the paper have been extensively evaluated using 
data collected from patients with several types of cardiovascular diseases under real-life conditions. The 
achieved results suggest that the algorithms developed for the framework exhibit performances that are 
comparable and, in most cases, surpass existing state of the art methods. 

1 INTRODUCTION 

Cardiovascular diseases (CVD) are the leading cause 
of death worldwide. According to the European 
cardiovascular disease statistics report (Allender, et 
al. 2008), 44% of all deaths in men in Europe are 
due to CVD, whereas the disease accounts for 54% 
of all deaths in women. CVD is not solely a problem 
of developed countries, quite the contrary. In fact, as 
is mentioned in the WHO report on chronic diseases 
(WHO, 2005), 80% of all deaths worldwide due to 
chronic diseases occur in middle and low-income 
countries, being CVD by far the most prevalent 
chronic disease. Recent studies have shown that 
premature CVD and its consequences can be largely 
prevented and controlled by fostering healthy 
lifestyles and by timely detection/control of 
progression of the disease. For the population that 
already exhibits the disease, the later is of paramount 
importance since timely diagnosis usually leads to 
more successful and cost effective therapies. Due to 
the unprecedented aging of the world population 
(Rechel et al., 2009), timely action has decisive 
impact on health provision systems’ sustainability. 

The first line of defense against CVD is the regular 
follow-up by primary care physicians. Given the 
medical, social and economical implications of 
CVD, a significant research trend is observed in 
science and technologies to deploy personal health 
(pHealth) systems for CVD management (e.g. 
Habetha, 2006). The goal of these systems is to 
support physicians and patients in detecting trends 
and in collecting data for clinical decision support.  

In order to implement cost effective CVD 
prevention strategies, pHealth systems as well as 
physicians require affordable, comfortable and 
highly discriminative information sources for 
diagnosis. Traditionally, the electrocardiogram 
(ECG) and heart sound (HS) auscultation are among 
the most used signals for CVD diagnosis. These 
information sources provide complementary 
information: the ECG enables to assess the electrical 
activity of the heart, while heart sounds provide 
information on the mechanical activity of the heart 
(Tavel, 1967). Other signals, such as the impedance 
cardiogram (ICG) as well as the 
photoplethysmogram (PPG), are less common in 
daily practice or are still used mainly in research 
scenarios. 
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In this paper we introduce a Matlab framework for 
the acquisition and processing of cardiac signals. 
The framework (see fig. 1) includes a general real-
time signal acquisition toolbox to interface medical  

 
Figure 1: (top) Layer architecture of the proposed 
framework. (bottom) Detailed layer architecture of the 
heart sound processing toolbox. 

sensor networks and a collection of signal analysis 
toolboxes for the most pertinent signals to deploy 
portable and non-invasive devices for CVD 
diagnosis. Regarding the signal processing layer of 
the framework, the focus of this paper will be to 
present the algorithms developed by the team for the 
HS toolbox. These include methods for noise 
detection, heart sound segmentation into its main 
components (S1, S2 and S3) as well as higher level 
operations such as S2 split detection (important to 
assess pulmonary artery pressure), regurgitation and 
stenosis murmur detection and classification, and left 
ventricle cardiac function assessment (systolic time 
intervals, contractility and stroke volume). The 
remaining toolboxes are presented elsewhere: a 
description of the ECG toolbox can be found in 
(Henriques et al., 2008); the ICG algorithms 
implemented in the ICG toolbox are described in 
(Carvalho et al., 2011), whereas the PPG toolbox is 
based on the segmentation method introduced in 
(Chan et al., 2007). 

Heart sound is a consequence of turbulent blood 
flow and vibrating cardiovascular structures, which 
propagate to the chest. These vibrations typically 
result from myocardial and valvular events that are 
affected by the function, the hemodynamics and 
electrical activity of the cardiac muscle. The later 
have a direct impact on the morphological, spectral 
and the timing characteristics of the main heart 
sounds (S1, S2 and S3), which have been found to be 
highly sensitive and specific for several important 
diagnosis tasks ranging from heart valve dysfunction 
(Durand & Pibarot 1995), (Abbas&Bassam, 2009) to 

systolic cardiac function (Paiva et al. 2009; Tavel 
1967). 

