Evolutionary Optimization of Echo State Networks:
Multiple Motor Pattern Learning

André Frank Krause?, Volker Dure-3, Bettina Blasing® and Thomas Schaék

L Faculty of Sport Science, Dept. Neurocognition & Action
University of Bielefeld, D-33615 Bielefeld, Germany

2 Faculty of Biology, Dept. for Biological Cybernetics
University of Bielefeld, D-33615 Bielefeld, Germany

3 Cognitive Interaction Technology, Center of Excellence
University of Bielefeld, D-33615 Bielefeld, Germany

Abstract. Echo State Networks are a special class of recurrent neural networks,
that are well suited for attractor-based learning of motor patterns. Using structural
multi-objective optimization, the trade-off between network size and accuracy
can be identified. This allows to choose a feasible model capacity for a follow-up
full-weight optimization. Both optimization steps can be combined into a nested,
hierarchical optimization procedure. It is shown to produce small and efficient
networks, that are capable of storing multiple motor patterns in a single net. Es-
pecially the smaller networks can interpolate between learned patterns using bi-
furcation inputs.

1 Introduction

Neural networks are biological plausible models for pattern generation and learning.
A straight-forward way to learn motor patterns is to store them in the dynamics of re-
current neuronal networks. For example, Tani [1] argued that this distributed storage
of multiple patterns in a single network gives good generalisation compared to local,
modular neural network schemes [2]. In [3] it was shown that it is not only possi-
ble to combine already stored motor patterns into new ones, but also to establish an
implicit functional hierarchy by using leaky integrator neurons with different time con-
stants in a single network. This can then generate and learn sequences by use of stored
motor patterns and combine them to form new, complex behaviours. Tani [3] uses back-
propagation through time (BPTT, [4]), that is computationally complex and rather bio-
logically implausible. Echo State Networks (ESNs, [5]) are a special kind of reccurent
neuronal networks that are very easy and fast to train compared to classic, gradient
based training methods. Gradient based learning methods suffer from bifurcations that
are often encountered during dynamic behaviour of a network, rendering gradient in-
formation invalid [6]. Additionally, it was shown mathematically that it is very difficult

to learn long term correlations because of vanishing or exploding gradients [7]. The
general idea behind ESNs is to have a large, fixed, random reservoir of recurrently and

Frank Krause A., Dirr V., Blasing B. and Schack T. (2010).

Evolutionary Optimization of Echo State Networks: Multiple Motor Pattern Learning.

In Proceedings of the 6th International Workshop on Artificial Neural Networks and Intelligent Information Processing, pages 63-71
Copyright © SciTePress

sparsely connected neurons. Only a linear readout layetapsthis reservoir needs to
be trained. The reservoir transforms usually low-dimemaigbut temporally correlated
input signals into a rich feature vector of the reservomtginal activation dynamics.

Typically, the structural parameters of ESNs, for exampke rteservoir size and
connectivity, are choosen manually by experience and tagkadds. This may lead
to suboptimal and unnecessary large reservoir structores given problem. Smaller
ESNs may be more robust, show better generalisation, ber fastrain and computa-
tionally more efficient. Here, multi-objective optimizati is used to automatically find
good network structures and explore the trade-off betwedwark size and network
error.

Section 2 describes the ESN equations and implementatentio 3 introduces
the optimization of the network structure and explains hmaléand effective networks
can be identified. Good network structures are further dpéthat the weight level in
section 4. Section 4.1 shows how to combine structural anghwéevel optimization
into a single, nested algorithm, facilitating a genetichare of good solutions. In sec-
tion 5, the dynamic behaviour of the optimized ESNs is shawrifferent bifurcation
inputs.

w back

/ sensor readings

Fig. 1. General structure of an echo state network. Solid arrowiséitel fixed, random connec-
tions, while dotted arrows are trainable readout connestidhe output [???7?] sets the joint
angles of a bi-articular manipulator, e.g., an bio-ingbaetive tactile sensor. Joint angles are fed
back via the backprojection weight mati& e~

