Realizing Use Cases for Full Code Generation in the
Context of fUML

loan Lazar, Simona Motogna, Bazil Parv and Codrut-Lucian Lazar

Department of Computer Science, Babes-Bolyai University
Cluj-Napoca 40084, Romania

Abstract. We describe a pragmatic method for developing use case realizations
as Foundational UML (fUML) active objects. The method allows developers to
transform the textual representations of use cases into executable UML activities
which represent the classifier behaviours of the corresponding use case realiza-
tions. The generated graphical representations help developers to find require-
ments defects. Moreover, developers implement the required system behaviour
by adding code using again a concrete textual syntax for f{UML. The result is
an executable fUML model which helps developers to simulate and validate the
implemented behaviour. Finally, completed code may be generated towards the
existing platform specific frameworks which use structured programming con-
structs.

1 Introduction

Use cases introduced by Jacobson around 1992 [1] represent a technique for capturing
the required behaviour of a software system. Accommodating the needs of different
roles of software development projects implies accommodating informality with neces-
sary precision in use case scenarios [2].

Analystswrite use cases to communicate their understanding of the required system
behaviour, whilestakeholderparticipate in formulating use cases to make sure their re-
guirements are communicated well. Both these roles require the use of simple sentences
written in natural language in one of many suggested template formats. The template
formats usually suggest that sentences should be ordered and numbered for easier ref-
erence. Starting from (informal) textual representations of use caseslopersuild
models based on formal notations where scenarios are described as sequence of mes-
sages within interaction diagrams or as sequence of actions within activity diagrams.

Our investigations refer to the developer’s tasks, in the context of Model-Driven
Architecture [3] and the Foundational Subset for Executable UML (fUML) [4]. The
first question we address here is this: can we capture use case scenarios as fUML mod-
els such that a suite of closely related and transformable notations enables a pragmatic
translation from informal textual descriptions into executable models? For a given use
case, we want an approach that (a) allows developers to capture its scenarios using a
textual description which is automatically compiled as fUML models (using UML ac-
tivities). (b) An automatically generated activity diagram should allow developers to see
graphically all use case scenarios. This step could help developers to find requirements

Lazar I., Motogna S., Parv B. and Lazar C. (2010).

Realizing Use Cases for Full Code Generation in the Context of fUML.

In Proceedings of the 2nd International Workshop on Model-Driven Architecture and Modeling Theory-Driven Development, pages 80-89
DOI: 10.5220/0003049700800089

Copyright © SciTePress

81

defects by analyzing the control flow of the generated séesiaic) Next, developers
implement the scenarios based on an established archéeche method should allow
developers to implement scenarios separately althougicatiarios are represented by
a UML activity. They define statements using a convenientoete textual syntax for
each action generated at step (a). (d) Developers can rgoaiarios even not all of
them are yet implemented. A step by step simulation perfdromethe activity diagram
could help developers to find design defects.

Representing the scenarios of a use case using a single Utiityaenables the
capture of precise and analyzable use cases. For compleasess this representation
may lead to arbitrary cycles (looping that is unstructuredat block structured). So,
the second question is: can we generate code towards thmgxitatforms which use
only block structured loops? The concrete textual syntaxikhbe designed to enable
code generation towards today platform specific framewdvicseover, the generated
code is meant to be complete, with no code placeholders éodeheloper to fill.

In this article we analyze how the fUML constructs can be Usednodelling use
case scenarios towards the above goals. The proposed fiimgpraoach captures the
scenarios from a business perspective and then makes theamtakle. The visualiza-
tion of complex scenarios in a single diagram allows dewelso intuitively analyze
the system behaviour. From a developer perspective, it hrmore convenient to use
textual rather than graphical notations. Our approachydIthis requirement.

The paper is organized as follows: Section 2 contains soieedyeliminaries, Sec-
tion 3 presents the concrete textual syntax, and Sectiosclisies the scenario imple-
mentations using action languages for fUML. In section 5 useubks related work,
while the last section contains conclusions and future aork

2 Preliminaries

In search for a concrete textual syntax for use case reialiatve start with general
definitions of use case and scenario. A common template fibinguse case actions
must be identified and the key elements for realizing usesdashe context of fUML
must be analyzed.

