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Abstract: For navigation on outdoor surfaces, usually having different kind of roughness and soft irregularities, this 
paper proposal is that a wheeled robot combines the gradient method for path planning, alongside it adjusts 
velocity based on a multi-layer fuzzy neural network; the network integrates information about the 
roughness and the soft slopes of the terrain to compute the navigation velocity. The implementation is 
simple and computationally low-cost. The experimental tests show the advantage in the performance of the 
robot by varying the velocity depending on the terrain features. 

1 INTRODUCTION 

Robotic autonomous navigation throughout outdoor 
terrains is highly complex. Obstacle detection and 
avoidance for no collision as well as the terrain 
features information for no slides are both required. 
Environment data must be quick and accurately 
processed by the robot’s navigation systems for a 
right displacing. Besides, when information from 
human remote controllers is not quick available, the 
autonomous robots should be equipped for 
convenient reactions, particularly in front of 
unpredicted circumstances. Actually, by moving on 
outdoors, the autonomous robot’s velocity control 
regarding the terrain features, beyond the obstacle 
location and avoidance, it has been few attended and 
it is a weakness for efficient and safe navigation 
nowadays.  

For wheeled-robots navigation on terrains, it is 
necessary data about the surface features such that 
automated safe navigation is ensured. The feature 
which this work focuses is the surface roughness 
where the robot moves on. The robot’s velocity 
during real navigation depends on the terrain 
roughness. 

Outdoor autonomous robots are particularly 
relevant employed for terrain exploration missions. 
The terrain difficulties of soon system planets –like 
Mars– to move through soil, rocks and slopes, 
requires the usage of robots with the highest degree 
of autonomy to overcome such difficulties. In Earth 

exploration missions where human lives may be in 
dangerous circumstances, the autonomous robots are 
as well required. For instance, search of explosive 
minas, active volcano craters exploration to 
determine the eruption risk. 

Kelly and Stentz (1998) propose a navigation 
system for outdoors robots which includes 
perception, mapping and obstacle avoidance. 
Regarding the environment perception, Lambert et 
al. (2008) introduces a probabilistic modelling useful 
to avoid or to mitigate eventual collisions, which is 
used for updating a robot braking action. Selekwa et 
al. (2008) and Ward & Zelinsky (2000) addressed 
the navigation and path planning of an autonomous 
robot which varies the velocity according to the 
proximity of obstacles detected by infrared sensors. 

So far, all the referred works on outdoor 
autonomous robots do not include in their proposals 
information about terrain surface roughness during 
navigation. In this work, two algorithms are 
implemented for robot autonomous navigation, one 
for path planning and the other for velocity updating 
regarding the terrains features. The present proposal 
is tested with a small wheeled-robot moving over 
outdoors terrains containing grass, ground, garden 
sand and soil, as the ones in Figure 1 and Figure 2. It 
is assumed that the robot can move on slopes with 
inclination angles less than 15 degrees; otherwise, 
the slopes are considered as obstacles, thus, the 
robot wraps them, in order to overcome them.  
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Figure 1: Robot’s navigation outdoor surface. 

 
Figure 2: Test environment. 

Surface textures are captured via artificial vision, 
after image processing the estimation of the terrain 
roughness as well as the slopes inclinations are 
gotten. Then, the algorithms output indicates the 
velocity the robot can achieve. Bright and uniform 
lighting during navigation is required to guaranty 
consistent roughness recognition; therefore the 
presence of shadows, which treatment is a hard task 
to pattern recognition (Kahraman and Stegmann, 
2006), is out of the scope of this work. 

During outdoors navigation, human drivers 
estimate the convenient vehicle velocity by 
regarding their previous experience when driving on 
similar terrain textures. In other words, humans 
estimate how rough, in average, the terrain is, 
instead if specific texture details are recognized. 

Human drivers that navigate on uneven terrains 
do not need to know about specific details but on the 
textures appearance average. The average 
recognition of ranges of textures as the humans learn 
is the behave experience to be mimicked and 
implemented to strength the robots’ navigation 
abilities. The algorithms for path planning differ 
depending on the type of application, exploration on 
unknown terrains (Seraji and Howard, 2002), car 
navigation on roads (Sun et al., 2006), planet 
exploration (Seraji and Werger, 2007) or indoor 
navigation (Ward and Zelinsky, 2000), or if the 

environment is either dynamic (Kim et al., 2007) or 
static (Wang and Liu, 2005). 

For our purpose, the robot moves on the 
calculated path by adjusting its velocity depending 
on the terrain features. The path planning algorithm 
called gradient method, in static environments, 
recalculates the path in real time whenever an 
obstacle is found (Konolige, 2000). The gradient 
method is integrated for our navigation proposal. 

