
Enabling Publish / Subscribe with Cots Web Services
across Heterogeneous Networks

Espen Skjervold, Trude Hafsøe, Frank T. Johnsen and Ketil Lund

Norwegian Defence Research Establishment, Instituttveien 20, 2007 Kjeller, Norway

Abstract. In scenarios such as search-and-rescue operations, it may be required
to transmit information across multiple, heterogeneous networks, often expe-
riencing unreliable connections and limited bandwidths. Typically, there will
be traffic within and across radio networks, as well as back to a central infra-
structure (e.g., a police command post) when a reach-back link is available.
This implies that using Publish/Subscribe is advantageous in order to reduce
network traffic, and that store-and-forward capabilities are required to handle
the instability of radio networks. At the same time, it is desirable to use com-
mercial software based on standards as far as possible, in order to reduce cost
and development time, and to ease interconnection of systems from different
organizations. We therefore propose using SOA based on Web services in such
scenarios. Indeed, Web services are targeted at stable, high-speed networks, but
our work shows that such usage is feasible. In this paper, we add Pub-
lish/Subscribe functionality to standard, unmodified Web services through the
use of our prototype middleware solution called the Delay and Disruption Tole-
rant SOAP Proxy (DSProxy). In addition to the ability to make Web services
delay and disruption tolerant, the DSProxy enables SOAs in scenarios as de-
scribed above. The DSProxy has been tested in field trials, with promising re-
sults.

1 Introduction

Commercial off-the-shelf (COTS) Web services are generally based on Re-
quest/Response (client-server) mechanisms [5]. However, many systems, environ-
ments, and situations could benefit from using the Publish/Subscribe paradigm in-
stead, which is characterized by scalability, decoupled communication peers and
asynchronous communication. In particular, Publish/Subscribe is essential to support
mobile ad-hoc networks (MANETs), i.e., dynamic collections of nodes with rapidly
changing multi-hop topologies that are composed of wireless links [7].

In search-and-rescue operations, it may be required to transmit information be-
tween many or all participants, and this can require traversing multiple heterogeneous
networks. In order to enable different organizations running systems developed by
different vendors to interoperate, it is crucial to base such communications on open
and widely accepted standards. Considering the ubiquity of standard Web services
and the usefulness of Publish/Subscribe, bringing the two together would provide

Skjervold E., Hafsøe T., T. Johnsen F. and Lund K. (2010).
Enabling Publish / Subscribe with Cots Web Services across Heterogeneous Networks.
In Proceedings of the 4th International Workshop on Architectures, Concepts and Technologies for Service Oriented Computing, pages 52-65
DOI: 10.5220/0003050200520065
Copyright c© SciTePress

important benefits, as organizations and enterprises can leverage the power
of Publish/ Subscribe mechanisms with their existing Web services and clients.

Web services technology is mostly associated with the traditional client-server
paradigm. As pointed out by (Vinoski, 2004), this scheme is generally much less
efficient than push-based communication such as Publish/subscribe, and with OASIS’
WS-Notification and W3C’s WS-Eventing, the Publish/Subscribe paradigm has
entered the Web service arena.

WS-Notification is a standard organized in a group of specifications that enable
Publish/Subscribe-based communication between Web services. It comprises WS-
BaseNotification, WS-BrokeredNotification and WS-Topics. While WS-
BaseNotification defines which interfaces consumers (clients) and producers (servers)
should expose, WS-BrokeredNotification introduces the concept of a message broker,
an intermediary node which decouples consumers and publishers, and relieves
producers from several tasks associated with Publish/Subscribe. WS-Eventing
basically defines functionality similar to WS-BaseNotification, but with the addition
of the Subscription Manager role, which enables subscription-related tasks to be
handled by other nodes than the producer.