As an example, we consider a word guessing game in which a isatigplayed
with its character order randomized. The user must entecadhneect spelling to win
points and progress to the next word. Each word has an asispgmet value. The ap-
plication should allow users to administer the words and imsigned points. The use
case model and user interface sketches are shown in Figure 1.

Use Cases and Scenarios. As in [2], for the purpose of this article we consider the
following definitions of Cockburn [5]: aise cases a collection of possible scenarios
between the system and external actors, asdemariois a sequence of interactions
starting from an actor’s triggered action. These defingida not enforce any particular
notation. We further need a general template for writingsitenarios of a use case. We
use the results of [6, 7] for specifying use case interastion
Collected during the inception phase of a project (priorrthdecture definition

and design), use cases captundgt the system will do in terms of the domain ele-
ments using dasic actionsand 4flow of control actionsThe basic actions refer to:

82

Basic flow Basic flow

1 System displays the word list 1 System sets score to zero

2 System sets edited word to a new word 2 System sets scrambled word

3 User saves the edited word 3 User makes an attempt to guess

4 System persists the edited word 4 System checks the attempt and adjust the score
Steps 1-4 may repeat @ Steps 2-4 may repeat

Alternative flows Alternative flows

3a User cancels editing 3a User passes the current word

3b User edits an existing word O *aUser wants to administer

4a User entered invalid data

*a User wants to play User
Edited word

3-4a
‘Ward 5 T m———
& : i) Scrambled word. 2 L Pass _:TE:J

Poinks - Cancel Ja - —_— =
:’ Attempt Guess 3
Words,..| E-:Iit.jbi Flay °| Score... 1 4 Adrinister “2

Fig. 1. Scramble Use Case Model.

providinginputto the use case, returnigitputto an actor, performing @mputation
using provided input and domain information, and respogdinan issueégxception
handling with the input or state of the domain instances. The flow afticm actions
are:selection conditionally execute actionggeration - repeatedely execute an action
sequencenclusion- include the behaviour of another use case, extdnsion define
the extension point for an extending use case.

Figure 1 shows two use cases and their textual descript@mmsding to the recom-
mendations given in [8]. The use cases are named with areaetiv phrase that repre-
sents the goal of the actor. The success stories are writsimgle scenarios without
any consideration for possible failures or alternativése alternatives that may occur
are placed below the success stories. All alternatives aihdds are captured, but no
details are given due to space limitations (the next seqir@sents detailed descrip-
tions). The steps show clearly which actor is performingattgon, and what the actor
gets accomplished.

In terms of the action types presented above, only the basics ftontain basic
actions. The step 3 represents an input action in both g¢igars. The first step of
Administeris an output action, while the steg®, 4} of Administerand {1, 2, 4
of Play are computation actions. The steps 3a and 3b representt@xcepgtions -
alternative input actions executed by the user insteadesfiging the input action 3. The
step 4a ofAdministeris also an exception - alternative to a system action, alsavkn
as conditional insertion [6]. The steps marked by astedsk&salso exceptions to input
actions that can be executed at any time. Related to the floardfol actions, iterations
are indicated in both basic flows. Figure 1 does not contdacgen, inclusion, and
extension actions. Details about these action types wifjiben in the next section.

Realizing Use Casesin fUML. Executable UML [9] means an execution semantics for
a subset of actions sufficient for computational completengoday, the effort of defin-
ing a standard execution semantics enters the final stateopfian. Foundational UML

83

defines a “basic virtual machine for the UML, and the specifistaactions supported
thereon, enabling compliant models to be transformed iat@ous executable forms”
[4]. fUML structural constructs do not include componemtsnposite structures, and
collaborations, while the behavioural constructs do nolide interactions and state
machines. In this context the system structure is definegjysickages, classes, prop-
erties, associations, and operations, while the systeraviimlr is defined through ac-

tivities.
[Logical architecture] Gctivity Scramble .W N
Scramble Administer P N
o o] N
-7 1 Start administer —
active classes 3 Start play s =V
0.* 4 Accept administer \3 Start play/
5 Rejoin at 1 R
components Alternatives
- 2 *a Accept exit
domain class a1 Finish
L)

Fig. 2. Logical Architecture and Use Case Integration.

