
HYBRID POPULATION-BASED INCREMENTAL LEARNING 
TO ASSIGN TERMINALS TO CONCENTRATORS 

Eugénia Moreira Bernardino, Anabela Moreira Bernardino 
Research Center for Informatics and Communications, Dep. of Computer Science, School of Technology and Management 

Polytechnic Institute of Leiria, Leiria, Portugal 

Juan Manuel Sánchez-Pérez, Juan Antonio Gómez-Pulido, Miguel Angel Vega-Rodríguez 
Dep. of Technologies of Computers and Communications, Polytechnic School, University of Extremadura, Cáceres, Spain 

Keywords: Communication networks, Terminal assignment problem, Optimisation algorithms, Population-based 
incremental learning. 

Abstract: In the last decade, we have seen a significant growth in communication networks. In centralised 
communication networks, a central computer serves several terminals or workstations. In large networks, 
some concentrators are used to increase the network efficiency. A collection of terminals is connected to a 
concentrator and each concentrator is connected to the central computer. In this paper we propose a Hybrid 
Population-based Incremental Learning (HPBIL) to assign terminals to concentrators. We use this algorithm 
to determine the minimum cost to form a network by connecting a given collection of terminals to a given 
collection of concentrators. We show that HPBIL is able to achieve good solutions, improving the results 
obtained by previous approaches. 

1 INTRODUCTION 

In last years, we have observed tremendous research 
activities in optimisation methods for 
communication networks. This is mainly due to the 
dramatic growth in the use of the Internet (Salcedo-
Sanz and Yao, 2004; Yao et al. 2005). The 
assignment of terminals to concentrators is an 
important issue in communication networks' 
optimisation. The number of concentrators and 
terminals and their locations are known. Each 
concentrator is limited in the amount of traffic that it 
can accommodate. For that reason, each terminal 
must be assigned to one node of the set of 
concentrators in a way that no concentrator 
oversteps its capacity (Khuri and Chiu, 1997; 
Salcedo-Sanz and Yao, 2004; Xu et al. 2004). This 
problem is known as Terminal Assignment Problem 
(TAP). Our purpose is to minimise the cost to form a 
network between a specified set of terminals and 
concentrators (Khuri and Chiu, 1997). The objective 
is to assign terminals to concentrators under three 
constraints (Bernardino et al. 2009b): (1) each 
terminal is assigned to one (and only one) 

concentrator; (2) the total number of terminals 
assigned to any concentrator does not overload that 
concentrator, i.e. is within the concentrators' 
capacity and (3) balanced distribution of terminals 
among concentrators. Under these constraints, an 
assignment with the lowest possible cost is sought.  

The TAP is a NP-Hard combinatorial 
optimisation problem (Salcedo-Sanz and Yao, 
2004). This means that we cannot guarantee to find 
the best solution in a reasonable amount of time. The 
intractability of this problem is a motivation for the 
pursuits of an algorithm to produce approximate 
solutions.  

Estimation of distribution algorithms (EDAs) are 
a class of Evolutionary Algorithms (EAs). EDAs use 
sampling with probabilities instead of traditional 
crossover and mutation operators.  

The Population-Based Incremental Learning 
(PBIL) algorithm is an EDA, proposed by Baluja 
(1994). The PBIL uses a stochastic guide search 
process to obtain new solutions based on the 
directional information from the previous best 
solution. The PBIL maintains statistics about the 
search space (learning probabilities)  and  uses  them 
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to direct its exploration (Baluja, 1994, 1996, 1997). 
The algorithm produces new solutions according 

to the learning probabilities. Based on analysing the 
principle of PBIL algorithm, in this paper we present 
an improvement version of the PBIL algorithm. We 
extend the standard PBIL algorithm to work with an 
integer representation (terminal-based 
representation). The standard PBIL algorithm uses 
learning probabilities to build complete solutions. In 
our Hybrid PBIL (HPBIL) algorithm, we use the 
learning probabilities to perform modifications on 
TAP solutions. We incorporate the HPBIL with an 
intensification mechanism to allow returning to 
previous best solutions. The HPBIL also uses a 
diversification mechanism that periodically 
reinitialises all the learning probabilities. 