While WS-Notification and WS-Eventing offers standards-based
Publish/Subscribe using Web services, they require the introduction of supporting
frameworks, and new Web services and Web service clients that adhere to the
standards must be developed. Standard Web service clients normally create outbound
connections to Web services using HTTP and TCP, and since they typically do not
run inside application servers, they have no way of listening for incoming
connections. Similarly, ordinary Web services typically do not initiate outbound
connections, and must be replaced by Publish/Subscribe-capable Web services.
Furthermore, while we expect industry support for WS-Notification and WS-
Eventing to mature in the future, it currently seems not to be a large selection of
supported commercialized implementations available. Finally, it should also be noted
that when services based on WS-Notification or WS-Eventing send notifications to
subscribers, they do so by setting up an individual point-to-point connection to each
subscriber. This means that these mechanisms have an untapped potential for
efficiency improvement with respect to network traffic.

We have addressed these challenges using a middleware approach. Our primary
goals have been 1) to enable Publish/Subscribe for existing standard Web services
and clients without having to rewrite any software; and 2) to enable such
Publish/Subscribe Web services to traverse multiple heterogeneous networks.

The result is a lightweight, prototype middleware system, called the Delay and
Disruption Tolerant SOAP Proxy (DSProxy), which is able to meet the challenges
described above. The DSProxys form an overlay network, which hides network
heterogeneity and instability from the Web services and the clients. Between the
DSProxys, optimizations such as data compression are used to reduce overhead, and
several different transport-protocols are available, for handling different types of
networks.

Externally, the DSProxy middleware solution is compatible with standard Web
services by employing communication based on SOAP over HTTP/TCP. This means
that existing Web services can be used together with the DSProxy overlay network

123

entirely without modification, while clients only need to replace the URL that
addresses the services.

This solution also means that the DSProxy overlay network can be deployed only
where needed; it is not an all-or-nothing solution that must be deployed

everywhere. Typically, a DSProxy overlay network will be deployed within a
MANET and between the MANET and a fixed network, while it is not needed
internally in the fixed network. Clients in the fixed network will still be able to
invoke services in the MANET and vice versa.

The remainder of this paper is structured as follows: In Section 2 we present
related work, before describing the design and principles of the DSProxy in Section
3. We then present the configuration and results from a large field trial where the
DSProxy was tested in Section 4, before concluding in Section 5.

2 Related Work

Publish/Subscribe systems have been around for a long time, and one of the earliest
publicly described Publish/Subscribe systems was reportedly the “news” system of
the Isis Toolkit, described at the 1987 ACM Symposium on Operating Systems Prin-
ciples conference [2]. There exist many systems that support Publish/Subscribe-based
information dissemination, ranging from open-source projects to commercial Enter-
prise Service Buses (ESBs). Some of the most well known middleware systems are
Apache ActiveMQ, OMG Corba Event Service and Notification Service, IBM
WebSphere MQ, and Real-Time Innovations (RTI). In ActiveMQ, the Pub-
lish/Subscribe functionality is built on top of Java Messaging Queues (JMSs). RTI is
based on DDS, which is an open middleware specification for enabling Pub-
lish/Subscribe communications in real-time and embedded systems. While JMS-based
solutions are message-centric, DDS and RTI differ by being data-centric, and in addi-
tion to topics offer keys which uniquely identifies objects. While offering Pub-
lish/Subscribe, these solutions all require developers to create custom applications
utilizing the provided APIs.

The work by [1] points out that a scalable and efficient approach for achieving
event dissemination in Publish/Subscribe systems is to employ an overlay network of
brokers. In their work, they attempt to reorganize the overlay to reduce overhead
associated with event dissemination. They point out that an alternative way to achieve
efficient event dissemination is to use smart dissemination algorithms that avoid
flooding events on the overlay, but they do not implement this. Also, their solution,
named SIENA, is based on a proprietary, experimental Publish/Subscribe system. In
our work, we do not want frequent overlay reconfiguration if we can avoid it, due to
the overhead associated with management traffic. Thus, we use the complementary
approach of smart dissemination algorithms. Further, we base our implementation on
open Web services standards rather than a proprietary API, making our solution usa-
ble for a broader range of client applications and services. Another distinction from
the work of [1] is that while SIENA is a content based Publish/Subscribe system,
Web service Publish/Subscribe specifications adhere to a topic based scheme.