Bounded by the current fUML specification, the input actiongesponding to the
actor’s triggered events must be mapped to fUadicept event actiontn consequence,
use case realizations in fUML must betive classebecause the context of the contain-
ing activity of an accept event action must be an active classctive class is a class
whose instances have independent threads of control. Thevioair of an active class
is defined by itxlassifier behavioyrso, the entire set of scenarios described for a use
case will be defined by an activity which is set as the clasdifaviour of an active
class. For exampl@dministerandPlayin Figure 2 are active classes which represent
the realizations of use cases presented in Figure 1.

Integrating Use Case Realizations. The functionality of a system can be considered
as a set of use cases. For a precise specification of the iemtatoonality we need mod-
els that capture the control flow of the entire use case seteXample, the following
combination of models and a new semantics are used in [1@)] foecise specification
of use case scenarios: an extended UML activity diagram iictwthhe nodes are use
cases, for each use case a new activity diagram (interamtienview diagram) is used
where the nodes are scenarios, and each scenario is delsasibg an interaction dia-
gram. We cannot follow such an approach because fUML doemadloide interaction
diagrams and interaction overview diagrams.

We need a similar integration mechanism for use case réaliza One or more
active classes may be used to integrate the entire funditipid the system. Their
classifier behaviours must coordinate other active objersts case realizations) using
synchronization operations. For example, for integratiiregentire system behaviour of
our word guessing game Scrambleactive class is introduced in Figure 2. The activity
presented in Figure 2 represents the classifier behaviobemamble

84

3 Scenario Description

This section describes the concrete textual syntax foresgmting the scenarios of a
use case. A textual editor helps developers to write theas@nin the context of an
active class which is the realization of the use case. As @trean activity (which
is the classifier behaviour of the active class) and a cooredipg activity diagram are
generated according to the fUML abstract syntax. Figure @8 4 show these artifacts
for the case study introduced in the previous section.

Basic — —
i . activity Administer
1 Display the word list m
2 Set edited word to a new word 7 o
3 Accept save edited word (1 Display the word list : *a.1. Start play
4 Persist editedword | T T T Y~ T 7 (Jg)
5 Rejoin at 1 — 7 o
Alternatives | 2 Set edited word o a new word)
3a Accept cancel editing | ~ ~ ~ ~ —{ — T 7
P ° ® &5 ®
3a.1 Rejoin at2
3b Accept edit word |
3b.1 Set edited word to | 3 Save 3a Cancel 3b Edit I
the selected word | edited word editing word ||
3b.2 Rejoin at3 | z z B :
4a Invalid data Weimh v e N ==~
At .1 Set edited wor
4a.1 Set feedback to glersist ed"e_d Wﬁ'd | tothe selected word |

'invalid data' 4a Invalid data

4a.2 Rejoin at3
*a Accept play

*a.1 Start play

*a.2 Finish

{ 4a.1 Set feedback to ‘invalid d;t@

Fig.3. Administer Use Case.

The statements must be written on separate lines using kdgwlwat have a distin-
guished meaning. The lines are numbered according to thadéss used for specifying
use cases. The semantics is specified via the mapping ofathésete surface notation
to the fUML abstract syntax which is formally defined.

An input action is specified in the formdccept sighal everit, where accept is a
keyword andsignal eventepresents the receipt of an asynchronous signal instAnce.
input action is mapped to an accept event action with theipesignal event. When
this statement is executed, the thread of execution is adgge waiting for the receipt
of an instance of theignal eventWhen such a receipt triggers the accept statement, it
completes its execution, and further execution on its thoesan continue.

Output and computation actions are specified using sentences written in natural
language. They are mappedsiouctured activity nodeshich will be later detailed by
the developer.