2 Echo State Network

A basic, discrete-time ESN with a sigmoid activation fuons was implemented in
Matlab©2009b. The purpose of this ESN was to control the joints of-artcular
manipulator that could serve as a bhio-inspired, activeléasénsor. The overall goal
was to use the input to the ESN to set the tactile sampling@etts desired. The state
update equations used are:

y(n) = Wx(n)) (1)
x(n + 1) = tanh(W"*z(n) + Wnu(n + 1) + WPy (n) + v(n))

whereu, x andy are the activations of the input, reservoir and output nesireespec-
tively. v(n) adds a small amount of uniformly distributed noise to thévatibn values
of the reservoir neurons. This tends to stabilize solutiespecially in models that use
output feedback for cyclic attractor learning [8V", W7, W and Wbeck are

the input, reservoir, output and backprojection weightrioas. All matrices are sparse,
randomly initialised, and stay fixed, except Mf°“*. The weights of this linear output
layer are learned using offline batch training. During tirmithe teacher data is forced
into the network via the back-projection weights (teaclmecihg), and internal reser-
voir activations are collected (state harvesting). Afteltecting internal states for all

training data, the output weights are directly calculateithgi ridge regression. Ridge
regression uses the Wiener-Hopf solutidi*** = R~'P and adds a regularization
term (Tikhonov regularization):

W = (R + 1)~ 'P 2)

whereca is a small number is the identity matrix, R = S’S is the correlation
matrix of the reservoir states altl= S’D is the cross-correlation matrix of the states
and the desired outputs. Ridge regression leads to morke stalutions and smaller
output weights, compared to ESN training using the Moorer&& pseudoinverse. A
value ofa = 0.08 was used for all simulations in this paper.

3 Multi-objective Network Structure Optimization

Multi-objective optimization (MO) is a tool to explore traebffs between conflicting
objectives. In the case of ESN optimization, the size of #&ervoir versus the net-
work performance is the main trade-off. In MO, the concemtarhinance replaces the
concept of a single optimal solution in traditional optiation. A solution dominates
another, if strictly one objective value is superior andatlier objectives are at least
equal to the corresponding objective values of anothetisoluFollowing this defini-
tion, multiple (possibly infinite) non-dominated solutioan exist, instead of a single
optimal solution. The set of non-dominated or pareto-ogtisolutions is called the
pareto front of the multi-objective problem. The goal of M©to find a good approx-
imation of the true pareto front, but usually MO algorithnmseerge to a local pareto
front due to complexity of the problem and computationalstaaints.

Usually, the structural parameters of an ESN are choosenatigrby experience
and task demands. Here, the full set of free network parametas optimized using
MO. The MO was performed with the function 'gamultiobj’ frotine Matlab Genetic
Algorithm and Direct Search (GADS) Toolhdkat implements a variant of the ’Eli-
tist Non-dominated Sorting Genetic Algorithm version IN$GA-II algorithm, [9]).
The network structure was encoded into the genotype as a-skwensional vector of
floating point numbers. The first six structural parameteesvthe sparsity and weight
range of the input-, reservoir- and backprojection weighte seventh parameter was
the number of reservoir neurons. The search range of theithigowas constrained
to [0, 1] for the sparsity values, tp-5, 5] for the weight values and td, 100] for the
reservoir size|(, 500] for the 4-pattern problem). The optimization was startetth ai
population size of 1000 and converged after around 120 g&oes. In each iteration of
the MO, all genomes were decoded into network structuresyétworks were trained
and then simulated with random initial activations for 1&@0nes per pattern. In order
to neglect the initial transient behaviour, the first 50atems of network output were
rejected. The network output and the training patterns atmlly not in-phase. The

best match between training pattern and network output e@sked by phase-shifting
both output time courses by 50 frames relative to the training pattern and calculat-
ing the mean Manhattan distance across all pairs of dataspdihe training error was
then defined as the smallest distance found in that rangeaddeptable error threshold
(fig.2) is expressed as the percentage of the amplitude dfdivéng patterns, that is
1.0 units for all patterns. The pareto front for a circulattgan (Fig.2a) reveals that
even very small networks are capable of learning and gengrato sine waves with
identical frequency and 90 phase shift. The smallest nétfeamd had only 3 reservoir
neurons. Including the two output neurons, the overall ndtwgize was 5. In compar-
ison, 7 neurons are required for this task when using gradiased learning methods
[10]. Network size increases with the complexity of the nigtattern, and especially
when having to store multiple patterns in a single netwotdriSg 4 patterns in a single
network required 166 reservoir neurons to reach an erromb®% (Fig.2d).