124

[4] have created a distributed event notification system (DENS) for MANETs.
They developed a fuzzy logic based subscription language allowing expressive sub-
scriptions and sophisticated event filtering. DENS is delay tolerant, an important
feature in dynamic environments such as MANETs, and it builds an overlay, which
performs store-and-forward of event messages. This solution is implemented and
evaluated in a network emulator. The solution is shown to function well, proving that
building a store-and-forward overlay for event notification in a MANET is both feas-
ible and efficient. In our work we leverage this knowledge, by making the DSProxy
system create an overlay network for event notification in MANETs. However, we
also introduce the capability of configuring static routes for some nodes in our over-
lay, thus allowing dynamic MANETs to connect to WANs through reach-back links.
Again, it is important to notice that while DENS is a proprietary research protocol, we
leverage the open Web services standards, maintaining compatibility with existing
clients and services.

[7] argue that the Publish/Subscribe paradigm can be used effectively to facilitate
coordination of mobile users, for example, in a disaster recovery application: Rescu-
ers equipped with networked devices (e.g., PDAs) can publish information, and other
members can selectively subscribe to the information they need to perform their tasks.
The authors argue that scalability is an essential condition of the Publish/Subscribe
system, and propose a Publish/Subscribe system suitable for large MANETs. They
combine document flooding and content-based routing techniques in a hierarchical
manner, and evaluate their solution in a simulator. Our work is similar to this, in that
we address and solve the same problem of creating a scalable Publish/Subscribe solu-
tion for MANETs. However, in order to stay interoperable with existing software we
have based our solution on topic-based routing and open Web service standards.

[5] argue that Web services and Publish/Subscribe-based schemes up until now
mostly have been considered separately, and that it is not clear that a possible unifica-
tion will adhere to any overarching, pre-planned approach. To address this situation
they developed a theoretical and conceptual framework extending current Web ser-
vice programming models and describing the necessary underlying middleware.
While the implementation of such middleware was beyond the scope of their paper,
an infrastructure based on collaborating brokers was outlined. In this respect, our
work is similar to this, in that we employ an overlay network where DSProxy in-
stances take on broker responsibilities. [5] emphasizes the importance of exerting as
small an impact as possible on the existing Web services programming models. How-
ever, as our middleware solution aims to leverage the power of Publish/Subscribe
schemes with existing Web services and clients, it requires no extensions to existing
Web service programming models.

PUSMAN [3] is a middleware system for topic-based Publish/Subscribe in MA-
NETs. It uses a collection of brokers to forward advertisements and subscription
information. By detecting mobility through monitoring, PUSMAN will reconfigure
its overlay to ensure a high delivery success ratio. The work done here is orthogonal
to our own; we aim to ensure delivery through the use of a store-and-forward me-
chanism, which could potentially be improved by combining it with the reconfigura-
tion approach used in PUSMAN.

125

3 The DSProxy

The DSProxy system [6] is our prototype middleware solution developed in Java. It is
a novel, lightweight and cross-platform system with pluggable components. The core
DSProxy features include providing store-and-forward capability to SOAP messages,
utilizing compression of SOAP and XML and facilitating the traversal of multiple
heterogeneous networks. At the same time, it remains compliant with unmodified
COTS Web services and clients. By placing one or more DSProxys between a Web
service and a Web service consumer, store-and-forward functionality is introduced
into the network, which provides increased robustness in dynamic, heterogeneous
networks and MANETs. The DSProxy instances self-organize into an overlay net-
work using an internal service discovery mechanism based on UDP multicast (or it
can be statically configured where UDP multicast is unavailable). For more details on
how the overlay network is built and organized, we refer to [6].
Once organized into an overlay network, DSProxys exchange information about
advertised services and the number of hops required to get there. The overlay network
allows for smart routing of Web service requests at the application level, but utilizes
the underlying routing protocol for IP routing.

3.1 DSProxy Core Features

Figure 1 displays a simple network layout comprising two separate networks and
three physical nodes; the client machine, a gateway machine, and the server. The
gateway node is equipped with two network adapters providing a physical data link to
each network. A standard Web service client and a Web service run on the client
machine and the server respectively, and a DSProxy instance is running on the
gateway machine, effectively bridging the two different networks together. This
enables communication between these two networks even if no IP-level routing is
available. Additionally, DSProxy instances run on both the client machine and on the
server. When the client wishes to invoke the Web service residing in the other
network, instead of initiating an end-to-end connection directly to the server, it sends
the SOAP invocation request to its local DSProxy instance, which relays the request
to the gateway DSProxy, and so on.