We compare the performance of HPBIL with 
five algorithms: Local Search Genetic Algorithm 
(LSGA), Tabu Search (TS), Hybrid Ant Colony 
Optimisation (HACO), Hybrid Differential 
Evolution with a Multiple strategy (MHDE), and 
Hybrid Scatter Search (HSS), used in literature. 

The paper is structured as follows. In Section 2 
we describe the TAP; in Section 3 we describe the 
implemented HPBIL algorithm; in Section 4 we 
discuss the computational results obtained and, 
finally, in Section 5 we report about the conclusions. 

2 TAP 

In the TAP, a communication network will connect 
N terminals and each with Ti demand (weight) via M 
concentrators and each with Cj capacity. No 
terminal’s demand exceeds the capacity of any 
concentrator. A terminal site has a fixed and known 
location CTi (x,y). A concentrator site has also a 
fixed and known location CPj (x,y).  

Problem Instance: 
 Terminals - a set N of n distinct terminals; 
 Weights - a vector T, with the capacity required 

for each terminal; 
 Terminals' Location - a vector CT, with the 

location (x,y) of each terminal; 
 Concentrators - a set M of m distinct 

concentrators; 
 Capacities - a vector C, with the capacity 

required for each concentrator; 
 Concentrators' Location - a vector CP, with the 

concentrators' location (x,y). 
Each terminal must be assigned to one node of 

the set of concentrators, in a way that no 

concentrator oversteps its capacity. To minimise the 
cost, the distances between concentrators and 
terminals assigned to them must be minimised. 
Other objective is to ensure a balanced distribution 
of terminals among concentrators. 

Figure 1 illustrates an assignment to a problem 
with N=10 terminal sites, and M=3 concentrator 
sites. The figure shows the coordinates for the 
concentrators and terminals and also their capacities.    

 

 

Figure 1: TAP - Example. 

In this work, the solutions are represented using 
integer vectors. We use the terminal-based 
representation (Figure 1).  Each position in the 
vector corresponds to a terminal. The value carried 
by position i of the chromosome specifies the 
concentrator that terminal i is to be assigned to. 

3 PROPOSED HPBIL 

PBIL is a population-based optimisation method to 
solve hard combinatorial optimisation problems. 
PBIL combines characteristics from EAs and 
reinforcement learning (Baluja, 1994).  

The PBIL creates a real-valued probability vector  
P, which is used to generate new solutions. The 
coding method of Baluja’s PBIL uses binary 
representation (Baluja, 1994; He et al. 1999). 
Initially, the values of the probability vector are 
initialised to 0.5. As the search proceeds, the values 
in the probability vector gradually shift to reflect the 
search experience of the best solutions found in 
previous generations.  

The probability vector is used to create a number 
of ns solutions. The probability vector is updated, 
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taking the best solution B of the previous generation. 
After the probability vector is updated, the vector is 
mutated and a new set of solutions is created by 
sampling from the updated probability vector. The 
algorithm continues until the stop criterion is 
reached (He et al. 1994).  

The main steps of the standard PBIL are the 
following: 

Initialise parameters 
Initialise the probability vector Pi  
Update the probability vector: Pi=0.5(1<=i<=n) 
While stop criterion is not reached: 

Generate ns sample solutions according to 
the probability vector P. 

 Evaluate ns solutions. 
 Find best solution B. 

Update probability vector towards best 
solution B: 

        Pi=Pi*(1.0-lr)+Bi*lr(1<=i<=n) 
 Mutate probability vector: 
      if (random(0,1)<mp) 
         Pi=Pi*(1.0-mutShift)+  

random(0,1)*(mutShift) 
(1<=i<=n) 

ns – number of solutions in the population 
n - length of encoded solution 
lr - learning rate 
mp - mutation probability 
mutShift - amount for mutation to affect the 
probability vector 

The probability vector in PBIL serves as 
distributed, numerical information which the 
algorithm uses to probabilistically construct 
solutions to the problem being solved and which the 
algorithm adapts during the algorithm execution, to 
reflect the search experience. The probabilities 
induce a probability distribution over the search 
space and determine which parts of the search space 
are effectively sampled.  

To extend the binary PBIL algorithm for an 
integer representation, the probabilities need to be 
maintaned in a matrix. For the TAP, the set of 
probabilities is maintained in a matrix T of size N*M, 
where the entry Tij measures the desirability of 
assigning terminal i to concentrator j. 