0.05 T T T T 0.5 T T T T
B b

ones] " f LR

004} { 04 j% X x X D>
:

0.035 1 035y

0.03
X

error

0.025

x
0.02 i
0.015[®

001 ¥

0.005
o - : : :
ol =X
2 ¥ x
041 g & x * B
035- “ 1
« x
03F x x x X
0.25F x
* X
X X X X
%
® %
x *
SR«

T
x

x X

5
x <% %
x]

error

0.2

XX BXXMOCK XK X 3K XXX

H
0.15F Xx}
4 x
01 * g A gl X
o xx x
L 4 x , x

0.05F o ®® S B R~ %X ¥ i

0 % %*iiﬂ T "N i " ® I3 | I T

0 20 40 60 80 100 200 300 400 500

network size network size

Fig. 2. Minimum reservoir size depends on task complexity. All parghow a set of pareto-
optimal solutions (red circles) and the final populationuéotrosses). (a) Learning a simple,
circular pattern. All networks with 3 or more neurons showearr below 1%. (b) Pareto-front
for the figure eight pattern. Learning this pattern requaremtably larger reservoir. Please note
the different scaling of the error compared to the easi@leciask. Networks with 17 or more
neurons have an error below 5%. (c) Storing two motor padtérincle and figure-eight) as cycli-
cal attractors in a single networkrequires 37 or more reseneurons for errors below 5%. (d)
Simultaneous learning of four patterns required 166 neuron

4 Full Optimization of the Network Weights

From the pareto front of the two-pattern task, four can@idatwork structures were
selected and optimized further, using a single-objectaeegic algorithm. This time,
all network weights except the output layer were fully opged. The output layer was
still trained by ridge regression. An initial random pogida of 200 parents was cre-
ated from the network structure information of the seleciadidate solutions with 4,
14, 26 and 37 reservoir neurons. Network weights were caingtd to[—5, 5] and de-
coded from the genome with a threshold function that presesparsity. The threshold
function sets a weight to zero, if the genome value is betwgamd 1, see fig.3.

'y

weight value ¢

v

&

1 5
genome value

-5

Fig.3. Threshold function that decodes genome values into weighiteg, preserving sparse
weight coding.

The Genetic Algorithm (GA) options were set to ranked rdeletheel selection,
20 elitist solutions, 80% crossover probability with seegd crossover and self adap-
tive mutation. Other options were left at their default es|{see GADS toolbox, Mat-
lab2009b). The GA-optimization was repeated 20 times faheaaetwork size. Fig.
4a shows the improvement in performance compared to the M@tste optimiza-
tion run. A small network with only 14 reservoir neurons abtgproduce the learned
patterns with an error of 2.3%. Weight range and connegtafiter optimization was
analysed with an unpaired Wilcoxon rank sum test. Signifidéfferences in connec-
tivity and weight range were found (Fig. 4b) with a clear ttdor smaller reservoir
weights and less reservoir connectivity with increasingwoek sizes. Both input- and
backprojection weights tend to increase with reservo# @tig. 4a). Although standard
ESNSs usually have full connectivity for input- and backeetjon weights, evolutionary
optimization seems to favor sparse connectivity for smailégworks, when given the
choice (Fig. 4b).

4.1 Hierarchical Evolutionary Optimization
In the previous section, individual solutions of the MO stwural evolution were se-

lected and optimized further on the weight level, using a 88th steps can be com-
bined by performing a full-weight GA optimization for eadkration of the MO. This

0.25 X% =
a ¥x §!g %
x¥ x
: b B <
o2r % ;&5 % B
¥ o % Ry §x %
® L x X Ky xx
g x E ExETXgx
’ i R S "
® x g *x
015 X x X oy § x « |
% % XX
. X *x
5 xx Ky 5 x
X ox
01t |
X ox X i X %
® * x
Sk
% i &
0.05 8 ® ® ;iég 4
% x
5% X x¥ xg Xy
® % x3 iég
= ®
. ‘ ‘ i i, 3
0 10 20 30 40 50

network size

Fig. 4. Subsequent full-weight matrix optimization improves peniance. Additional optimiza-
tion of the four best networks of the two-pattern task witheservoir size of 4, 14, 26 and 37
neurons. Starting from the best multi-objective soluti®®,GA runs were performed. a) Green
crosses indicate the best fitness values of each run. Blagkes)indicate the overall best solu-
tions that were found.

