
TESTING IN PARALLEL
A Need for Practical Regression Testing

Zhenyu Zhang
State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

Zijian Tong
R&D, Sohu.com Inc., Beijing, China

Xiaopeng Gao
School of Computer Science and Technology, Beihang University, Beijing, China

Keywords: Regression Testing, Test Case Prioritization, Continuous Integration, Pipeline Scheduling.

Abstract: When software evolves, its functionalities are evaluated using regression testing. In a regression testing
process, a test suite is augmented, reduced, prioritized, and run on a software build version. Regression
testing has been used in industry for decades; while in some modern software activities, we find that
regression testing is yet not practical to apply. For example, according to our realistic experiences in
Sohu.com Inc., running a reduced test suite, even concurrently, may cost two hours or longer. Nevertheless,
in an urgent task or a continuous integration environment, the version builds and regression testing requests
may come more often. In such a case, it is not strange that a new round of test suite run needs to start before
all the previous ones have terminated. As a solution, running test suites on different build versions in
parallel may increase the efficiency of regression testing and facilitate evaluating the fitness of software
evolutions. On the other hand, hardware and software resources limit the number of paralleled tasks. In this
paper, we raise the problem of testing in parallel, give the general problem settings, and use a pipeline
presentation for data visualization. Solving this problem is expected to make practical regression testing.

1 INTRODUCTION

Regression testing is a popular technique in software
development and maintenance (Elbaum et al., 2000;
2002; 2004). When a program evolves, developers
use regression testing to augment, reduce, and
prioritize a test suite, before running it to check the
functionalities of software in evolution (Onoma et
al., 1998; Do et al., 2006; Ramanathan et al., 2008).

Conventionally, a test suite running process is
expected to end soon and provide information for
developers to ensure the quality of the software
build version under test (Rothermel et al., 1997;
2001; 2004). However, from years of realistic
industrial experiences, we observed that running a
reduced test suite, even concurrently, may cost hours
or even longer. On the other hand, in some urgent
task or agile continuous integration development

pattern (Jiang et al., 2009b), the build versions come
freqnently more than once a hour. It makes an
unexpected result that a regression testing request
for the new build version comes before the last
regression testing task for the old build version
terminats. We evalute several current strategies to
address this issue and find it not a trivial problem.

For example, waiting for the old task to
terminate and then starting the new task is not timely
enough to find defects in new build version; while
killing the old task and immidiately starting the new
task has chance to miss the fault in old build version
and makes it inharited to new build version.
Intuitively, parallaling old and new tasks seems able
to run as many as test cases in a unit time and may
be effective to reveal faults in both old and new
build versions; but the number of paralleled tasks is
often limited by the hardware and software resources.

344
Zhang Z., Tong Z. and Gao X. (2010).
TESTING IN PARALLEL - A Need for Practical Regression Testing.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 344-348
DOI: 10.5220/0003041503440348
Copyright c© SciTePress

For example, it is not easy to set up many instances
to in parallel test a searching service, which occupies
a fixed range of ports and consumes up to about
2.5G physical memory. Besides, the test cases run
on old build versions may provide reusable
information for new build version. Making use of
such informations in a paralleled regression testing
manner may gain significant progress and generate
meaning results.

In this paper, we raise the problem of testing in
parallel, targeting at refining the test case priorities
for test suites parallel running on different build
versions, to make effective, efficient, and practical
regression testing. We also give a formal problem
settings to address this problem and use a pipeline
presentation for data visualization.

The contributions in this paper is threefold. (i) It
is the first time that such a practical problem on
regression testing is reported from industry. (ii) We
propose the approach of testing in parallel to address
the reported problem. (iii) We give the first formal
problem settings to formulate this problem and use a
pipeline presentation for data visualization.

The rest of the paper is organized as follows.
Section 2 uses a realistic scenario to motivate our
work. Section 3 gives formal problem settings and
data visualization, followed by an introduction to
related work in Section 4. Section 5 concludes the
paper. Section 6 foresees some future work.

2 MOTIVATION

In this section, we start from a realistic industrial
development scenario and motivate our work.