The standard PBIL algorithm uses the probability 
vector to construct complete solutions. Our HPBIL 
algorithm uses the probabilities to perform 
modifications on TAP solutions.  

In HPBIL, we incorporate a parameter q to 
control the exploration and exploitation processes. 
We use these two processes to modify the solutions. 

The management of the probabilities is the most 
important component of PBIL. Exploration is a 
stochastic process, in which the choice of the 
component used to modify a solution to the problem 
is made in a probabilistic way. Exploitation chooses 
the component that maximises a blend of probability 
values and partial objective function evaluations.  

In this paper, we also explore one of the most 
successful emerging ideas combining Local Search 
(LS) with a population-based search algorithm. 
HPBIL uses a modified PBIL to explore several 
regions of the search space and simultaneously 
integrates a LS algorithm to intensify the search 
around some selected regions.  

For the best solution B in some generation, the 
corresponding learning formula to update the 
probabilities is:  TiBi= TiBi + lr. 

HPBIL uses an intensification mechanism. This 
mechanism allows returning to previous best 
solutions. The algorithm also uses a diversification 
mechanism after a predefined number of nid 
iterations, without improving the best solution found 
so far. When combined with appropriate choices for 
the probabilities update, the diversification 
mechanism can be very useful to refocus the search 
on a different search space region and to avoid the 
early convergence of the algorithm.  

The main steps of HPBIL are the following: 

Initialise parameters 
iteration = 0 
Generate initial population S 
for s=1 to ns do 

Apply Local Search to Ss 
Evaluate Solutions in S 
Find best global solution G in S 

Initialise the probability matrix Tij: 
Tij =1/M, (1<=i<=N), (1<=j<=M) 

intensification=true  
While stop criterion is not reached: 
 iteration = iteration+1 

for s=1 to ns do 
Modify s solution according to the 
probability matrix T: 
   S’s=ModifyProcess(Ss) 
Apply Local Search to S’s 
cond=true 
if (intensification=true) 

if(fitness(S’s)> 
fitness(Ss)) 

  S’s=Ss 
 else 
  cond=false 

if (cond=true) //no solution improved 
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  intensification=false 
 Find best solution B in S’ 

if(fitness(B)<fitness(G)) 
 G=B 
 Intensification=true 
Update probability matrix towards best 
solution B: 

TiBi= TiBi + lr 
 Mutate probability matrix: 
  if (random(0,1)<mp) 
    Tij=Tij*(1.0-mutShift)+  

    random(0 or 1)*(mutShift) 
(1<=i<=N), (1<=j<=M) 

 if (iteration % nid =0) 
Apply Diversification Mechanism 

 S=S’ 
S - population of solutions 
lr - learning constant 

The next subsections describe each step of the 
algorithm in detail. 

3.1 Initialisation of Parameters 

The following parameters, must be defined by the 
user: (1) ms – number of seconds; (2) ns – number 
of solutions in the population; (3) mp – mutation 
probability; (4) mutShift – amount for mutation 
to affect the probability matrix; (5) nm – number of 
modifications; (6) q – exploitation/exploration 
probability and (7) nid – number of iterations 
without improvement (used for diversification). 

3.2 Create Initial Population 

The solutions are created using a deterministic form. 
The deterministic form is based in the Greedy 
algorithm proposed by Abuali et al. (1994). The 
Greedy algorithm randomly assigns terminals to the 
closest feasible concentrators. 

3.3 Local Search Procedure 

HPBIL uses the LS algorithm proposed by 
Bernardino et al. (2008b). The evaluation process is 
the most time-consuming step of the algorithm, 
which is usually the case in many real-life problems. 
We improve the LS proposed by Bernardino et al. 
(2008b). After creating a neighbour, the algorithm 
does not perform a full examination to calculate the 
new fitness value; it only updates the fitness value 
based on the modifications made to create the 
neighbour. The running time is considerably 

reduced. We observe 80% of improvement in terms 
of execution time. 