The rest of the article is organized as follows: 
Section 2 summarizes the closest antecedents in the 
field of autonomous navigation; then, the method 
and architecture of the fuzzy neural network for 
speed updating, together with the gradient method 
for path planning are introduced. Section 3 describes 
the integration of both algorithms for wheeled-robot 
navigation, together with the tests and experimental 
results. Discussion in Section 4, then the paper ends 
with conclusions in Section 5. 

2 VELOCITY UPDATING BY 
FUZZY NEURAL NETWORK 

2.1 Terrain Roughness Recognition 

The classification of terrain roughness has almost no 
received attention, and just recently is being a bit 
more attended. For instance, Larson et al. (2005) 
analysis the terrain roughness by means of spatial 
discrimination which then is (meta-) classified. 
Seraji and Howard (2002) assess the navigation 
strategy with the terrain’s features of roughness, 
slopes and discontinuity. Ishigami et al. (2007) 
generate a path over a rough terrain with a terrain-
based criterion function, and then the robot is 
controlled so as to move on the chosen path. In 
Brooks and Iagnemma (2009) do roughness 
recognition by using artificial vision, so recognition 
of novel textures is later to off-line recognition 
training from sample texture. Pereira et al. (2009) 
plotted maps of terrains incorporating roughness 
information that is based on the measurement of 
vibrations occurring in the suspension of the vehicle; 
this online method can recognize textures at the 
moment the vehicle passes over them, what is a 
limitation for velocity updating. 

For velocity updating according to the terrain 
features, our proposal sets to imitate as human 
beings do. For safe navigation on irregular terrains, 
the human’s velocity estimation is via imprecise but 
enough surface texture recognition. When a human 
driver notes a new texture, he uses his experience to 
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Figure 3: The proposal diagram. 

estimate how rough the texture is, and then he 
decides the car driving speed without slide risks. 

As illustrated in the diagram of Figure 3, in the 
first step, the terrain’s textures are neural-net-
clustered in a roughness meta-class: a Supervised 
Neural Network (SNN) classifies textures forming 
the meta-class; then, a Fuzzy Neural Network (FNN) 
extends the supervised one, matches each terrain 
roughness with the corresponding robot velocity 
meanwhile the robot navigates safely. 

Slopes are detected by two infrared sensors. One 
infrared sensor is located in the frontal part of the 
robot does parallel ray projection to the robot’s 
motion; the other sensor projects its ray directly to 
the floor perpendicular to the first sensor. The 
inclination angle of slopes is computed by 
trigonometric operations.  

The off-line and on-line steps to adapt velocity 
regarding the terrains roughness and the inclination 
slopes while navigating are next described: 

Roughness Identification (Off-line Training)  
1) Select representative images of the terrain 

textures, where the robot moves on. 
2) Characterize the texture using the 

Appearance Based Vision method which 
computes the principal components of the 
images distribution. 

3) Train the SNN with the texture-roughness 
relationship previously established by the 
human expert driver. 

4) Train the FNN to determine the velocity 
regarding the texture roughness as well as the 
inclination angle of slopes, according to an 
expert driver’s directives, make the fuzzy sets 
and the inferece IF-THEN rules system. 

Velocity Updating and Robot’s Motion (On-line  
Steps) 
5) Acquisition of terrain images with the robot’s 

camera. 

6) The SNN classifies the texture and assigns its 
roughness, this data is forwarded to the FNN. 

7) The FNN inputs are both, the texture 
roughness and the slope inclination angle (to 
determine if the robot can pass on the slope, 
or should move around it). 

8) With the texture roughness and slope 
inclination data, the FNN updates the 
velocity. The robot’s mechanical control 
system adjust the velocity. 

9) The cycle is repeated as the robot moves, and 
the velocity is cycle updated. 

2.2 The Fuzzy Neural Network 

This section introduces the five-layer fuzzy neural 
network, whose output sets the velocity the robot 
can achieve safely. The terrain features recognition 
followed by the robot velocity tuning is shown in 
Figure 4. The roughness and slope input data are 
assessed and then used to adjust the robot’s velocity, 
that is the FNN output data, see Table 1. The FNN 
first layer inputs are the slope size and the texture 
roughness, the second layer sets the terms of input 
membership variables, the third sets the terms of the 
rule base, the fourth sets the term of output 
membership variables, and in the fifth one, the 
output is the robot’s velocity. The textures 
roughness is classified in three fuzzy sets, High (H), 
Medium (M) and Low (L). The inclination angles of 
slopes are classified in six fuzzy sets: Plain (Pl), 
Slightly Plain (SP), Slightly Sloped (SS), Moderato 
Sloped (MS), High Slope (HS) and Very High (VH). 
The FNN output values are either: High Velocity 
(HV), Moderate Velocity (MV), Low Velocity (LW) 
or Stop (ST). Membership functions of the input and 
output variables terms denote the corresponding 
texture roughness, slope inclination and velocity, 
respectively.  