Unfortunately, cardiac auscultation - the 
interpretation of heart sounds - requires highly 
proficient physicians. Several studies (e.g. Lam et 
al., 2005) have shown that the ability of physicians 
to perform cardiac auscultation is reduced and 
significantly impaired as time progresses. It is 
estimated that this might lead to a number of missed 
diagnosis and to a high rate of unnecessary referrals 
to cardiologists with a consequence of waste of 
scarce resources (Pease, 2001). Hence, the existence 
of signal analysis algorithms for HS to deploy 
decision support systems, both for the physicians in 
their clinical practice as well as to deploy pHealth 
systems, are one possible solution to fully explore 
this highly informative, low cost and non-invasive 
information source on cardiac state. 

There are few known integrated frameworks for 
heart sound acquisition and processing. Most of the 
existing literature is concentrated on algorithms for 
elementary processing functions (most of the efforts 
focus on HS segmentation and murmur 
classification). An extensive review on algorithms 
for heart sound analysis as well as CVD diagnosis 
algorithms based on HS can be found in 
(Abbas&Bassam, 2009; Durand&Pibarot, 1995; 
Tavel, 1967). Rajan et al. (1998) introduce an 
integrated framework for HS processing based on 
Morlet wavelet bank of correlators. Their framework 
tackles the problems of noise detection, S1 and S2 
segmentation and murmur/click/snap classification. 
Javed et al. (2006), describe a signal processing 
module that includes a signal acquisition 
functionality. Time-frequency processing is wavelet-
based and is limited to HS segmentation and murmur 
detection.  More recently, Syed et al. (2007) 
introduced a framework with similar functionalities 
as the one described in (Rajan et al., 1998). 
Kudriavtsev et al. (2007) introduce a framework for 
HS analysis based on time-frequency signatures 
assessed using the Wigner-Ville distribution. This 
framework enables HS segmentation, including S3 
and S4 detection, as well as murmur detection. It is 
observed that none of the sited frameworks include 
modules for systolic time interval measurement, i.e. 
the pre-ejection period (PEP) and the left ventricle 
ejection time (LVET), which is related directly to the 
left ventricle function. Some of these frameworks 
include facilities to assess the so-called 
electromechanical time interval, RS2, defined by the 
ECG’s R-peak and the S2 sound; it should be noted 
that RS2≈PEP+LVET. However, as was mentioned 
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by Oh and Tajik (2003), reduced systolic left 
ventricle function will have opposite effects on PEP 
and LVET, possibly cancelling each other out. 
The paper is organized as follows: Section 2 outlines 
the algorithms that have been developed by the team 
and are integrated into the heart sound processing 
toolbox. In section 3 we present and discuss results 
of the main modules that comprise the toolbox. 
Finally, in section 4 some main conclusions are 
drawn and the main directions for future work are 
outlined. 

 
Figure 2: Noise detection algorithm. 

2 HEART SOUND ANALYSIS 
TOOLBOX 

2.1 Noise Detection 

The first step in developing a clinical application 
based on HS is to exclude signal portions with noise 
contaminations. Noise interference in HS might 
come from internal (e.g. physiological noises) as 
well as external (e.g. noises by bystander) sources 
and interfere in highly complex and unpredictable 
ways. These noise sources exhibit a very broad range 
of spectral bands, loudness and durations. Noise 
detection is tackled in the toolbox by observing that 
HS are quasi-periodic signals. This characteristic 
manifests itself both in the time domain as well as in 
the time-frequency domain for different frequency 
bands. The proposed strategy is depicted in the 
flowchart in fig. 2: in phase I a non-contaminated HS 
clip of one complete heart cycle is selected. This HS 
will serve as a reference template for further 
processing; since this selection operation is always 
performed at the start of the signal acquisition 
process, it ensures that the method exhibits resilience 
towards auscultation site, posture changes and 

changing physiological characteristics. In order to 
grant that this reference template does not exhibit 
noise contamination, the template is selected from 
candidates that exhibit the aforementioned quasi-
periodicity characteristics. In the second phase this 
template is applied to each signal window using 
temporal energy and spectral similarity criteria to 
check for noise contamination. 