3.4 Evaluation of Solutions 

The fitness function is the same used in Bernardino 
et al. (2008a, 2008b, 2009a, 2009b, 2010a, 2010b). 
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(2) the distances between concentrators and 
terminals assigned to them (the goal is to minimise 
the distances); 

(3) the penalisation if a solution is not feasible (the 
objective is to penalise the solutions when the total 
capacity of one or more concentrators is 
overloaded). 
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The main objective is to minimise the fitness 
function. 

3.5 Initialisation of Probability Matrix 

All the values in the probability matrix are initialised 
with the same probability:  

Tij =1/M, (1<=i<=N), (1<=j<=M) 

For example, if we have 10 terminals and 4 
concentrators, all the values are initialised with the 
same probability ¼=0.25. All the concentrators 
have the same probability of being selected. 

(1)

(2)

(3)
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3.6 Modification of Solutions 

It consists of repeating nm modifications. The 
modification is done assigning a terminal t to a 
concentrator c. First, a terminal t is randomly 
chosen (between 1 and N) and then a concentrator c 
is selected. Then, a random number x is generated 
between 0 and 1. If x is smaller than q (parameter), 
the best feasible concentrator c is chosen in a way 
that Ttc will be maximum. If x is higher than q, 
the feasible concentrator c is chosen with a 
probability proportional to the values contained in 
the pheromone trail. We only consider feasible 
concentrators. This means that we only consider the 
concentrators that have a free capacity equal or 
higher than the demand of terminal t.  

3.7 Intensification Mechanism 

The intensification mechanism allows a more 
complete exploration of the neighbourhood and 
allows returning to previous best solutions. The 
objective is to return towards attractive regions to 
search them thoroughly. If the intensification is 
active and the solution Si in the beginning of the 
iteration is better, the new solution S’i returns to the 
initial solution Si. The intensification is activated 
when the best solution found so far has been 
improved and remains active while at least one 
solution succeeds on improving its solution during 
the iteration. In the end of each iteration, if no 
solution improves its last solution, the intensification 
is deactivated. The objective is to explore other 
regions, avoiding the algorithm to become trapped in 
a local minimum. 

3.8 Probability Matrix Update 

The probability matrix is updated by taking into 
account only the best solution of the previous 
generation. The probability matrix is updated by 
setting: TiBi= TiBi + lr 

Based on preliminary observations, we consider 
the value 0.5 for lr (learning constant).  

3.9 Probability Matrix Mutation 

PBIL does not use a crossover operator and a 
selection mechanism like the most EAs. Instead, the 
values in T are mutated once per iteration. During 
this step, a random number between 0 and 1 is 
generated. If this random value is smaller than mp 
(mutation probability), the probability is mutated by  

setting: 

Tij=Tij*(1.0-mutShift)+  
    random(0 or 1)*(mutShift) 

3.10 Diversification Mechanism 

The diversification mechanism restarts the 
probability matrix and creates new solutions. For the 
following iteration, we kept the best solution found 
so far (G).  

3.11 Termination Criterion 

The algorithm stops when a maximum number of 
seconds (ms) is reached. 

More information on PBIL can be found in 
(Baluja, 1994, 1996, 1997; Baluja and Caruana, 
1995; He et al. 1999). 

4 RESULTS 

In order to test the performance of our approach, we 
use a collection of TAP instances of different sizes. 
We take 9 problems from literature (Bernardino et 
al. 2008a). 

To compare our results we consider the results 
produced with LSGA, TS, HACO, MHDE and HSS. 
We compare our algorithm with the algorithms 
proposed by Bernardino et al. (2008a, 2008b, 2009b, 
2010a, 2010b), because they (1) used the same test 
instances; (2) adopted the same fitness function; (3) 
implemented the algorithms using the same 
language (C++), and; (4) adopted the same 
representation (terminal-based). 

Table 1 presents the best-obtained results with 
HPBIL, LSGA, TS, MHDE, HACO and HSS. The 
first column represents the number of the problem 
(Prob) and the remaining columns show the results 
obtained (BestF – Best Fitness, Ts – Run Times). 
The initial solutions for all algorithms were created 
using the Greedy algorithm. The algorithms have 
been executed using a processor Intel Core Duo 
T2300. The Ts (Run Time) corresponds to the 
execution time that each algorithm needs to obtain 
the best feasible solution. 