Figure 1: A simple network layout showing two discrete networks bridged with a DSProxy,
adding store-and-forward capability to a standard Web service.

The only difference between a direct invocation of a Web service method and an
invocation of the same Web service method through the DSProxy overlay network is

126

the URL used to address the service. The original URL is replaced with a URL in the
following form:

http://127.0.0.1:7000/?uniqueServiceName=weatherService
The 127.0.0.1-address indicates that the Web service client is relaying the

invocation request through a DSProxy instance running on the same physical
machine, and the uniqueServiceName-parameter instructs the DSProxy overlay
network to route the invocation request to the DSProxy instance responsible for
invoking the Web service (typically the DSProxy running on the server hosting the
service). The TCP-connection between the Web service client and the first DSProxy
is kept open until the DSProxys return the response data.

All three DSProxys are part of the same overlay network, and by monitoring their
environments, all DSProxys know their neighboring DSProxys, and where to route a
request in order to invoke a particular service. Upon receiving a service invocation
request, the gateway DSProxy then relays it to the server DSProxy. Finally, the server
DSProxy, knowing it is within reach of the actual Web service, invokes the service,
and returns the response data using source routing (back-tracking the invocation
route).

While based on ordinary Request/Response-principles, this deployment offers two
important benefits: First, store-and-forward capabilities are introduced into the
network. This means that if any of the data links become unavailable, the DSProxy
closest to the broken link will store the invocation message and retry the transmission
at regular intervals. It can also choose another route to the destination if available. If,
for instance, the link from the client (e.g., a search-and-rescue agent, part of a
MANET) into the network breaks down, the DSProxy instance running locally on the
client machine will cache the request, and thereby provide store-and-forward
capability from the very first hop and on into the network. Note that running a
DSProxy local to the client is not required, but it is usually advantageous, as
described above.

Second, the DSProxys eliminate the requirement of initiating an end-to-end
connection between the client and the server. In order to stay interoperable and
standards-compliant with COTS Web services, HTTP and TCP are utilized between
the client and the first DSProxy and between the last DSProxy and the Web service,
while any transport protocol may be used between DSProxy instances. The latter can
be of great importance when operating in highly dynamic MANETs, where changing
topologies and unreliable data links may require other protocols than connection-
oriented TCP.

As long as DSProxy instances are running locally on both the client machine and
the server, TCP-connections can always be used for the first and last hop (intra-
machine), no matter what kind of networks and data links that connect them.

3.2 DSProxy and Publish/Subscribe

The first development iteration of the DSProxy focused on enabling heterogeneous
network traversal and bringing robustness to Web services through store-and-forward
capabilities. In the second iteration we focus on bringing together standard Web ser-
vices and the Publish/Subscribe paradigm.

127

Figure 2 illustrates how, by utilizing two DSProxys, one can enable
Publish/Subscribe operation with COTS Web service clients and services. By
deploying a DSProxy instance on the same physical machine as the Web service, the
DSProxy can perform frequent, continuous polling of the Web service, without
adding any traffic load to the network. This intra-machine polling enables the
DSProxy

Figure 2: Two DSProxy instances enabling a COTS Web service and client to perform in a
Publish/Subscribe fashion.

to discover updated information almost instantly, and the DSProxy may then notify
anyone interested in the information, in this case, the DSProxy instance running on
the client machine. The server DSProxy will create a hash over the Web service
response data, and compare it to the previous response data hash, to determine
whether the response is identical (and thereby already been pushed to subscribers) or
not.

