
A CASE-BASED REASONING APPROACH TO

PROGRAM SYNTHESIS

Yulia Korukhova and Nikolay Fastovets
Computational Mathematics and Cybernetics Faculty, Lomonosov Moscow State University

Leninskie Gory, GSP-1, Moscow, 119991, Russian Federation

Keywords: Automated Program Synthesis, Case-Based Reasoning, Ontologies.

Abstract: The paper deals with automated program synthesis. For program construction a case-based reasoning

approach is used. The case library, organized as ontology, contains specifications and corresponding texts of

already known programs. In the specification the relationship between inputs and outputs is written, the text

of a corresponding program is written on a programming language. The specification of the desired program

is taken as a task to find solution for, and we are looking for similar cases - specifications in the case library.

If such a case is found we are trying to adapt the corresponding text of program. The main problems that

occur in the implementation of the proposed approach are the following: the organization of case library,

definition of similarity and ways of adaptation. We propose to keep the case library as ontology; the ALC is

used to describe specifications. This representation helps to find similar specifications and to adapt the

corresponding solutions.

1 INTRODUCTION

The problem called automation of programming was

treated almost in the same time with the

development of programming languages. First, the

idea was to come to the higher level of abstraction:

from programming in the machine codes and the

direct use of assembler to the higher level of

abstraction – to programming languages. The

development of a program often starts from the

specification – from a description what the program

should do. Writing specifications instead of

programs looks like the next level of abstraction.

Good specification is are more clear and readable for

humans. The development of automated synthesis

systems aims to create such a language (or

languages) for writing specifications that should be

automatically transformed into programs.

There are several approaches to automated

construction of programs. Deductive methods

(Manna and Waldinger, 1992) intend the construction

of programs simultaneously with proof of their

specification. There are several synthesis methods,

but the automation of deductive synthesis is a

challenging task: the success depends not only on

the correctness of the given specification, but also on

the sufficiency of domain information (usually

described as axioms or partially included in the

synthesis rules) and on the order in which the

derivation rules are applied.

The idea of this article was inspired by

observations how students who started to learn

programming solve some of the tasks. They have a

course on basic algorithms; they know several

examples of programs. If they are asked to solve a

new task they sometimes they invent a new

algorithm, but in many cases they try to adapt an

example program they have to the requested one.

The precondition for application of the last method

is the following: the students should have a solution

for some task that is considered to be similar.

In this work we are trying to model this process

of solving tasks in programming. We are trying to

implement case-based reasoning for construction of

programs from their descriptions based on first-order

logic.

The paper is organized as follows: in the section

2 the foundational methods and their application for

a particular task of program synthesis and the

problems that arises are discussed. In the section 3

our approach to the solution of the mentioned

problems is presented together with our prototype

system and some results are described. In the section

335Korukhova Y. and Fastovets N..
A CASE-BASED REASONING APPROACH TO PROGRAM SYNTHESIS .
DOI: 10.5220/0003064903350338
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (KEOD-2010), pages 335-338
ISBN: 978-989-8425-29-4
Copyright c
 2010 SCITEPRESS (Science and Technology Publications, Lda.)

4 the conclusions are drawn.

2 BASIC SYNTHESIS METHODS

In the task of synthesis we have a specification, that

describes a relationship between inputs and outputs

of a program (but not necessarily describes an

algorithm for result computation) and we need to

construct a text on some programming language,

that implements a computational algorithm for an

output that meets the conditions presented in the

specification. We are going to explore a case-based

reasoning approach.

2.1 Case-based Reasoning

The main idea of Case-Based Reasoning (CBR) is to

model people model of reasoning and try to

implement it on the computer system. Humans often

use some set of known solutions for different tasks

and they try to adapt these solutions for new

problems they are faced with.

The general CBR is performed as a cycle of 4

steps (Aamodt, Plaza, 1994): RETRIEVE the most

similar of the cases, REUSE the information and

knowledge in the found case to solve the new

problem (by adapting the solution of the similar

case), REVISE the proposed solution, RETAIN the

parts of this experience likely to be useful for future

problem solving.

The main feature of this approach is the ability

for self-learning system that allows to improve

performance of work with case library and to

improve adaptation methods. However, this

approach also has some problems. First, the case

library is very large on practice, and the significant

delays because of search would make such a system

useless. Secondly, the correctness of the system

depends on the definition of similarity among

precedents.

2.2 Ontologies and Description Logics

In our approach we propose organization of case

library as ontology. So the mechanisms developed

for ontologies can be used for comparing

specifications of functions and help to find similar

cases for the given tasks.

We can describe the ontology as a systematic

structure of knowledge, which describes the

classification of some objects and relationships

between objects. In our case the specifications of

already known functions are such objects.

