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Abstract: The paper deals with automated program synthesis. For program construction a case-based reasoning 

approach is used. The case library, organized as ontology, contains specifications and corresponding texts of 

already known programs. In the specification the relationship between inputs and outputs is written, the text 

of a corresponding program is written on a programming language. The specification of the desired program 

is taken as a task to find solution for, and we are looking for similar cases - specifications in the case library. 

If such a case is found we are trying to adapt the corresponding text of program. The main problems that 

occur in the implementation of the proposed approach are the following: the organization of case library, 

definition of similarity and ways of adaptation. We propose to keep the case library as ontology; the ALC is 

used to describe specifications. This representation helps to find similar specifications and to adapt the 

corresponding solutions. 

1 INTRODUCTION 

The problem called automation of programming was 

treated almost in the same time with the 

development of programming languages. First, the 

idea was to come to the higher level of abstraction: 

from programming in the machine codes and the 

direct use of assembler to the higher level of 

abstraction – to programming languages. The 

development of a program often starts from the 

specification – from a description what the program 

should do. Writing specifications instead of 

programs looks like the next level of abstraction. 

Good specification is are more clear and readable for 

humans. The development of automated synthesis 

systems aims to create such a language (or 

languages) for writing specifications that should be 

automatically transformed into programs.   

There are several approaches to automated 

construction of programs. Deductive methods 

(Manna and Waldinger, 1992) intend the construction 

of programs simultaneously with proof of their 

specification. There are several synthesis methods, 

but the automation of deductive synthesis is a 

challenging task: the success depends not only on 

the correctness of the given specification, but also on 

the sufficiency of domain information (usually 

described as axioms or partially included in the 

synthesis rules) and on the order in which the 

derivation rules are applied.  

The idea of this article was inspired by 

observations how students who started to learn 

programming solve some of the tasks. They have a 

course on basic algorithms; they know several 

examples of programs. If they are asked to solve a 

new task they sometimes they invent a new 

algorithm, but in many cases they try to adapt an 

example program they have to the requested one. 

The precondition for application of the last method 

is the following: the students should have a solution 

for some task that is considered to be similar.  

In this work we are trying to model this process 

of solving tasks in programming. We are trying to 

implement case-based reasoning for construction of 

programs from their descriptions based on first-order 

logic.  

The paper is organized as follows: in the section 

2 the foundational methods and their application for 

a particular task of program synthesis and the 

problems that arises are discussed. In the section 3 

our approach to the solution of the mentioned 

problems is presented together with our prototype 

system and some results are described. In the section 
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4 the conclusions are drawn. 

2 BASIC SYNTHESIS METHODS  

In the task of synthesis we have a specification, that 

describes a relationship between inputs and outputs 

of a program (but not necessarily describes an 

algorithm for result computation) and we need to 

construct a text on some programming language, 

that implements a computational algorithm for an 

output that meets the conditions presented in the 

specification. We are going to explore a case-based 

reasoning approach. 

2.1 Case-based Reasoning 

The main idea of Case-Based Reasoning (CBR) is to 

model people model of reasoning and try to 

implement it on the computer system. Humans often 

use some set of known solutions for different tasks 

and they try to adapt these solutions for new 

problems they are faced with. 

The general CBR is performed as a cycle of 4 

steps (Aamodt, Plaza, 1994): RETRIEVE the most 

similar of the cases, REUSE the information and 

knowledge in the found case to solve the new 

problem (by adapting the solution of the similar 

case), REVISE the proposed solution, RETAIN the 

parts of this experience likely to be useful for future 

problem solving. 

The main feature of this approach is the ability 

for self-learning system that allows to improve 

performance of work with case library and to 

improve adaptation methods. However, this 

approach also has some problems. First, the case 

library is very large on practice, and the significant 

delays because of search would make such a system 

useless. Secondly, the correctness of the system 

depends on the definition of similarity among 

precedents. 

2.2 Ontologies and Description Logics  

In our approach we propose organization of case 

library as ontology. So the mechanisms developed 

for ontologies can be used for comparing 

specifications of functions and help to find similar 

cases for the given tasks. 

We can describe the ontology as a systematic 

structure of knowledge, which describes the 

classification of some objects and relationships 

between objects. In our case the specifications of 

already known functions are such objects. 