2.1 A Realistic Scenario

In a searching component project in Sohu.com Inc.,
the average integration period is about two hours;

while the reduced test suite contains more than 2000
test cases and executing the program over such a test
suite approximately costs 3.5 hours (some of these
test cases have been scheduled and run concurrently).
Most of the time, a build version is compiled over
and a regression testing request is raised, before the
last regression testing task (on the last build version)
terminates. In our daily development, we adopt three
strategies to address this issue. To ease reader’s
understanding, we show the sequence diagrams for
these three strategies in Figure 1.

[Strategy 1: Wait & Create] The new regression
testing task cannot start until the old task terminates,
as Figure 1(a).

[Strategy 2: Kill & Create] The old regression
testing task is killed at once, and then the new task is
created immediately, as Figure 1(b).

[Strategy 3: Keep & Create] The new regression
testing task is immediately created and working in
parallel with the old task, as Figure 1(c).

In next section, we compare the three strategies.

2.2 Existing Problems

By adopting strategy 1, we wait for the old
regression testing task to terminate. As a result, the
new build version cannot be tested timely. A
program fault, which is responsible for the software
defect found during the old regression testing task,
may have been fixed in the new build version while
we are wasting time testing a old build version. For
example, we ever found that a programmer had fixed
the fault and committed into new build version.

For strategy 2, we immediately terminate the old
regression testing task and start the new task. It is
possible that no failure has been revealed yet when
we killed the unfinished old regression testing task.
Thus, a undetected fault may be inherited by the new
build version. Nevertheless, if it is never triggered or

(a) Strategy 1: Wait & Create (b) Strategy 2: Kill & Create (c) Strategy 3: Keep & Create

Figure 1: Sequence diagrams for different strategies.

old tasknew task old tasknew task old tasknew tasksoftware software software

old
version

old
version

old
version

new
version

new
version

new
version

running
over

kill

TESTING IN PARALLEL - A Need for Practical Regression Testing

345

Table 1: Comparison to properties of strategies.

Effectiveness
(in terms of

number of run test cases)

Efficiency
(in terms of

speed to run test cases)

Limitation
(in terms of

number of paralleled tasks)

 Strategy 1: Wait & Create High Low Less

 Strategy 2: Kill & Create Low Low Less

 Strategy 3: Keep & Create High High More

encoutners a coincidental correctness case (Wang et
al., 2009), the fault cannot be found in the new task.

By adopting strategy 3, we in parallel run test
suite on each build version. That maximizes the
probability of revealing a failure. This seems the
most effective strategy, but the number of paralleled
regression testing tasks are commonly limited by the
hardware or software resources. For example, we
ever needed to test a service on the standard 80 port.
It is possible to use conventional methods to in
parallel test it at one site. For another example, we
ever needed to test a background daemon program
that occupies up to 4G memory. It is not feasible to
create multiple program instances, limited by the
amount of physical memories.

We use Table 1 to summarize the properties of
adopting these three different strategies. Our
observation is that there is not a universally best
strategy among them. Strategy 1 and strategy 3 are
more effective than strategy 2 since they run all test
cases in the test suites and may have higher
probability to reveal faults. Strategy 3 is more
efficient than strategy 1 and strategy 2 since it in
parallel run the test suite. On the other hand, strategy
1 and strategy 2 have less limitation, compared with
strategy 3, since they do not need to create multiple
program instances.

2.3 The Idea of Testing in Parallel

In previous section, we have elaborated on the
advantages and disadvantages of three current
strategies when facing the problem of testing in
parallel in our everyday developing work. Our
preliminary judgement is as follows.

(i) Paralleling the run of test suite is necessary
since it may increase the probability of revealing
failure and thus increase the effectiveness of
regression testing;

(ii) Blindly paralleling all regression testing tasks
may not be feasible because of the limitation of
number of paralleled regression testing tasks.

(iii) On the other hand, it is not a economic
choice to parallel as many as tasks without
scheduling the test case priorities among different
test suites because test case run on old build versions
may provide useful information for new version.