The most important for us is the classification

described in the so-called terminological box

(TBox). Expressions (concepts) in such logics

describe some subset of elements of the original set

(the alphabet). We will consider one of such logics -

ALC - which we use in our system.

2.3 Description Logic ALC

ALC is belongs to the family of description logics.

In this section we recall syntax of ALC expressions

(M. Bienvenu, 2008). Concepts expressions in ALC

are built up from the set of atomic concepts C and

roles R according to the following recursive

definition

С::= A | ¬C | C /\ C | C \/ D | ∀ R.C | ∃ R.C | T | ┴

where A ∊ C and R ∊ R.

A concept C is said to be satisfiable if there is an

interpretation (model) I such that CI ≠ Ø. If there is

no such a model for the concept it is called

unsatisfiable. A concept C is said subsumed by D (or

D subsumes C) if for every model I CI ⊆ DI. A

concepts C and D equivalent if C subsumes D and D

subsumes C. The ALC is used for internal

description of specifications in our system.

2.4 Using of Ontologies in CBR

The organization of a knowledge base as an

ontology is very useful for storing data and also in

CBR. The system Taaable (F. Badra and others, 2009)

can be considered as an example. In this system an

ontology is used to store information on a set of

known recipes, as well as for selection of possible

ways of adaptation of known solutions to new

problems.

The hierarchy concept used in the ontology

allows to reduce the number of possible precedents.

A description of the concept itself provides an

opportunity to advance the conclusion of the existing

differences between the well-known precedents and

purpose. Thus, this approach helps to organize our

case library hierarchically that helps both in the

search and in the adaptation process.

We are going to use the similar idea for

organizing the information about programs and their

specifications.

KEOD 2010 - International Conference on Knowledge Engineering and Ontology Development

336

3 IMPLEMENTATION AND

CURRENT RESULTS

In this section we observe implementation of CBR,

where case library is organized as ontology, for

solving a task of program synthesis and its practical

realization in our prototype system.

3.1 Knowledge Base Organization

Main part of our knowledge base is hierarchy of

concepts, each of them corresponds to some relation

(predicate or specification). The functions are

associated with some concept via a corresponding

predicates. Also, the system uses library of known

programs and every specification description if our

hierarchy associated with one or more programs in

this library. We use the terminology boxes of the

ontology to perform search and to compare

specifications. Hierarchical organization of the

ontology allows to reduce the search time, which is

an important advantage for CBR approach.

3.2 Common Model of Work

The general CBR cycle is represented in our system
in the following way. The work starts with a first
order logic specification of some program. Then the
search of the most similar specification (of already
known program) is performed. At the next stage the
adaptation of the solution – program is performed.
The adapted program is given to user as a result of
work. After user's estimation (whether the solution
was good or not) the appropriate information is
added to system libraries.

3.3 Building of a Function Concept

After receiving a specification from user, the system
should search for similar ones among the known
functions. Thus, our first task is to build a
sufficiently informative description from the
specification function.

Our translation procedure consists of several
steps. First of all, we build disjunctive normal form
of the specification. Secondly, in every disjunction
we perform elimination of function calls. We replace
function calls for each clause D in the obtained
expression S' by new variables (that don't occur free
in the expression before this stage) and add
predicates that corresponds to these functions. After
that we construct an appropriate ALC concept for
the function. In such description we will use special
roles: Contain, ContainNeg, Variant and the family
of roles Param1, …, Paramn. Also, we will use

special concepts, which describe the roles of
variables in the specification: Output, Input1, …,
Inputm, Variable1, …, Variablep. First of all we
associate every variable in S' with concept of form
(VarRole /\ VarType), where VarRole is one of
special concepts Output, Input1 etc. and VarType is
concept of domain for variable. Then, for each atom
A(x1, …, xk) we build a description

AC = cA /\ ∃ Param1.x1 /\ … /\ ∃ Paramk.xk,
where cA is concept associated with predicate A and
variables x1, …, xk replaced with variable
descriptions (as above).

Next step is building of concept for conjunction.
We describe conjunction as set of intersections
between concepts P1, …, PL, each of them has form
∃ Contain.AC, if corresponding atom contain in
expression with positive polarity, or
∃ ContainNeg.AC – if it has negative polarity. So,
we get conjunction description
CC = ∃ Contain.AC /\ … /\ ∃ ContainNeg.AC' /\ …
If the expression contains a disjunction then we
build descriptions for each disjunct separately and
include them in the common description:
∃ Variant.CC1 /\ ∃ Variant.CCn.
Thus we obtain a complete description of
specification S. This description is used to compare
with other specifications from the case library.