The HPBIL algorithm can reach the best-known 
solutions for all instances. MHDE, HACO, HSS and 
LSGA can also find the best–known solutions, but in 
a higher execution time. Since we are not trying to 
dynamically assign terminals to concentrators, the 
running time is not enough to determine the quality 
of the algorithms. The best-known solutions are
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Table 1: Results. 

Prob LSGA TS MHDE HACO HSS HPBIL 

 BestF Ts BestF Ts BestF Ts BestF Ts BestF Ts BestF Ts 

1 65.63 <1s 65.63 <1s 65.63 <1s 65.63 <1s 65.63 <1s 65.63 <1s 
2 134.65 <1s 134.65 <1s 134.65 <1s 134.65 <1s 134.65 <1s 134.65 <1s 
3 270.26 <1s 270.26 <1s 270.26 <1s 270.26 <1s 270.26 <1s 270.26 <1s 
4 286.89 <1s 286.89 <1s 286.89 <1s 286.89 <1s 286.89 <1s 286.89 <1s 
5 335.09 <1s 335.09 <1s 335.09 <1s 335.09 2s 335.09 <1s 335.09 <1s 
6 371.12 1s 371.12 <1s 371.12 <1s 371.12 3s 371.12 1s 371.12 <1s 
7 401.21 1s 401.49 1s 401.21 2s 401.21 4s 401.21 1s 401.21 <1s 
8 563.19 7s 563.34 1s 563.19 10s 563.19 14s 563.19 4s 563.19 3s 
9 642.83 7s 642.86 2s 642.83 15s 642.83 25s 642.83 6s 642.83 5s 

Table 2: Results – fitnesses and standard deviations. 

Prob LSGA TS MHDE HACO HSS HPBIL 

 AvgF Std AvgF Std AvgF Std AvgF Std AvgF Std AvgF Std 

1 65.63 0.00 65.63 0.00 65.63 0.00 65.63 0.00 65.63 0.00 65.63 0.00 

2 134.65 0.00 134.65 0.00 134.65 0.00 134.65 0.00 134.65 0.00 134.65 0.00 

3 270.69 0.23 270.76 0.30 270.75 0.15 270.42 0.08 270.35 0.06 270.26 0.01 

4 286.99 0.13 287.93 0.75 287.17 0.14 286.96 0.08 286.90 0.01 286.89 0.00 

5 335.99 0.60 335.99 0.59 336.55 0.39 335.79 0.34 335.20 0.14 335.09 0.00 

6 371.68 0.24 372.44 0.45 373.19 0.42 372.45 0.39 371.70 0.24 371.41 0.13 

7 402.41 0.50 403.25 0.73 403.61 0.33 402.28 0.40 401.82 0.34 401.61 0.15 

8 564.94 0.52 564.50 0.54 572.04 0.76 565.64 0.84 563.87 0.37 563.76 0.18 

9 646.52 0.84 644.18 0.48 648.46 0.48 644.82 0.58 643.94 0.51 643.35 0.19 
 

reached with almost all algorithms (except TS). For 
that reason, to establish which is the best algorithm, 
we must observe the average quality of the produced 
solutions and the standard deviations.  

Table 2 presents the average fitnesses and 
standard deviations. The first column represents the 
number of the problem (Prob) and the remaining 
columns show the results obtained (AvgF – Average 
Fitness, Std – Standard Deviation). To compute the 
results in table 2, we use 0.5 second for instances 
1-3, 1 second for instances 4-5, 2 seconds for 
instance 6, 5 seconds for instance 7, 10 seconds for 
instance 8 and 15 seconds for instance 9.  

The suggestions from literature helped us to 
guide our choice of parameter values for TS 
(Bernardino et al. 2008a), LSGA (Bernardino et al. 
2008b), MHDE (Bernardino et al. 2010a), HACO 
(Bernardino et al. 2009b) and HSS (Bernardino et al. 
2010b). For the TS, we consider a number of 
elements in the tabu list between 5 and 20. The 
parameters of LSGA are set to crossover probability 
between 0.3 and 0.4, selection operator= 
“tournament”, mutation probability between 0.6 
and 0.8, crossover operator=“one-point” and 
mutation operator= “multiple”. The parameters of 
the MHDE algorithm are set to crossover probability 
between  0.3  and  0.4,  factor F between 0.9 and 