If a test case run (in a previous regression testing
task) on an old build version has revealed a failure, it
should be given particularly low priority of running
in the regression testing task on a new build version.
Let us analyze in different cases. Suppose the
running of such a test case on the new regression
testing task also reveals a failure, it has high
possibility to be due to a same fault because there
are generally not huge changes between two
adjacent build versions. The counterpart is that the
running of such a test case on the new regression
testing task reveals no failure, which means that the
fault has not been triggered, or there happens
coincidental correctness (Wang et al., 2009), or the
fault has been fixed in the new build version. None
of them takes in new information.

Inspired by such motivation, we raise the
problem of testing in parallel, that is, under the
situation of paralleled regression testing tasks, with
limited number of paralleled tasks, how to conduct
regression testing effectively and efficiently?

2.4 Challenges

In last section, we use an interesting application
scenario to demonstrate a motivating example, and
raise the problem of testing in parallel. Intuitively,
paralleling the test suite runs seems feasible and
practical. However, we still foresee many potential
challenges when addressing this problem. For
example, test case run information on old build
version may include reusable information about fault
inherited to new version. Such information can be
used to prioritize test cases on new build version.
How to scientifically reuse those information in a
testing in parallel pattern? Paralleling as many as
test suite runs may increase the speed of revealing

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

346

Figure 2: The pipeline presentation of problem settings.

fault. Limited by the number of paralleled test suite
runs, how to achieve the goal of maximizing fault-
revealing efficiency? Besides, can we find a short
cut to visualize this problem and map it to some
other forms of familiar problems?

In next section, we shall elaborate on our
problem settings and data visualizations.

3 TESTING IN PARALLEL

In this section, we give the problem settings and data
visualization.

3.1 Problem Settings

Suppose v1, v2, …, vm are m sequential build versions,
respectively released at time u1, u2, …, um. A test
suite is initialized as S1 for version v1; it contains n1
test cases. For version vi, the test suite is accordingly
updated to Si, which contains ni test cases. Test cases
in test suite Si are run in the order of ti1, ti2, …, ti{ni}
with respect to version vi; where the ordered list of
i1, i2, …, i{ni} is a permutation of 1, 2, …, ni.
We further suppose that at time uj, in total pi,j test
cases in Si has been run on a previous version vi.

Since different test suites with respect to
different build versions may contain identical test
cases, we further involve a term Identity (tix, tjy) to
identify this relationship. If the x-th test case of test
suite Si and the y-th test case of test suite Sj are the
same one, we let Identity (tix, tjy) = 1; otherwise 0.
We further use N to stand for the upper limit for
number of paralleled test suite runs.

Suppose that for each test suite, the set of test
case priorities is an optimal one that gives maximum
efficiency of revealing fault, for that build version.
In other words, for each test suite, the test cases are
given priorities according to the probability each of
them revealing fault. We use Pij with respect to
version vi to stand for the probability of running test
case tij revealing fault. Therefore, we have Pi1 >
Pi2 > … > Pij > … > Pi{ni}. Our goal is to refine the
running order of test cases in each test suites, to
maximize the efficiency of revealing fault for all the
paralleled regression testing tasks.

3.2 Data Visualization

We further use a pipeline-like structure to visualize
the problem settings, as Figure 2.

In Figure 2, each row shows test suite run for one
version. Cells in each row mean test cases that are
run in order. The slower a test case runs, the wider
its corresponding cell. Different row starts from
different time point (see the time axis on the top); it
means that build versions come one after another
sequentially.

Such a data visualization maps the problem to a
pipeline scheduling problem. Since the latter has
mature technique basis, such visualization is
expected to ease the problem. Note that Identity (tix,
tjy) and N are not shown in this draft.