Regarding phase I, first each individual heart 
beat is identified in the HS signal. If an ECG is 
available, this can be obtained using the R-peaks. 
Otherwise, the heart cycle limits can be estimated 
from the prominent peaks (which correspond to S1 
and S2) of the signal’s envelop and the heart rate 
assessed from the singular value decomposition 
(SVD) of the envelop of the signal. Let y(t)  be the 
envelop of the HS obtained using the Hilbert 
transform. Let k(wT) = [y(wT), …, y((w+1)T)] and 
S(T) = [kT(T), …, kT(nT)]T, nT is limited by the 
available duration of y(t). The cardiac beat period T 
can be obtained from T = argmaxγ∈Ω(α2/α1)2, where 
α1 and α2 are the singular values of S(γ) and the 
search interval Ω is defined using physiological 
limits of admissible heart rates. Once each heart 
cycle section of the signal’s envelop has been 
identified, time domain similarity is checked using 
the inner product. Only those cycles which exhibit a 
similarity towards its neighbor greater than 0.8 are 
retained for further processing. The second test 
performed during this phase is performed in the 
time-frequency bands. First the spectrogram (0-
600Hz) is split into 15 contiguous, non-overlapping 
frequency bands. Since the main energy sources in 
HS are due to the S1 and S2 components, it is 
observed that the envelops in each time-frequency 
band tend to exhibit linear dependent auto-
correlation functions (with decreasing linear 
dependency for natural and bioprosthetic valves and 
with increasing linear dependency for mechanical 
valves) with aligned peaks (see fig. 3). The linear 
dependency is assessed using the SVD of the matrix 
Λ, whose rows are the autocorrelation functions of 
the time-frequency bands. Namely, it is observed 
that it has to verify ρ1≥ρ2≥ρ3 or ρ1≤ρ2≤ρ3, where 
ρk=(αk+1/αk)2 and αk represents the kth singular value 
of Λ. The heart cycle with the highest average 
similarity (radial distance) with respect to all 
available heart cycle template candidates is selected 
as the template. 

Once the reference heart sound has been defined, 
phase II is initiated where a template matching 
approach is applied to each HS signal window using 
the following spectral and temporal features: first the 
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correlation between spectral power of the template 
and the signal under analysis is assessed. If it is 
greater than 0.98, then the signal is subject to a 
temporal energy test (required to capture very short 
duration contaminations). In this test, the energy of 
each 50ms signal window is checked against the 
energy of the template. The complementary 
contributions of these two features in the noise 
contamination problem are shown in fig.4. 

 
Figure 3: a) Heart sound from mechanical valve. b) 
Spectrogram. c) Auto-correlation functions of the time-
frequency bands. 

2.2 Segmentation 

HS segmentation into its main constituent parts is 
approached using two distinct methods: one is based 
on the signal’s envelogram, the other is based on a 
wavelet-simplicity filter. The former algorithm is 
very efficient computationally. However, its 
performance degrades rapidly for HS with murmur. 
This type of HS are segmented using a method 
developed by the team based on the wavelet-
simplicity filter, which is computationally more 

demanding. To automatically select between both 
methods, a selection stage has been incorporated into 
the segmentation module (see fig. 5).  
Heart sounds, particularly those with murmur, 
contain nonlinear and non-Gaussian information that 
is not tackled by the widely known Fourier or time-
frequency based analysis techniques. Nonlinear  

 
Figure 4: (a) Noise contamination detection results. (b) 
Spectral correlation feature. (c) Temporal energy feature. 

 
Figure 5: HS segmentation method. 

dynamic techniques not only enable to deal with the 
nonlinearity and the non-Gaussianity of a signal, but 
also project its dynamic behavior, such as chaos and 
complexity, in the state space or the phase space that 
is constructed using embedding theory. Based upon 
the constructed phase space, the features of a heart 
sound signal can be computed. In the proposed 
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method, the degree of chaos is measured via the 
Lyapunov exponents estimation. 
Suppose the heart is considered as a nonlinear 
dynamical system X(t + 1) = F[X(t)] that generates 
the heart sound time series x(t), t = 1....N . Signal x(t) 
can be treated as a one dimensional projection of the 
unknown multidimensional dynamic variable X(t). 
Phase space transformation of the one dimensional 
observation x(t) is performed using the embedding 
theorem, attributed to Taken’s theorem, which states 
that, using some suitable assumptions, a phase space 
can be formed that is topologically equivalent to an 
original system (Abarbanel, 1996). The method of 
delay is applied to reconstruct the attractor in the 
multidimensional space or embedding space P, i.e. 
yi(t) = [x(t), x(t − τ), ....., x(t − (m − 1) τ))] ∈ IRm, 

where i = 1, 2, 3...P and yi(t) are row vectors of the 
embedding matrix Y(t). To determine the exponents 
from the embedded matrix Y(t), the nearest neighbor 
points are located to measure their distance from the 
initial points as given in equation. 