Exception handling actions are of two types: alternatives to a user (input) action
and alternatives to a system (output or computation) acionalternative to a user
action can be modelled using accept event actionsstmidtured activity nodesr in-

85

1 Set score to zero

2 Set scrambled word
3 Accept guess ®
4 If attempt is equal to current word,

o, T TN
1 Set score to zero
~ g

4.1 Increase score by
word points
4.2 Rejoin at2

Else

4.3 Decrease score by one

|
|
4.4 Rejoin at3 A |
Z
Alternatives - _ _ |

3a Acceptpass | T ZZ¥Z- - TV -

|
| 3 Guess | 3a Pass |
|
|

- _ . . T
| 4 Attempt is equal to (3a.1 Decrease ﬁ@

3a.1 Decrease score by three . the current word || score by three
3a.2 Rejoin at2 [true] [false]
*a Accept administer (s = =~ — — — =
4.1 Increase score | 4.3 Decrease
*a.1 Start administer \ by word points |\ score by one 9(:)

*a.2 Finish

Fig. 4. Play Use Case.

terruptible activity regions but the latter is not part of f{UML. An alternativ@ to a

user actiorB can be modelled using a structured activity node which dostavo ac-
cept event actiond8 andD. Because the user may trigger any of these actions we can
modelB and D with no incoming flows, so both will be enabled when the stived
node is executed. When the user triggers one of these actimrswe should disable
the other action. So, we must finish the execution of the &trad node after botB
andD actions and then propagate the control flow outside thetsient activity node.

But this solution may produce concurrency problems.

An alternative D to auser action B is specified as an input action within the alter-
natives part. This statement is mapped to an interruptitifeity region that surrounds
B andD and a fork node which enables both actions. Two interrupgfges are used
from B andD to actions defined outside the interrupting region. Whentes triggers
one of these actions, only the token which traverse theriqiing edge will be offered
and all the other tokens will be consumed by the interrugtibbion. Figure 5-b shows
details about these mappings. The alternatives for stef-Bjures 3 and 4 are mapped
according to these rules.

An alternativeto a system action is mapped to decision nodas Figure 5-a shows
(see also step 4a of Figure 3). The decision input flow andatpeired guards on control
flows will be later established when the scenario will be iempénted.

An alternative input action that can be triggered at any time is mapped to an
accept event actiodefined with no incoming flows (see the alternatives *a in Fegu
5-c, 3, and 4). When an activity starts, a control token isgdhat each action that
has no incoming edges, so this alternative is enabled atigtavioreover, an accept
event action with no incoming flows remains enabled afteciepts an event, so this
alternative remains enabled after an event is accepted.

Developers may definié statements for clarifying the scenarios of a use case. For
example, step 4 dPlay presented in Figure 1 says that the system must check the at-

86

(a) Alternative to a system action

N N\
R
\;ﬁ”\
J \/
8 .%@0
2
> o
o

2
F at 3C

Alternatives
= ~ |2a Invalid data
2a.1D

2a.2 Rejoin at 1

N\
|
(|
\/
N\
|
J

(b) Alternative to an accept event action

" [Basic
1A
b (2 Accept B
3C
Alternatives
2a Accept D
2a1F
2a.2 Rejoinat 1

(c) Send signals and accept events

4 17$er17d AI) ogjer?

\ targ@)

Basic

1 Send Ato object
2 Accept B
3SendC
Alternatives

3 Send C |"a@ Accept C

<<readSelf>> }result

(B>
1 Accept A

1 Accept A 2B m
2B Optional repeat 1-2 —V_ 1 Accept A
Optional 1-2 3 Accept C ~ B |2 B
3 Accept C 4D \ — — ~ |Repeati-2
4D 3 Accept C

4D

Fig. 5. Textual Syntax Mappings.

tempt and adjust the score by increasing or decreasing tire,dhen steps 2-4 are
repeated. More precisely, if the score is increased, theawaword must be set (rejoin
at 2), otherwise a new attempt is required (rejoin at 3). Beeahis decision repre-
sents an important contribution to the control flow, it isceomended to be captured as
part of the basic flow (see Figure 4). The keywoifdandelse are used for specifying
this statement, the else clause being optional. The statememapped to a structured
activity node which represents the specified condition addasion node which will
receive the result of the condition as a decision input flow.