On the client machine, the same approach is used; the Web service client is
instructed to poll the DSProxy instance (sending normal Web service requests)
running on the same physical machine continuously. This circumvents the inability of
Web service clients to accept incoming connections, and enables the client to receive
information almost instantly by polling the DSProxy frequently. By utilizing this
polling mechanism on both the client machine and on the server, only the machines’
internal buses are burdened, and no additional traffic enters the network. Only when
the server DSProxy discovers new, updated information is the network utilized, and
the information is pushed from the server DSProxy to the client DSProxy, with the
former initiating a connection to the latter. These mechanisms enable regular Web
services and clients developed with COTS Web service software to communicate in a
Publish/Subscribe-based fashion, and will be referred to as the DSProxy native
Publish/Subscribe scheme. The practical minimum Publish/Subscribe-enabling setup
requires only two instances, preferably deployed on the client and server machines to
achieve intra-machine polling. However, it will often be beneficial to deploy multiple
DSProxy instances into a network, as this will increase robustness through multiple
store-and-forward points and alternative routes between client and service. As with
all inter-DSProxy communication, any transport protocol may be used for sending the
notifications, depending on the underlying network class and characteristics.

The server DSProxy can be configured to poll different Web services at different
intervals, depending on the nature of the service, the latency requirements, and the
resource constraints. For an instant messaging service, one would typically require

128

low latencies and frequent polling, and the DSProxy might poll the Web service
every second, in order to facilitate fast message exchange. For a weather forecasting
service on the other hand, the latency requirements may be substantially lower, and a
polling frequency of 5 minutes might suffice.

3.3 DSProxy and Subscriptions

In order to subscribe to a Request/Response-based Web service, the client needs to
inform the overlay network about this. If we compare the subscription request to a
regular invocation of the same Web service, the subscription is set up simply by
doing a small modification of the URL used for the regular service invocation.

Using the example from Section 3.1, assume that the Web service client wants to
subscribe to the weather service, i.e., receive new forecasts as they become available,
instead of having to poll the service at regular intervals using Request/Response.
Although the service itself is unaware of the Publish/Subscribe concept, the DSProx-
ys allow the client to set up a subscription by just slightly modifying the URL de-
scribed in Section 3.1:
http://127.0.0.1:7000/?uniqueServiceName=weatherService&pubSub=true
Here, the extra parameter pubSub=true instructs the DSProxy overlay network to
handle this as a DSProxy native Publish/Subscribe subscription. The first DSProxy
will then determine whether the requesting client is already subscribing to the Web
service method. If not, it will create a subscription and store it locally. Next, it will
forward the request to the next DSProxy instance in the network (one hop closer to
the service), and this DSProxy will perform the same check. If this DSProxy is the
one responsible for invoking the actual service, it will do so, and start the server
DSProxy polling cycle explained earlier. This polling will continue as long as one or
more subscribers are active, meaning they have subscribed to, and not yet unsub-
scribed from, the service.

 When a Web service client wishes to unsubscribe from the service, it simply rep-
laces the pubSub=true-parameter with the pubSub=unsubscribe-parameter, which
causes all involved DSProxys to delete the subscription. On the server DSProxy, if
the unsubscribe-request results in no subscribers any longer being active, the polling
cycle for the specified Web service method ends.

The DSProxy native Publish/Subscribe mechanism enables Publish/Subscribe to
be used with standard, COTS Web services and clients. However, as implementations
of WS-Notification and WS-Eventing continue to mature, and become more plentiful
and widespread, we anticipate benefits of being able to interoperate with such clients
and services as well. Therefore, when using a WS-Eventing client together with the
DSProxy overlay network, it becomes part of the Publish/Subscribe-tree by sending a
WS-Eventing compliant subscription message using a URL on the following form:
http://127.0.0.1/?uniqueServiceName=weatherService&pubSub=wseSubscribe
By giving the pubSub-parameter the value wseSubscribe, the DSProxy overlay net-
work is instructed to interpret the subscription message accordingly. This will create
one subscription that covers all requests for the same combination of service, filter
dialect and filter expression (i.e., a new request for the same combination will not be
forwarded, since the subscription is already established). Before forwarding the re-