λ =
1

tM − t0
log2

L' tk( )
L' tk−1( )k=1

M
∑  

where M is the number of repetitions the trajectory 
takes in traversing the entire data and denotes the 
Lyapunov exponents. For a chaotic dynamical 
system it is observed that the Lyapunov exponents 
are positive (Abarbanel, 1996). Fig. 6 depicts the 
average of 150 exponents obtained from 35 HS clips 
(20 clips without murmur and 15 clips with murmur). 
As can be observed, HS without murmur are 
significantly less chaotic. The decision stage in fig. 5 
is implemented using a simple threshold decision 
rule. 
The segmentation method based on the signal’s 
envelop is basically formed by two simple steps 
(Kumar et al., 2006a): (i) first the S1 and S2 
candidates are identified using the zero-crossings of 
the envelop of the approximation coefficients of the 
5th level wavelet decomposition. The envelop is 
computed with a running average of the Shannon 
energy. The identification of the S1 and S2 
components is based on the observation that pressure 
gradients are higher across the aortic valve compared 
to the mitral valve. Hence, the S2 heart sound should 
exhibit more pronounced high frequency 
components compared to S1 or S3. In order to 
capture this, a new high frequency feature was 
introduced. This new feature is composed by the 
Shannon energy of the detail coefficients of the 
wavelet transform. As can be seen in fig. 6 (top), this 

signature coupled to some simple physiological 
motivated rules enable the discrimination between 
the different components of the heart sound.  

 

 
Figure 6: (top) High frequency signature applied to detect 
the S2 sounds; HFS and LFS stand for high and low 
frequency segment, respectively.. (bottom) Lyapunov 
exponents for sound heart sounds with and without 
murmur. 

Regarding the wavelet-simplicity filter algorithm, it 
follows the same steps of the algorithm we 
developed using the Wavelet-Simplicity transform 
(Kumar et al., 2006). Therefore, only fundamental 
changes in the steps of the basic algorithm are 
described herein. Murmurs occur between S1 and S2 
or S2 and S1 sounds. Therefore, the first task 
consists of the identification of the boundaries of the 
S1 and S2 sounds. The main steps for achieving S1, 
S2 and murmur separation using the strength and 
simplicity features are (see fig.7): 
Step 1: Heart sound is decomposed using the 
wavelet db6. The approximation coefficients are 
used in further processing. 
Step 2: Simplicity (Sl) and global strength (GSl), 
where l is the depth of wavelet decomposition, of the 
decomposed signal is computed. 
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Figure 7: Wavelet-Simplicity Filter segmentation 
algorithm. 

Step 3: The S1 and S2 components of a heart sound 
exhibit high strength and simplicity, hence clear 
peaks can be seen in these curves (see fig. 8). In 
severe heart murmurs, murmurs overlap S1 or S2 
sounds. Other unknown sounds may occur due to 
physiological events (e.g. S3) that exhibit similar 
characteristics of S1 and S2 components. Usually, 
S1 and S2 sounds exhibit relatively high simplicity 
as well as strength, whereas other artifacts exhibit 
high simplicity but on the contrary low strength.  
Therefore, the width (or duration) of S1 and S2 
sounds are separately segmented using both feature 
curves. For this task, the peak peeling algorithm 
(PPA) (Hadjileontiadis and Rekanos, 2003) based 
upon an iterative thresholding process is applied. 
PPA is applied first to the GS curve and then to the S 
curve successively.  Subsequently, start and stop 
times of S1 and S2 sounds are achieved and can be 
gated. The segmented time gates using both feature 
curves are shown in fig. 8. 
Step 4: It is observed from fig. 8 that correct start 
and stop times of S1 and S2 sounds can be achieved 
by common segmented time gates in both 
thresholded feature curves.  
Step 5: The suitable decomposition depth is found 
by applying the mean square error criterion on gated 

decomposed heart sound signal. 
To segment occurrences of the S3 sound, two 
additional steps are carried out using physiological 
motivated criteria:  
1 - Availability of S3 check: two criteria have been 
considered to check for the availability of S3 sounds 
in a heart sound sample: (i) if the duration of more 
than 75% of S2 sounds exceed 250ms.  This occurs 
when the segmentation algorithm was not able to 
separate the S2 and S3 boundaries. (ii) If more than 
75% small low complexity segments exhibiting low 
duration (50ms-70ms) are detected in the diastolic 
phase.  
2 – Recognition of S3: S3 are characterized by low 
loudness, small duration, low frequency range 
(typically between 25-70Hz) and their diastolic 
nature, i.e. S3 tend to originate around 150ms after 
the onset of the A2 (aortic component of the S2). 
Using these properties the following validation 
criteria are considered: 