1.6 and strategy=“Best1Exp”. The parameters of 
the HACO algorithm are set to the number of 
iterations used for diversification between 200 
and 400, Q=100, q=0.9, pheromone 
influence=0.8, pheromone evaporation=0.8 and 
number of modifications between 2 and 10. The 
parameters of the HSS algorithm are set to ni=100, 
b1=8, b2=8, and nid between N/15 and N/2. 
The parameters of HPBIL are set to mp=0.3, 
mutShift=0.1, nid<N/20 and q=0.6. The 
MHDE and LSGA were applied to populations of 
200 individuals, HSS to populations of 100 
individuals and HPBIL and HACO to populations of 
30 individuals.  

The values presented in table 2 have been 
computed based on 50 different executions (50 best 
executions out of 100 executions) for each test 
instance. 

As it can be seen in table 2, for larger instances 
the standard deviations and the average fitnesses for 
the HPBIL algorithm are smaller. It means that the 
HPBIL algorithm is slightly more robust than 
LSGA, TS, HACO, MHDE and HSS. 

The best results obtained with HPBIL use 
nm<N/20, mp between 0.2 and 0.7 (Figure 2) 
and mutShift>=0.1 (Figure 2), q between 0.3 
and 0.6 (Figure 2), number of solutions between 
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30 and 100 and nid in the range  [N*3 and 
N*4]. These parameters were experimentally found 
to be good and robust for the problems tested. 

We perform comparisons between all parameters 
(using the 9 instances) in order to establish the 
correct parameter setting for the HPBIL algorithm. 
We consider the same instance – 7 (a problem with 
average difficulty) to show the comparisons between 
parameters. To compute the results we use 1000 
iterations. 

 

Figure 2: Influence of parameters – Problem 7. 

In our experiments we use a growing number of 
solutions. The number of solutions (ns) was set to 
{10, 20, 30, 40, …, 200}. We studied the 
impact on the execution time and the average fitness 
(Figures 3 and 4). A high number of solutions 
significantly increases the algorithm execution time 
(Figure 3). The results show that the best values are 
in the range [30 and 100]. With these values, the 
algorithm can reach, in a reasonable amount of time, 
a reasonable number of good solutions. With a 
higher number of solutions, the algorithm can reach 
a better average fitness (Figure 4), but it is more 
time consuming. We also observe that a small 
number of solutions allows an initial faster 
convergence, but a worse final result, following to 
an increased amount of suboptima values. This can 
be explained, because the quality of the initial best-
located solution previous to the first restart depends 
highly on the population size: they need more 
population diversity – it depends on the population 
size – to avoid premature stagnation. 

 

 

Figure 3: ns – Execution Time – Problem 7. 

For nid<N*3 and nid>N*4 we observed 
phenomena of stagnation and insufficient 
intensification. 

 

Figure 4: ns – Average Fitness – Problem 7. 

For parameter nm, the number of modifications, 
nm<N/20 has been shown experimentally more 
efficient (Figure 5). A high nm has a significant 
impact on the execution time (Figure 6). A small nm 
did not allow the system to escape from local 
minima, because after the LS, the resulting solution 
was, in most cases, the same as the starting solution. 

 

 

Figure 5: nm – Average Fitness – Problem 7. 

 

Figure 6: nm – Execution Time – Problem 7. 

In general, experiments have shown that the 
proposed parameter setting is very robust to small 
modifications. 

5 CONCLUSIONS 

In this paper we present a HPBIL algorithm to solve 
the TAP. The performance of' our algorithm is 
compared with five algorithms: a LSGA, a TS 
algorithm, a HACO algorithm, a MHDE algorithm 
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and a HSS algorithm. All algorithms were applied to 
TAP by the same authors.   

HPBIL presents better results for TAP. The 
experimental results show that the proposed 
algorithm is an effective and competitive approach 
in composing satisfactory results with respect to 
solution quality and execution time for TAP. 
Moreover, in terms of standard deviation, the 
algorithm also proved to be more stable and robust 
than the other algorithms.  

For future work we suggest the implementation 
of Evolutionary Swarm Intelligence algorithms. The 
combination of EAs and SI algorithms can unify the 
fast speed of EAs for global solutions and good 
precision of SI algorithms for good solutions by the 
feedback information.  
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