129

quest to the next DSProxy in the network, the sending proxy will modify the WS-
Eventing subscription message. Specifically, it alters fields such as NotifyTo, to en-
sure the actual WS-Eventing service sends its notification through the DSProxy over-
lay network (addressing the last DSProxy instance in the chain).
While Figure 2 presents a simple, conceptual Publish/Subscribe network layout, larg-
er, more complex Publish/Subscribe-trees can be created. Figure 3 shows such a tree,
presenting a hierarchical Publish/Subscribe structure. As shown, subscribers to a
DSProxy can be both Web service clients and other DSProxys. Such a tree optimizes
the flow of information, and can reduce bandwidth requirements in situations where
many clients are interested in the same information. When DSProxy C retrieves up-
dated information from the Web service (by polling), it will actively notify DSProxy
A and B, and make the same information available for Client 4, allowing it to retrieve
the information during its next polling cycle. Subsequently, DSProxys A and B will
make the information available for their clients, ensuring that all subscribing clients
eventually retrieve the new information. DSProxy C will not delete its subscription to
the Web service and end the polling cycle until DSProxy A, DSProxy B and Client 4
have all unsubscribed to the service.

Figure 3: A Publish/Subscribe-tree comprising three DSProxys in a dynamic hierarchical
structure.

In highly dynamic MANETs with frequently changing topologies, such a
Publish/Subscribe-tree is susceptible to failures, as nodes re-arrange, become
unavailable, and disappear without warning. However, the DSProxy
Publish/Subscribe-mechanisms are built on top of the overlay network, which is self-
organizing, and able to adjust to changing environments. When a DSProxy notices
that it has not received any notifications within a configurable period of time, it will
resend the original subscription-request to the DSProxy now reporting to be the one
closest to the Web service. This may or may not be the same DSProxy that it
originally subscribed to. If it is not, the aforementioned chain of events will start
again, ending in an active subscription and an initiated polling cycle at the DSProxy
now closest to the actual Web service. If it is still the same DSProxy, it may simply
be the case that no new notifications have been produced, and it will merely ensure
that the subscription is still active.

130

4 Results and Discussion

In order to verify the DSProxy functionality and capabilities, the solution was tested
in a series of field trials, with promising results. The DSProxy middleware solution
was used for providing store-and-forward capability within a MANET, as well as for
bridging it with a separate, static network. As shown in Figure 4, the MANET
comprised 3 mobile nodes (deployed in vehicles) and a stationary gateway node, all
running IP-based radios. The gateway ran two radios of different types back-to-back,
offering physical data links to each network (one radio link effectively functioning as
a reach-back link to the static network). Running DSProxys, the static network
operators were able to subscribe to services offered by the mobile nodes located in
the MANET, such as imaging services and position services. The static network
operators would continuously have updated GPS-positions pushed to them from the
vehicles, allowing them to track and visualize the positions of the vehicles on a map
as they moved.

Figure 4: The field trial setup, showing a gateway node running a DSProxy, bridging the
MANET and the static network.

When the vehicle operators spotted interesting events, they would take pictures of
the events and publish these onto the network. The operators on the static network
would then be notified and receive the pictures almost instantly. Given this
configuration, with the information having to traverse two bridged, heterogeneous
networks and 4 nodes, we experienced typical latencies of 3-5 seconds, from the time
that the information was published to it was displayed on the client side. Due to
frequent disruption of the radio links, the store-and-forward capability of the
DSProxys was demonstrated: As DSProxys running in the MANET attempted to push
images to the DSProxy running in the static network, a disruption of a radio link
would cause the DSProxys to cache the notifications locally. When the link became
available again, the notifications would be re-sent, successfully delivering the pictures
to the static network and hiding the erroneous events from the clients and the end
users.

This Publish/Subscribe-based interoperation was made possible by utilizing the
DSProxy system, and enabled the static network nodes to have information pushed
from our regular, non-Publish/Subscribe Web services. It should be noted that such
interoperation using the DSProxy native Publish/Subscribe mechanisms does require
small modifications to be made to the otherwise regular Web service clients. As with
all communication going through the DSProxy overlay network, the URL to the end
Web service must be modified, as described in Section 3.1 and 3.3. This information
is usually embedded in human readable configuration files (e.g., in locally cached
WSDL-files), and do not require recompiling the client application.