The most important for us is the classification 

described in the so-called terminological box 

(TBox). Expressions (concepts) in such logics 

describe some subset of elements of the original set 

(the alphabet). We will consider one of such logics  - 

ALC - which we use in our system. 

2.3 Description Logic ALC  

ALC is belongs to the family of description logics. 

In this section we recall syntax of ALC expressions 

(M. Bienvenu, 2008). Concepts expressions in ALC 

are built up from the set of atomic concepts C and 

roles R according to the following recursive 

definition 

С::= A | ¬C | C /\ C | C \/ D | ∀ R.C | ∃ R.C | T | ┴ 

where A ∊ C and R ∊ R. 

A concept C is said to be satisfiable if there is an 

interpretation (model) I such that CI ≠ Ø. If there is 

no such a model for the concept it is called 

unsatisfiable. A concept C is said subsumed by D (or 

D subsumes C) if for every model I CI ⊆ DI. A 

concepts C and D equivalent if C subsumes D and D 

subsumes C. The ALC is used for internal 

description of specifications in our system.  

2.4 Using of Ontologies in CBR 

The organization of a knowledge base as an 

ontology is very useful for storing data and also in 

CBR. The system Taaable (F. Badra and others, 2009) 

can be considered as an example. In this system an 

ontology is used to store information on a set of 

known recipes, as well as for selection of possible 

ways of adaptation of known solutions to new 

problems.  

The hierarchy concept used in the ontology 

allows to reduce the number of possible precedents. 

A description of the concept itself provides an 

opportunity to advance the conclusion of the existing 

differences between the well-known precedents and 

purpose. Thus, this approach helps to organize our 

case library hierarchically that helps both in the 

search and in the adaptation process. 

We are going to use the similar idea for 

organizing the information about programs and their 

specifications. 
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3 IMPLEMENTATION AND 

CURRENT RESULTS 

In this section we observe implementation of CBR, 

where case library is organized as ontology, for 

solving a task of program synthesis and its practical 

realization in our prototype system. 

3.1 Knowledge Base Organization 

Main part of our knowledge base is hierarchy of 

concepts, each of them corresponds to some relation 

(predicate or specification). The functions are 

associated with some concept via a corresponding 

predicates. Also, the system uses library of known 

programs and every specification description if our 

hierarchy associated with one or more programs in 

this library.  We use the terminology boxes of the 

ontology to perform search and to compare 

specifications. Hierarchical organization of the 

ontology allows to reduce the search time, which is 

an important advantage for CBR approach. 

3.2 Common Model of Work 

The general CBR cycle is represented in our system 
in the following way. The work starts with a first 
order logic specification of some program. Then the 
search of the most similar specification (of already 
known program) is performed. At the next stage the 
adaptation of the solution – program is performed. 
The adapted program is given to user as a result of 
work. After user's estimation (whether the solution 
was good or not) the appropriate information is 
added to system libraries. 

3.3 Building of a Function Concept 

After receiving a specification from user, the system 
should search for similar ones among the known 
functions. Thus, our first task is to build a 
sufficiently informative description from the 
specification function.   

Our translation procedure consists of several 
steps. First of all, we build disjunctive normal form 
of the specification. Secondly, in every disjunction 
we perform elimination of function calls. We replace 
function calls for each clause D in the obtained 
expression S' by new variables (that don't occur free 
in the expression before this stage) and add 
predicates that corresponds to these functions. After 
that we construct an appropriate ALC concept for 
the function. In such description we will use special 
roles: Contain, ContainNeg, Variant and the family 
of roles Param1, …, Paramn. Also, we will use 

special concepts, which describe the roles of 
variables in the specification: Output, Input1, …, 
Inputm, Variable1, …, Variablep. First of all we 
associate every variable in S' with concept of form 
(VarRole /\ VarType), where VarRole is one of 
special concepts Output, Input1 etc. and VarType is 
concept of domain for variable. Then, for each atom 
A(x1, …, xk) we build a description 

AC = cA /\ ∃ Param1.x1 /\ … /\ ∃ Paramk.xk,  
where cA is concept associated with predicate A and 
variables x1, …, xk replaced with variable 
descriptions (as above). 