3.4 Difference Concept Construction

To store and use our knowledge about adaptation for
programs we use another kind of descriptions - the
differences concepts, which are also written on ALC
and organized as a hierarchy. Every such concept
describes a subset of adaptation rules which
eliminates the corresponding differences in
specifications and transforms the program text from
the case library. We build such differences
descriptions as concepts with special roles: Add and
Remove or their intersection. Let we have two
concepts: A = A1 /\ … /\ An and B = B1 /\ … /\ Bm.
 We construct differences description D in the
following way: D = Add.Bi1 /\ Add.Bik /\
Remove.Aj1 /\ Remove.Ajp where  t, 1 ≤ t ≤ k ∄ g,
1 ≤ g ≤ n such that Bit = Ag and  t, 1 ≤ t ≤ p
∄ g, 1 ≤ g ≤ m such that Ajt = Bg.

 So we describe addition of subconcepts from B,
which doesn't occur in A, and elimination of
subconcepts from A, which are not in B.

3.5 Adaptation

For the similar (but not the same) cases we usually
need to build a concept of differences and to adapt
the solution. Our adaptation mechanism uses
hierarchy of differences concepts and a list of

A CASE-BASED REASONING APPROACH TO PROGRAM SYNTHESIS

337

adaptation rules, each of them is associated with one
of differences concept.

During the procedure of adaptation our system
performs search of most similar differences
description for specified one. If such description is
found, the system applies the rewriting rules
associated with it to the program corresponding to
the most similar specification. In the other case,
system tries to split differences description via
intersection and performs search for every conjunct.

3.6 Concepts Comparison

Our comparison algorithm based on structural
subsumption (F. Baader, W. Nutt, 2003). We use next
comparing rule: for two concepts
A = A1 /\ … /\ An and B = B1 /\ … /\ Bm,
if ∀ i, 1 ≤ i ≤ n (∃ j, 1 ≤ j ≤ m such that Ai ⊆ Bi)
then A⊆ B. So, our subsumption checking algorithm
based on this rule return answer A⊆ B iff for each
subconcept from A there is a subconcept in B that
subsumes it. Respectively to this assessment we
build our functions and differences concept
hierarchy. So, we can postulate that every concept C
that subsumes by some concept D contain all
restrictions from D. Also, we define similarity
between concepts C and D as the length of path in
the hierarchy tree from C to D. According to this the
most similar concept for a given one (functions or
differences) is it's immediate predecessor in our
library.

3.7 Search Algorithm

Our search algorithm uses the defined above
subsumption assessment as an heuristic in breadth-
first search. The target concept and the root of
hierarchy tree (or another node, which can be used
as root of subtree) are inputs in the process. At the
every step we check matching between the root
concept and the target. If our search procedure finds
exact matching, it returns the root. In the other case,
it checks the subsumption assessment between target
and all the direct descendants of the root. If one of
the descendants subsumes the target, our search
procedure performs recursive call. If there are no
target subsumers between root descendants,
procedure returns root as the answer (as the most
similar concept).

4 CONCLUSIONS

In this paper we consider one of the possible
applications of Case-Based Reasoning in the
program synthesis problem. Using of ontologies here

allows us to organize search in the case library in a
reasonable time and helps to define cases' similarity.
The same idea applied to differences concepts helps
to formalize the search of differences and perform
adaptation. The ideas were tested on several
examples, but the work is still in progress. First, we
are going to extend the case library. Another point of
improvement is the way of verification of the
obtained program. Now this question is solved by
user, but it is planned to be also automated. We are
still far away from fully automated synthesis, but
this approach makes a step to this goal

ACKNOWLEDGEMENTS

The work has been partially supported by RFBR

grant 08-01-00627.

REFERENCES

A. Aamodt, E. Plaza, 1994. Case-Based Reasoning:

Foundational Issues, Methodological Variations, and

System Approaches, AI Communications. IOS Press,

Vol. 7: 1

M. Bienvenu, 2008. Prime Implicate Normal Form for

ALC Concepts. Proceedings of the Twenty-Third

AAAI Conference on Artificial Intelligence.

F. Baader, W. Nutt, 2003. Basics Description Logics. The

Description Logic Handbook: Theory, Implementation

and Application.

F. Badra, J. Cojan, A. Cordier, J. Lieber, T. Meilender, A.

Mille, P. Molli, E. Nauer, A. Napoli, H. Skaf-Molli, Y.

Toussaint, 2009. Knowledge Acquisition and

Discovery for the Textual Case-Based Cooking system

WIKITAAABLE. 8th International Conference on

Case-Based Reasoning - ICCBR 2009, Workshop

Proceedings, Seattle : United States

Manna Z. and Waldinger R., 1992 Fundamentals of

Deductive Program Synthesis. IEEE Transactions on

Software Engineering, 18(8): 674-704

KEOD 2010 - International Conference on Knowledge Engineering and Ontology Development

338