- Loudness: (loudness)S3<1/3(loudness){S1,S2} 
- Simplicity: due to their lower spectral 

content, S3’s simplicity tends to be higher 
compared to simplicity of S1 and S2, i.e. 
SS3>S{S1,S2}. 

-  The time interval between the onset of S3 
and the onset of the preceding S2 is 
between 120-180ms. 

- The duration of S3 is between 40-70ms). 

 
Figure 8: Segmentation results in severe (grade V) mitral 
regurgitation murmur. 

2.3 Murmur Characterization 

This module of the toolbox performs murmur 
classification using features extracted from the 
systolic, i.e. S1-S2, or the diastolic intervals, i.e. S2-
S1. The approach followed is a classical pattern 
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recognition approach composed by two layers: 
feature extraction and classifier (a SVM with cubic 
polynomial kernel function, trained using the one-
against-one binary classification). The classifier 
considers seven distinct classes of mrmur: 1) Aortic 
Regurgitation (AR), 2) Aortic Stenosis (AS), 3) 
Mitral Regurgitation (MR), 4) Pulmonary 
Regurgitation (PR), 5) Pulmonary Stenosis (PS), 6) 
Subaortic Stenosis+Ventricular Septal Defect 
(SAS+VSD), 7) Systolic Ejection (SE). It should be 
noted that murmur presence detection is based on 
Lyapunov exponents described earlier. 
Murmur classification is a challenging task, whose 
success is mainly conditioned by the quality of the 
features. The features implemented in this toolbox 
have been obtained using a feature selection 
approach from a pool of 256 features. These features 
have been collected using a two-fold approach: 
features have been collected from two well-known 
methods described in literature and a set of new 
features has been introduced (Kumar et al., 2010). 
Regarding the feature sets taken from the literature, 
the sets introduced by Alhstrom et al. (2006) and by 
Olmez and Dokur (2003) have been considered. The 
most discriminative features have been selected 
using Pudil’s sequential floating point forward 
selection method. The module allows for two 
alternative sets of features: the first set is composed 
by 17 features that have been selected from the 
aforementioned 256 feature pool, and the second one 
is composed by 10 features selected among a much 
smaller pool of features defined by the team. By 
default we favor the less complex solution, although 
(as will be discussed later) it exhibits a slightly 
smaller sensitivity and specificity compared to the 
first set. The implemented features in the second 
feature set are those listed in table 1. The transition 
rate is defined by transition rate = Tasc/Tdesc, where 
Tasc  is the transition time taken from the first 
minimum of the energy curve to the maximum 
energy, and Tdsc is the time interval from the energy 
maximum to the last subsequent minimum energy. 
The remaining features are well-known in signal 
processing. 

Table 1: feature set for murmur classification. 

Loudness 
Transition Ratio 
Fundamental frequency 
Spectral power (100-200Hz) 
Spectral power (200-300Hz) 

Zero crossing rate 
Skewness (time domain) 
Spectral Shape 
Spectral Flux 
Max. Lyapunov Exponent 