4 RELATED WORK

Many test case prioritization and regression testing
research results have been reported (Rothermel et al.,

TESTING IN PARALLEL - A Need for Practical Regression Testing

347

1997; Elbaum et al., 2000; Rothermel et al., 2001;
Elbaum et al., 2002; 2004; Rothermel et al., 2004).
Wong et al. (1997) combined test suite minimization
and prioritization. Srivastava et al. (2002) employed
a binary matching system to prioritize test cases to
maximally program coverage. Do et al. (2006)
investigated the impact of test suite granularity. Li et
al. (2007) showed that genetic algorithms perform
well for test case prioritization, but greedy
algorithms are also effective in increasing the code
coverage rate. Jiang et al. (2009a) used adaptive
random testing concept to facilitate test case
prioritization. However, all those work focus on
prioritization techniques; they have not started from
industrial usage to report the problem of practice.

Our previous work (Jiang et al., 2009b) studied
the problem of how prioritization techniques affect
fault localization techniques in a continuous
integration environment. It inspires this work.
Walcott et al. (2006) investigated a time-aware
prioritization technique. It is related to resource
usage and thus related to our work.

5 CONCLUSIONS

Regression testing is a popular technique used to
evaluate the fitness of evolving software. In a
regression testing process, a test suite is run to
ensure the software functionalities. However, due to
the complicated functionality of software and urgent
tasks in development, the time used to run a test
suite can be much longer than the time interval
between two adjacent build versions. There is a need
to parallel the test suite runs.

In this paper, we start from a realistic industrial
scenario to show the problem. We next investigate
the advantages and disadvantages of our previous
strategies to address this issue. We finally propose a
testing in parallel manner, give the formal problem
settings and goals, and use a pipeline presentation to
visualize the problem.

6 FUTURE WORK

In the future work, we shall design an algorithm to
solve this problem, conduct controlled experiment to
evaluate our solution, and implement visualization
tools to support industrial usages.

ACKNOWLEDGEMENTS

This research is supported by the National High
Technology Research and Development Program of
China (project no. 2007AA01Z145).

REFERENCES

H. Do, G. Rothermel, and A. Kinneer (2006). Prioritizing
JUnit test cases: an empirical assessment and cost-
benefits analysis. Empirical Software Engineering.

S. G. Elbaum, A. G. Malishevsky, and G. Rothermel
(2000). Prioritizing test cases for regression testing. In
ISSTA 2000.

S. G. Elbaum, A. G. Malishevsky, and G. Rothermel
(2002). Test case prioritization: a family of empirical
studies. TSE.

S. G. Elbaum, G. Rothermel, S. Kanduri, and A. G.
Malishevsky (2004). Selecting a cost-effective test
case prioritization technique. Software Quality Control.

B. Jiang, Z. Zhang, W. K. Chan and T. H. Tse (2009a).
Adaptive random test case prioritization. In ASE 2009.

B. Jiang, Z. Zhang, T. H. Tse, and T. Y. Chen (2009b).
How well do test case prioritization techniques support
statistical fault localization. In COMPSAC 2009.

Z. Li, M. Harman, and R. M. Hierons (2007). Search
algorithms for regression test case prioritization. TSE.

A. K. Onoma, W.-T. Tsai, M. Poonawala, and H.
Suganuma (1998). Regression testing in an industrial
environment. Communications of the ACM.

M. K. Ramanathan, M. Koyuturk, A. Grama, and S.
Jagannathan (2008). PHALANX: a graph-theoretic
framework for test case prioritization. In SAC 2008.

G. Rothermel, S. G. Elbaum, A. G. Malishevsky, P.
Kallakuri, and X. Qiu (2004). On test suite
composition and costeffective regression testing.
TOSEM.

G. Rothermel and M. J. Harrold (1997). A safe, efficient
regression test selection technique. TOSEM.

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold
(2001). Prioritizing test cases for regression testing.
TSE.

A. Srivastava and J. Thiagarajan (2002). Effectively
prioritizing tests in development environment. In
ISSTA 2002.

K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S.
Roos (2006). Timeaware test suite prioritization. In
ISSTA 2006.

X. Wang, S. C. Cheung, W. K. Chan, and Z. Zhang (2009).
Taming coincidental correctness: coverage refinement
with context patterns to improve fault localization. In
ICSE 2009.

W. E. Wong, J. R. Horgan, S. London, and H. Agrawal
(1997). A study of effective regression testing in
practice. In ISSRE 1997.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

348