1,0
144 a b %
1,24 0,8 ¢|
==
R 1,0 >
g) s 0,64
90,8~ 8 |
b= £
© 0,6 G 0,4+
3 S =+
3
0,4
== 0,2
0,2 ===
ol = o0l T
4 14 26 37 4 14 26 37 4 14 26 37 4 14 26 37 4 14 26 37 4 14 26 37
network size network size

Fig. 5. Optimal weight range and connectivity depends on resesipé. Network structure after

full-weight optimization of the selected networks from figa) Weight range of all non-zero

weights of the reservoir (red), the backprojection weidgteen) and the input weights (blue).
b) Connectivity (percentage of non-zero weights). Boxpkitow 5%, 25%, 50%, 75% and 95%
quantiles of N=20 datapoints. * p j 0.05; ** p j 0.01.

way, the pareto front improves by moving closer towards thigim of both optimiza-
tion objectives. This nested, hierarchical optimizatisrtomputationally demanding.
To speed up the convergence of the MO, good solutions of thevight GA are stored
in an archive, keeping each iteration of the MO accessihlsubsequent iterations, the
archived genome having the closest structure is injectedlre new population of the
full-weight GA. Good networks can emerge faster by fadilitg cross-over with the
archived solutions. This way, the full-weight optimizatidoes not need to start from
scratch in each iteration. See Fig.6 for hierarchical ogttion of the two-pattern task.
The MO had a population size of 200, running - at each itematia full-weight opti-

0.2

015

error
error

0.1F

0
network size network size

Fig. 6. Left graph: Average pareto front from N=30 repetitions af trucural MO. Blue crosses
show the final populations, red crosses show the paretosfrantl the red circles show the mean
and standard deviation of the pareto-optimal solutiongémh network size. Right graph: Hier-
archically nesting a full-weight GA optimization into theQvbptimization gives a more accurate
approximation of the true pareto front, as compared to 8iratMO alone. The plot shows a sin-
gle run of the nested MO-GA optimization over 25 generati@r®sses show the population at
each generation in grey levels ranging from light grey (fiesteration) to black (last generation).
A single run outperforms the best solutions found in 30 rurtke structural MO, see Fig.7.

il

0.25

0.2

0.15F

error

0.1

0.05

0 L L n
0 10 20 30 40 50

network size

Fig. 7. Comparison of the different optimization runs. The strugktMO is shown in red (cir-
cles), full-weight optimization of selected solutionsifréhe structural MO in green (diamonds),
and the hierarchical optimization in magenta (squares)ngle run of the nested, hierarchical
optimization shows almost the same performance as thevkiliht optimization from section 4.

mization with a population size of 20 individuals for 50 geat®ns. Fig. 7 compares
the pareto fronts of the different optimization strategiesingle run of the nested op-
timization algorithm achieves almost the same result actmebination of structural
and subsequent full-weight optimization.

5 Dynamic Network Behaviour

Most of the smaller networks show an unexpected behavidway &re able to interpo-
late between the learned patterns, generating novel, plitily trained outputs. Fig.

8 shows the dynamical responses from the fittest networkeatiom 4.1. The first in-

put value was changed gradually in 15 steps from 1.0 to O.@ewine second input
was changed from 0.0 to 1.0. A gradual morphing from the trcio the figure-eight
pattern can be observed. Itis surprising, that already 8 &8& with six reservoir neu-
rons can store two different patterns. Larger networks termbnverge to fixed points
for input values other than the trained ones. This intetmieeffect might be applied
to complex and smooth behaviour generation for neural nite@ntrolled robots.

QQQQQQQQQQQOQQQ
DD LL) L) L)L) L)L) L) Lol

OO K)o I

OOOTIIRAANNMINIX

T
—
— 1 | | | t
(] 2 4 3 8 10 12 14

Fig. 8. Dynamic behaviour of selected networks with different resi sizes (blue trajectories).
Shifting the dynamics of the networks by gradually changhmfirst input value (red) from 1.0
to 0.0 and the second input (green) from 0.0 to 1.0 in 15 st@panging the input to the network
causes a slow morphing between the two learned patterogjilad) to generate new patterns that
were not explicitly trained. Especially the small netwokeep stable with no chaotic regions.
Larger networks tend to converge to fixed points for inputgalother than zero or one.