A rgjoin action is used to specify arbitrary cycles. This statememapped to a
control flow towards a merge node placed before the spec#jethrpoint. The figures
presented in this article split this control flow using labebplitting the control flow
helps developers to analyze complex scenarios. It is impbtb note that theejoin
point must refer to the same base interaction cojfe Otherwise, the descriptions
would follow harmful goto semantics, discouraged sincebiéginning of the structured
programming era. Moreover, this constraint helps us toggestructured code starting
from use case realizations.

The following actions can be used for integrating use caaézegions: starting
and finishing the behaviour of an active class, and sendgrais between active ob-
jects. “Start active objectis used to create an active object and to start its classifier
behaviour. This action is mapped taceeate object actiorfollowed by astart object
behaviour actionboth actions defined within a structured activity nodéinish” is
used to finish the execution of an active object and is mappadactivity finalnode.
Signals can be sent using the syntaant signalto destinatiofi (where destinatioris
optional). This statement is mapped to a structured agtivitich contains a send sig-
nal action - see Figure 5-c. The inclusion relationship leefmwuse cases can be realized
using these operations.

87

Other types of selection actions are: optional sequengagsee which may repeat,
and sequence which has to repeat. The syntax for these stateand the mappings
to fUML abstract syntax are presented in Figure 5-d—f. unéible activity regions are
used for all these situations.

4 Scenario Implementation

If the scenarios of a use case are captured according to ¢hé@ps section, then an
activity diagram is generated, the major benefit of this apph consisting in the au-
tomatically generated control flow. Now developers mustlément the actions based
on an established architecture and using an action langBageresult, an executable
platform-independent model will be created. Running thadei helps developers to
validate the system behavior. Finally, completed code neagdnerated towards some
existing platform specific frameworks.

activity Administer,l [detailed design]
Administer

i — —. T -words : Word [0..*]
/ 1 Display the word list -editedWord : Word [0..1]
\ words := repository.getWords() | -feedback : String [0..1]
2 Set edited wi anewword Save()
| 2 Set edited word to a new word 1l:repository
editedWord := new Word() | :
~ - - = - - = WordRepository

+getWords() : Word [0..*]
+persist(word : Word) : Boolean

<<signal>>| Word o
Save -value : String -w' s

-points : Integer|0--

3 Save edited word
Save()

‘ 4 Persist edited word P Il
| def result: Boolean = B ENEARTED GODE:
\reE)sngryﬂermst(eﬁlteiWoLd)} init) {
[true] words := repository.getWords();
4a Invalid editedWord := new Word();
@ data [false]

-~ T T save() {

if (repository.persist(editedWord)) {
feedback := 'word persisted’;
init();

| feedback := |
\ 'word saved" ,

}
else feedback := 'invalid data’;

Fig. 6. Administer - Basic Flow and the Alternative 4a.

Currently, there is no standardized concrete syntax forMLlflbased action lan-
guage, and OMG issued a Request for Proposal (RFP) for aetengyntax [11]. In
this section we use our recently introduced fUML based adémguage [12]. When
the standardized action language will be available, wealidin our action language to
the standard. Due to space limitations we only present therrdacisions that must be
taken. Figure 6 illustrates the implementation of two scieseof Administerbased on
the architecture presented in Figure 2.

The computation actions are implemented as fUML statendgfiaed in the con-
text of structured activity nodes. The output actions mesvalues to the properties of
the active class. If the input actions (accept event acticausy data, then properties are
added to the corresponding signals in order to capture ttae Thae decision input flow

88

must be established for each decision node, then the guarstsha written according
to that decision input.

Code generation towards structured programming languagesbled by the con-
straint imposed on rejoin actions (rejoin points must rédethe same base interaction
course). A method described using structured statementsecgenerated for each sce-
nario (seenit andsavemethods presented by the note of Figure 6).

5 Reated Work

The method presented in the current work refers to a simplestouctive and prag-
matic transition from the problem space to the solution epRecently, two simple and
constructive methods have been proposed, both in the deetext of system engi-
neering: the pragmatic system modelling approach of Waikki[13] which uses the
Systems Modelling Language [14], and the behaviour engimgenethod of Dromey
[15] which uses nonstandard graphical representationt tBese approaches are ap-
proapriate to reactive systems, while our approach isredldo algorithmic/data in-
tensive systems. Our method proposes a convenient coriesgtal syntax to write
the control flow for use case realizations, while the abovatioeed approaches pro-
pose different graphical representations which are nalyeagated for data intensive
systems.