131

In addition, if DSProxy native Publish/Subscribe is to be used, the client must be
modified to engage in the polling cycle described earlier. This typically involves
wrapping the request-statement within the code in a loop structure. Finally, clients
must handle null-responses, which occur when the client-side DSProxy being polled
do not offer any new notifications. The two latter modifications are usually quick and
easy to implement and do not include touching the actual business logic, but they do
require the client to be recompiled.

The Web services on the other hand, require no modifications. Still,
considerations should be made when selecting which Web services to
Publish/Subscribe-enable through the DSProxy overlay network. As a DSProxy
determines whether or not the information is updated based on the hash produced,
constantly changing information will produce ever changing hashes, thus, also a
constant flow of notifications. For instance, responses that contain fine-grained time-
stamps would always produce new notifications, even though the information may
otherwise be unchanged.

Although the intra-machine polling mechanism utilized by DSProxys to retrieve
updated information from COTS Web services does not generate any network traffic,
it does require server resources such as CPU and memory. While a typical Web
service invocation only requires a small amount of resources, it may ultimately limit
the number of Web service methods and the polling frequency that can be used. In
order to establish this limit, an experiment was conducted using a setup similar to the
one presented in Figure 1, with one client machine and one server machine, both
running one DSProxy instance. Simple “Hello world”-like services were developed
using C# and ASP.NET 3.5, which returned strings consisting of 100 random
characters for each invocation. This made the services produce new responses for
every invocation, which in turn lead to notifications being produced for every poll, in
order to produce a “worst-case” scenario.

The services were deployed inside a Microsoft Internet Information Services (IIS)
5.1 Web Server instance running on the server. The server machine was equipped
with an Intel Pentium 4 dual core 2.6 GHz CPU, 1 GB RAM running MS Windows
XP Pro SP3. A standard Web service client application capable of invoking the
services in the normal Request/Response-fashion were developed using .NET 3.5.

The client application ran on the client machine, and by modifying the Web
service invocation URL, the invocation requests were relayed through the two
DSProxy instances and delivered to the Web service. The URL was also modified to
instruct the DSProxy overlay network to initiate Publish/Subscribe, and the server
DSProxy would start one polling-cycle for each service subscribed to (running as
parallel threads). Because the client application ran on a separate machine, all CPU
load on the server was associated with the server DSProxy repeatedly polling the
services and notifying the client DSProxy (in addition to some load associated with
the actual Web services and the IIS).

The server DSProxy was configured to poll each service once every second, and
the number of services subscribed to could be controlled from the client application.

The CPU utilizations were measured using MS PerfMon, and averages were
monitored for 60 seconds during each run. Figure 5 shows the varying average CPU
loads when subscribing to 5, 10, 15 and 20 Web services. As seen from the graph, the
performance scaled close to linearly, ranging from 0.755 % to 4.469 % CPU

132

utilization. Even when 20 different services were subscribed to and polled every
second, creating and sending 20 new notifications every second, less than 5% of the
available CPU-cycles were utilized on average.

An extrapolation of this data indicates that the current setup could theoretically
handle subscribing to nearly 450 services, polling each of them and producing

Figure 5: The graph shows CPU utilization for a given number of services being polled every
second.

notifications once every second. However, the Web Server Software places
limitations on the number of possible concurrent Web service invocations. Also, more
complex services requiring CPU-intensive calculations or IO-operations would
reduce the performance, dividing the available CPU cycles between tasks associated
with Publish/Subscribe and the actual work being performed by the services. On the
other hand, most production servers would greatly surpass our test-server
performance-wise. In addition, for many services, a considerably lower polling
frequency will suffice.

It is important to note that, because the server DSProxy does the actual invocation
of the service, the polling frequency is constant, regardless of the number of
subscribers per service. This means that in a scenario with many subscribers to a
service, the polling frequency may be considerably lower than if each individual
client were to poll the service using Request/Response. In fully distributed
environments, participants may function as both clients and servers by exposing their
own services. The hardware hosting such services may be limited devices such as
PDAs, and this should be taken into account when configuring polling cycle
frequencies.