2.4 Cardiac Function Assessment 

The assessment of the left ventricle cardiac function 
is based on the extraction of the left ventricle systolic 
time intervals (STI), i.e. the pre-ejection period 
(PEP) and the left ventricule ejection time (LVET). 
These are of major diagnostic importance, since it is 
this ventricle’s function to insure the blood flow in 
the systemic circulation. STI are defined by the 
events of the aortic valve. Namely, PEP is defined by 
the time interval between R-peak of the ECG and the 
opening of the aortic valve, while LVET corresponds 
to time span between the closing and the opening 
events of this valve. We have shown (Carvalho et 
al., 2009) that S1 and S2 can be applied to extract 
the aortic valve events from S1 and S2 using 
synchronized echocardiography and HS under 
resting conditions. It should be mentioned that, the 
framework has other methods to extract STI that can 
be applied. For instance, when no ECG is available, 
the PPG and the HS can be combined to extract the 
STI. These might also be estimated using the ICG 
signal, if available. A comparative analysis of some 
of these methods and principles in STI estimation 
can be found in (Carvalho et al., 2010). 
The details regarding the algorithm for the detection 
of the aortic events using HS were presented in 
(Paiva et al., 2009). The method is based on a 
Bayesian approach using instantaneous amplitude. 
Once the beat-by-beat STI have been extracted, the 
toolbox enables the calculation of the following 
cardiac function measures: 
Corrected STI with Respect to Heart Rate and 
Classification: The implemented correction 
algorithms are those described in (Weissler et al., 
1968) and (Warrington et al., 1988). For STI 
correction under exercise, the correction steps 
described by Mertens et al. (1981) have been 
considered in the toolbox. The toolbox presents 
diagnosis information regarding if the STI are 
pathological or not. 
Contractility Index and Classification: The 
contractility index PEP/LVET is computed average 
runs of 5 beats. Heart Failure diagnosis is 
automatically provided based on clinically validated 
threshold.  
Stroke Volume and Cardiac Output: The beat-to-
beat as well as the average stroke volume and the 
cardiac output are calculated using the model 
described in (Rietzschel et al., 2001). It should be 
mentioned that these parameters are also extracted in 
the ICG toolbox of the framework, where the 
Bernstein and Kubicek models have been 
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implemented (see e.g. Wang et al., 1995). 
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Figure 9: Synchronized echocardiography and heart 
sound. 

2.5 S2 Split Detection 

Pulmonary hypertension (PH) is a serious heart 
condition that is difficult to diagnose. Heart sounds 
is one of the most relevant diagnosis signal. Usually, 
PH leads to wide S2 split between the aortic 
component (A2) and the pulmonary component (P2). 
Loud P2 is another usual consequence of PH. The 
toolbox implements a simple algorithm to assess S2 
splitting. The following steps compose the method: 
Step 1: S2 frequency range is typically limited to 
240Hz. The first step is low-pass filtering using a 
Butterworth filter with 240Hz cut-off frequency. 
Step 2: The signal’s envelop is extracted using the 
Hilbert transform. 
Step 3: The two most prominent are extracted. If 
their amplitude ratio is greater than a predefined 
threshold, then a split is assumed. 
Step 4: The split duration is estimated as the time 
interval between the two peaks of the signal’s 
envelop (see fig. 10).  

 
Figure 10: S2 Split. Upper curve represents the signal’s 
envelop. The lower dashed curve is the S2 heart sound. 
Time split interval as well as A2 and P2 components are 
shown.  

3 RESULTS AND DISCUSSION 

Table 2 presents the sensitivity and specificity results 
of the algorithms implemented in the heart sound 
toolbox of the framework. The STI estimation 
entries, i.e. PEP, LVET and RS2 entries, refer to the 
absolute estimation error with respect to 
echocardiography (the clinical gold standard). These 
results were obtained using heart sounds acquired at 
several hospitals from typical target populations, i.e. 
patients suffering from several types of cardio-
vascular diseases such as atrial fibrillation, 
tachycardia, premature ventricular contractions, 
several types of valve problems with regurgitation 
and stenosis, patients with artificial valve implants, 
as well as several degrees of heart failure. One 
exception to this is the data acquisition protocol 
followed to assess the STI measurement algorithms. 
In this case, only healthy subjects have been used so 
far. The data acquisition study with patients suffering 
from heart failure is currently being carried out. It 
should also be mentioned that the data collection 
study with CVD patients for S2 split assessment is 
also ongoing. Regarding the data acquisition for 
noise detection, the protocol followed included 
contaminations by several distinct internal and 
external noise sources at different intensity levels. 
All databases have been collected and annotated 
under medical supervision. Table 3 summarizes the 
population characteristics and the amount of data 
collected for each validation database. 

Table 2: Summary of results. 