Our proposed approach for integrating use case realizisosimilar to that pro-
posed in [10]. Both use UML activities for defining use cagegnation, but our ap-
proach refers to PIMs while the latter refers to Computalmiependent Models (CIMs).
Again, the latter approach does not propose a convenieadfpatic) approach based
on concrete textual representations.

Other contributions for requirements translation andgragon were made in the
context of feature-oriented software development (FOS2) Requirements Driven
Software Development [16, 17]. However, requirementsdiggion and integration in
the context of FOSD and MDA/UML remain open issues (see tleewaew [18]), and
the requirements integration in the latter case does nateethe pressure on our short
term memory capacity.

6 Conclusionsand Further Work

This article presented a pragmatic approach for the tianditom requirements to de-
sign such that completed code towards platform specificdramnks may be generated.
A concrete textual syntax was presented which generatesotiteol flow of use case
realizations in the context of f{UML. A project is currentinderway to implement the
techniques presented in this article.

As future work we intend to investigate the use of these tieglas for defining
prototypes as CIMs. In this respect, a facility for protahgpuser interface elements
and associating them with use cases is needed.

89

Acknowledgements

This work was supported by the grant ID 546, sponsored by NURGmanian Na-
tional University Research Council (CNCSIS).

References

10.

11.

12.

13.

14.
15.

16.

17.

18.

. Jacobson, I., Christerson, M., Jonsson, P., OvergaardO@ject-Oriented Software Engi-

neering: A Use Case Driven Approach. Addison-Wesley (1992)

. Smialek, M.: Accommodating informality with necessarggsion in use case scenarios.

Journal of Object Technology 4 (2005) 59-67

. OMG: MDA Guide Version 1.0.1. (2003) omg/03-06-01.
. OMG: Semantics of a Foundational Subset for Executablé. Wddels. (2008) ptc/2008-

11-08.

. Cockburn, A.: Writing Effective Use Cases. Addison-Viégg2000)
. Metz, P., O'Brien, J., Weber, W.: Specifying use caserauiion: Types of alternative

courses. Journal of Object Technology 2 (2003) 111-131

. Williams, C., Kaplan, M., Klinger, T., Paradkar, A.: Tomdaengineered, useful use cases.

Journal of Object Technology 4 (2005) 45-57

. Adolph, S., Bramble, P., Cockburn, A., Pols, A.: Pattédan€Effective Use Cases. Addison-

Wesley (2002)

. Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation Model-Driven Architecture.

Addison Wesley (2002)

Whittle, J.: Precise specification of use case scenalimsFASE’'07: Proceedings of the
10th international conference on Fundamental approachssftware engineering, Berlin,
Heidelberg, Springer-Verlag (2007) 170-184

OMG: Concrete Syntax for a UML Action Language - Requestfroposal. (2008) ad/08-
08-01.

Lazar, C.L., Lazar, |., Motogna, S., Parv, B., Czibul@.1 Using a fUML Action Language
to Construct UML Models. In: 11th Int. Symp. SYNASC. (2009p (@ppear).

Weilkiens, T.: Systems Engineering with SysML/UML. Mean Kaufmann Publishers,
Eslsevier (2008)

OMG: Systems Modeling Language. (2008) http://www.eysgnl.org/.

Dromey, R.G.: Climbing over the "No Silver Bullet” Bridk/all. IEEE Software 23 (2006)
118-120

Kaindl, H. et al: Requirements specification languadmitien. ReDSeeDS Project (2009)
www.redseeds.eu.

Drazan, J., Mencl, V.: Improved processing of textual esses: Deriving behavior specifi-
cations. In: Proceedings of SOFSEM 2007. LNCS 4362, Sprikgdag (2007) 856—-868
Apel, S., Kastner, C.: An Overview of Feature-Orientett8are Development. Journal of
Object Technology 8 (2009) 49-84