6 Conclusions

Using MO, good candidate network structures can be seledesdarting points for a
followup whole-network optimization and fine-tuning usiggnetic algorithms. Both
steps can be combined into a nested, hierarchical muléetibg optimization. The re-
sulting pareto front helps to identify small and sufficigrefficient networks that are
able to store multiple motor patterns in a single networkisThstributed storage of
motor behaviours as attractor states in a single net is itrastrto earlier, local module
based approachedf sequences contain similarities and overlap, howevecoaflict
arises in such earlier models between generalization ampginsatation, induced by
this separated modular structure[3]. By choosing a feasible model capacity, over-
fitting and the risk of unwanted - possibly chaotic - attracttates is reduced. Also,
with the right choice of the network size, an interestinggratinterpolation effect can

be evoked. Instead of using a classic genetic algorithm fiertiuining of the network
weights, new, very fast and powerful black box optimisaadgorithms [11] [12] could
further increase network performance and allow to find evealler networks for bet-
ter generalisation. ESNs can be used for direct controktaske [13]) and scale well
with a high number of training patterns and motor output§.[Adnore complex simu-
lation, for example of a humanoid robot, will show if direattfractor-based storage of
parameterized motor patterns is flexible enough for comipédraviour generation.

References

1. Tani, J., Itob, M., Sugitaa, Y.: Self-organization oftdisutedly represented multiple behav-
ior schemata in a mirror system: reviews of robot experimeasing rnnpb. Neural Networks
17 (2004) 1273 — 1289

2. Haruno, M., Wolpert, D. M., Kawato, M.: Mosaic model fomserimotor learning and

control. Neural Computation 13(10) (2001) 2201-2220
3. Yamashita, Y., Tani, J.. Emergence of functional hidrmarin a multiple timescale neural
network model: A humanoid robot experiment. PLoS Compateti Biology 4 (11) (2008)
4. Werbos, P.: Backpropagation through time: what it doeshaw to do it. In: Proceedings
of the IEEE. Volume 78(10). (1990) 1550-1560

5. Jager, H., Haas, H.: Harnessing nonlinearity: Preajcthaotic systems and saving energy
in wireless communication. Science 304 (2004) 78 — 80

6. Jaeger, H.: Tutorial on training recurrent neural nekspcovering bppt, rtrl, ekf and the
"echo state network™ approach. Technical Report GMD Repb9, German National
Research Center for Information Technology (2002)

7. Hochreiter, S., Bengio, Y., Frasconi, P., SchmidhubeGaadient flow in recurrent nets: the
difficulty of learning long-term dependencies. In S. C. Keeml. F. K., ed.: A Field Guide
to Dynamical Recurrent Neural Networks. IEEE Press (2001)

8. Jaeger, H., Lukosevicius, M., Popovici, D., Siewert, @ptimization and applications of
echo state networks with leaky integrator neurons. Neuedthirks 20(3) (2007) 335-352

9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast alidist multiobjective genetic
algorithm: Nsga-ii. IEEE Transactions on Evolutionary Guration 6, No. 2 (2002) 182—
197

10. Pearlmutter, B. A.: Learning state space trajectonag¢urrent neural networks. Neural
Computation 1 (1989) 263-269

11. Kramer, O.: Fast blackbox optimization: Iterated lasdrch and the strategy of powell. In:
The 2009 International Conference on Genetic and Evolatiohethods (GEM’09). (2009)
in press.

12. Vrugt, J. A., Robinson, B. A., Hyman, J. M.: Self-adaptmultimethod search for global
optimization in real-parameter spaces. Evolutionary Qatajion, IEEE Transactions on
13(2) (2008) 243-259

13. Krause, A. F., Blasing, B., Durr, V., Schack, T.: Dir&@pntrol of an Active Tactile Sen-
sor Using Echo State Networks. In: Human Centered Roboe8ystCognition, Interac-
tion, Technology. Volume 6 of Cognitive Systems Monograferlin Heidelberg: Springer-
Verlag (2009) 11-21

14. Jager, H.: Generating exponentially many periodietbrs with linearly growing echo
state networks. technical report 3, IUB (2006)