While standards-based interoperation with COTS Web services using DSProxy
native Publish/Subscribe requires minimal modifications to the Web service clients,
using WS-Eventing-based Publish/Subscribe in the DSProxy requires no
modifications to any software. By placing DSProxy instances between WS-Eventing-
based clients and services in dynamic MANETs, added robustness is achieved
through store-and-forward capabilities. Additionally, network performance gains are
achieved when multiple WS-Eventing clients are interested in the same information,
in other words subscribing to the same services using the same filter dialects and
expressions. Instead of the WS-Eventing service and the DSProxys having to send the
same information to each of the clients directly, as is the case for regular WS-
Eventing and WS-Notification, the information is sent to one or a few subscribing
DSProxys. Since the overlay network effectively constitutes a multicast tree, less
traffic is relayed through central parts of the network. Client-specific data, such as the

133

ReferenceProperties-field, are stored and added to the notifications at the DSProxy
instances closest to each client.

5 Conclusions and Future Work

Through a series of field trials, the functionality and capabilities of the DSProxy were
tested, demonstrating its usefulness in heterogeneous and error-prone networks and
showing potential for typical search-and-rescue scenarios. By utilizing the lightweight
DSProxy system in both MANETs and static networks, regular Web services can
leverage the power offered by the Publish/Subscribe paradigm, requiring only minor
modifications to be made to the Web service clients. The practical minimum setup for
achieving this would only require two DSProxy instances to be deployed into the
network, preferably as close to the client and the service as possible.

Experiments have shown that the DSProxy polling cycles consume relatively low
amounts of resources, and together with the fact that the invocation frequency is
independent of the number of clients, this means that a server can potentially handle a
large number of services and clients. As we expect implementations of WS-
Notification and WS-Eventing to mature and become more plentiful and widespread
in the future, the DSProxy system supports WS-Eventing, with support for WS-
Notification currently under development. The DSProxy WS-Eventing-based
Publish/Subscribe mechanisms allow bandwidth-optimized routing of information,
requiring no modifications to clients or services. Both modes benefit from the store-
and-forward capabilities provided by the DSProxys, facilitating Web service based
Publish/Subscribe in MANETs and other unreliable networks. Additionally, both
modes of Publish/Subscribe can be used with Web services across multiple
heterogeneous networks.

Future work includes compliancy with the WS-Notification standard and
additional schemes for optimizing maintenance of Publish/Subscribe-trees. Also, a
UDP multicast-based notification capability is under development, which is expected
to further reduce traffic loads in radio networks where multiple clients and DSProxys
subscribe to the same information.

References

1. Baldoni, R., Beraldi, R., Querzoni, L., and Virgillito, A., 2007, Efficient Publish/Subscribe
through a Self-Organizing Broker Overlay and its Application to SIENA, The Computer
Journal, volume 50, num. 4, Oxford University Press, pp 444—459.

2. Birman, K., and Joseph, T., 1987, Exploiting virtual synchrony in distributed systems,
SIGOPS Oper. Syst. Rev. 21, 5, pp 123-138.

3. Denko, M. K., 2006. Pusman: Publish-subscribe middleware for ad hoc networks, IEEE
CCECE/CCGEI, Ottawa.

4. Lekova, A., Skjelsvik, K.S., Plagemann, T., and Goebel, V., 2007, Fuzzy Logic-Based
Approximate Event Notification in Sparse MANETs, Proceedings of the 21st International
Conference on Advanced Information Networking and Applications Workshops - Volume
02, pp 296-301.

134

5. Silva-Lepe, I., Ward, M. J., and Curbera, F., 2006, Integrating Web services and
Messaging, IEEE International Conference on Web services, Chicago, USA, pp 111-118.

6. Skjervold, E., Hafsøe, T., Johnsen, F.T., and Lund, K., 2009. Delay and Disruption
Tolerant Web services for Heterogeneous networks. IEEE MILCOM, Boston, MA, USA.

7. Vinoski, S., 2004, Web services Notifications. IEEE Internet Computing, vol. 8, no. 2,
pp 86-90.

8. Yooa, S., Sonb, J.H., and Kima, M.H., 2009, A scalable Publish/Subscribe system for large
mobile ad hoc networks, Journal of Systems and Software, Volume 82, Issue 7, pp 1152-1162.

135