Function SE/Abs. Error SP/Corr. 
Noise detection 95.88% 97.56% 
Segmentation 
(without murmur) 97.95% 98.20% 

Segmentation 
(grade I-IV murmur) 91.09% 95.25% 

S2 Split* - - 
S3 Identification 90.35% 92.35% 
Murmur classification 
(set of 10 features) 95.74% 95.01% 

Murmur classification 
(set of 17 features) 96.15% 96.16% 

PEP 7.57±6.17ms 0.52 
LVET 11.21±9.27ms 0.88 
RS2 9.88±8.65ms 0.92 

As can be observed from the results in table 2 and 3, 
most of the algorithms developed by team and 
integrated into the toolbox have been evaluated 
thoroughly. Furthermore, these methods exhibit very 
high sensitivity and specificity values. Regarding the 
results achieved for STI, the achieved results so far, 
suggest that HS enables much better results 
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compared to other competing measurement 
principles for portable and non-invasive devices (a 
detailed analysis can be found in (Carvalho et al., 
2010)). As already mentioned, these results have still 
to be confirmed for CVD patients. Regarding the 
evaluation of the S3 identification module, it should 
be mentioned that currently the algorithm has been 
evaluated on sound clips collected from 5 patients. 
Hence, the provided results should be considered as 
preliminary. As for the S2 split algorithm, evaluation 
as been performed only on healthy subjects so far. 

Table 3: Validation conditions.  

Function N BMI Age 
Noise detection 71 25.1±7.8kg/m2 35.3±12.0y 
Segmentation  

(without mur.) 
55 24.4±1.5kg/m2 32.6±9.7y 

Segmentation  
(grade I-IV mur.) 

21 24.9±2.3kg/m2 54.73±6.0y 

Murmur classif. 51 25.4±2.2kg/m2 64.65±8.6y 
S2 Split* - - - 
S3 Identification 5 NA 15.7±8.7y 
STI 33 24.5±2.4kg/m2 29.7±8.5y 

Given the achieved maturity level of the toolbox, it 
is being used to deploy clinical applications. 
Currently, the team is developing three distinct 
applications using the framework: the first 
application is called the intelligent stethoscope that 
enables the automatic annotation of HS to support 
the decision of the physician (for details, the reader 
may refer to (Ramos et al., 2011)); the second 
application build on top of the first one and is 
intended to auscultation training; finally the third and 
last application targets prosthetic heart valve implant 
dysfunction detection. Applications related to heart 
failure management are planned, once the STI 
measurement module tests have been concluded. 

4 CONCLUSIONS AND FUTURE 
WORK 

Heart sound is a valuable biosignal to build 
diagnosis systems for cardiovascular diseases for the 
daily acute clinical practice as well as for systems 
dedicated to long-term follow-up of chronic CVD 
patients. In this paper we introduce a Matlab toolbox 
for acoustic cardiac signal processing. This toolbox 
is integrated into a framework for cardiac signal 
processing that includes a general real-time signal 
acquisition toolbox to interface medical sensor 
networks and a collection of signal analysis 
toolboxes for the most pertinent signals to deploy 

portable and non-invasive devices for CVD 
diagnosis. The main algorithms developed 
specifically for the heart sound toolbox are outlined. 
These include solutions for the main challenges that 
are encountered in real life applications based on 
heart sounds. In comparison to other existing heart 
sound processing frameworks, the proposed toolbox 
includes methods for the processing functionalities 
that are commonly handled, i.e. noise contamination 
detection, heart sound segmentation (including S3 
identification) and murmur classification, but also 
tackles problems that most known frameworks do 
not contemplate. More specifically, methods to 
detect S2 splitting and cardiac function assessment 
are part of the proposed toolbox. To the best of the 
authors’ knowledge, the proposed toolbox is the first 
one that enables STI measurement using heart 
sounds. This opens new application areas to heart 
sounds such as heart failure management. 
The proposed framework exhibits a significant 
maturity level. Most of the integrated algorithms 
have been tested using heart sound clips obtained 
under medical supervision and using typical CVD 
populations under real-life conditions. The achieved 
results are comparable and in most cases exceed the 
state of the art in competing methods. It should be 
mentioned that the proposed algorithms for STI 
measurement and S3 identification have still to be 
fully evaluated using a significant database of data 
collected from real CVD patients. This is an ongoing 
task that will be finished in the near future. It is also 
foreseen to continue the research of a more evolved 
version of the S2 split detection module. More 
specifically, currently the team is researching a 
solution to accurately identify the onset of both S2 
components, i.e. A2 and P2. This might enable to 
correlate the time split to pulmonary artery pressure 
measurement as was previously suggested by (Popov 
et al., 2004). 
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