Next step is building of concept for conjunction. 
We describe conjunction as set of intersections 
between concepts P1, …, PL, each of them has form 
∃ Contain.AC, if corresponding atom contain in 
expression with positive polarity, or 
∃ ContainNeg.AC – if it has negative polarity. So, 
we get conjunction description  
CC = ∃ Contain.AC /\ … /\ ∃ ContainNeg.AC' /\ … 
If the expression contains a disjunction then we 
build descriptions for each disjunct separately and 
include them in the common description:  
∃ Variant.CC1 /\ ∃ Variant.CCn.  
Thus we obtain a complete description of 
specification S. This description is used to compare 
with other specifications from the case library. 

3.4 Difference Concept Construction 

To store and use our knowledge about adaptation for 
programs we use another kind of descriptions - the 
differences concepts, which are also written on ALC 
and organized as a hierarchy. Every such concept 
describes a subset of adaptation rules which 
eliminates the corresponding differences in 
specifications and transforms the program text from 
the case library. We build such differences 
descriptions  as concepts with special roles: Add and 
Remove or their intersection. Let we have two 
concepts: A = A1 /\ … /\ An and B = B1 /\ … /\ Bm. 
   We construct differences description D in the 
following way:  D = Add.Bi1 /\ Add.Bik /\ 
Remove.Aj1 /\  Remove.Ajp  where  t, 1 ≤ t ≤ k ∄ g, 
1 ≤ g ≤ n such that Bit = Ag and  t, 1 ≤ t ≤ p  
∄ g, 1 ≤ g ≤ m such that Ajt = Bg. 

   So we describe addition of subconcepts from B, 
which doesn't occur in A, and elimination of 
subconcepts from A, which are not in B. 

3.5 Adaptation 

For the similar (but not the same) cases we usually 
need to build a concept of differences and to adapt 
the solution. Our adaptation mechanism uses 
hierarchy of differences concepts and a list of 
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adaptation rules, each of them is associated with one 
of differences concept.  

During the procedure of adaptation our system 
performs search of most similar differences 
description for specified one. If such description is 
found, the system applies the rewriting rules 
associated with it to the program corresponding to 
the most similar specification. In the other case, 
system tries to split differences description via 
intersection and performs search for every conjunct. 

3.6 Concepts Comparison 

Our comparison algorithm based on structural 
subsumption (F. Baader, W. Nutt, 2003). We use next 
comparing rule: for two concepts 
A = A1 /\ … /\ An and B = B1 /\ … /\ Bm,  
if ∀ i, 1 ≤ i ≤ n (∃ j, 1 ≤ j ≤ m such that Ai ⊆  Bi)  
then A⊆ B. So, our subsumption checking algorithm 
based on this rule return answer  A⊆  B iff for each 
subconcept from A there is a subconcept in B that 
subsumes it. Respectively to this assessment we 
build our functions and differences concept 
hierarchy. So, we can postulate that every concept C 
that subsumes by some concept D contain all 
restrictions from D. Also, we define similarity 
between concepts C and D as the length of path in 
the hierarchy tree from C to D. According to this the 
most similar concept for a given one (functions or 
differences) is it's immediate predecessor in our 
library. 

3.7 Search Algorithm 

Our search algorithm uses the defined above 
subsumption assessment as an heuristic in breadth-
first search. The target concept and the root of 
hierarchy tree (or another node, which can be used 
as root of subtree) are inputs in the process. At the 
every step we check matching between the root 
concept and the target. If our search procedure finds 
exact matching, it returns the root. In the other case, 
it checks the subsumption assessment between target 
and all the direct descendants of the root. If one of 
the descendants subsumes the target, our search 
procedure performs recursive call. If there are no 
target subsumers between root descendants, 
procedure returns root as the answer (as the most 
similar concept). 

4 CONCLUSIONS 

In this paper we consider one of the possible 
applications of Case-Based Reasoning in the 
program synthesis problem. Using of ontologies here 

allows us to organize search in the case library in a 
reasonable time and helps to define cases' similarity. 
The same idea applied to differences concepts helps 
to formalize the search of differences and perform 
adaptation. The ideas were tested on several 
examples, but the work is still in progress. First, we 
are going to extend the case library. Another point of 
improvement is the way of verification of the 
obtained program. Now this question is solved by  
user, but it is planned to be also automated. We are 
still far away from fully automated synthesis, but 
this approach makes a step to this goal 
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