 
Figure 4: The Fuzzy Neural Network. 

The fuzzy-making procedure maps the crisp 
input values to the linguistic fuzzy terms with 
membership values in [0,1]. In this work the 
trapezoid membership functions (MF) for texture 
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variable and the triangle MF for angle variable are 
respectively used. The FL inference rules governing 
the input - output relationship are in the Table 1. 
Taking X, Y, Z as variables of the respective 
predicates, the form of inference rules is: 

IF Slope angle is X AND Roughness is Y THEN 
Velocity is Z. 

The de-fuzzy procedure maps the fuzzy output 
from the inference mechanism to a crisp signal. 
When the robot finds a slope steeper than the 
allowed threshold, it stops, and evaluates which 
movement to make, whose decision concerns to path 
planning. The gradient method (Konolige, 2000) is 
integrated to present proposal. 

2.3 The Gradient Method for Path 
Planning 

The gradient method requires a discrete 
configuration of the navigation space in which the 
path cost function is sampled. At each point of the 
workspace, the gradient method uses a navigation 
function to generate a gradient field that represents 
the optimum path to the target point. The gradient of 
navigation function indicates the path direction with 
lowest cost, at  each  point  in the  navigation  space; 
this optimum path to the target is continuously 
calculated, and is determined based on the length 
and the proximity to obstacles, in addition to any 
other criteria that may be chosen. By itself, the 
gradient method can lead the path with the lowest 
cost in static and completely unknown 
environments; this method is efficient for real time 
monitoring the movements of mobile robots 
equipped with laser beams.  

3 THE NAVIGATION 
ALGORITHM 

The robot autonomous navigation requires the 
concurrent operation of path planning and velocity 
estimation algorithms. The first step is to create a 
virtual map of the robot navigation space; hence the 
surface is divided into squares for providing the 
required detail level of space model. The next step is 
to calculate the optimal path between initial and goal 
locations using the gradient method.  

After path planning, the texture recognition 
algorithm is turned on to determine the robot 
velocity. The roughness surface data in addition to 
information from sensors that measure the slopes 
   

   

Table 1: The velocity updating fuzzy rules. 

Rule 
No. 

Input Output 
Slope angle Roughness Velocity 

1 Pl L HV 
2 Pl M HV 
3 Pl H HV 
4 SP L MV 
5 SP M HV 
6 SP H HV 
7 SS L MV 
8 SS M MV 
9 SS H HV 

10 MS L LV 
11 MS M MV 
12 MS H MV 
13 HS L LV 
14 HS M LV 
15 HS H MV 
16 VH L ST 
17 VH M ST 
18 VH H LV 

inclination are processed. Hence, the robot receives 
the instruction to move at the estimated velocity in 
the prior determined trajectory. If during the trip the 
sensors detect an obstacle or slopes with inclination 
greater than 15 degrees, the robot stops and the 
velocity estimation algorithm is turned off; the 
obstacle is registered and a new path to the goal 
location is recalculated. After that, the velocity 
estimation algorithm is turned on again, and the 
robot learns to move in the new trajectory at the 
estimated speed. Otherwise, i.e., if the robot does not 
find an obstacle on its path, then its speed is 
updated. 

Note that the velocity estimation algorithm is not 
being executed all the time, but it is turned off when 
the robot finds an obstacle; at this circumstance, the 
camera records the obstacle images instead of 
surface texture. If the velocity estimation algorithm 
would not be turned off, the velocity would be 
estimated based on images of the obstacle texture, 
what is wrong; furthermore, in front of obstacle the 
robot should overcomes the obstacle with specific 
movements and the velocity change is irrelevant.  

The robot stops when it determines that has 
reached the goal location. The robot computes its 
location from the distance it has travelled since the 
initial location, by using odometry. The following 
list summarizes the robot navigation steps, see 
Figure 5: 

1. Create a virtual map of robot space 
navigation, surface discretization, 
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2. Define the initial and goal locations of the 
robot, 

3. Compute the path with the gradient method,  
4. Artificial vision is turned on for texture 

recognition, 
5. Velocity is estimated with data from textures 

and slopes of the surface, 
6. The robot receives the order to advance along 

the path at the estimated velocity,  
7. The robot velocity is updated when a change 

in texture is recognized, or if sensors detect a 
slope on the surface, or if both events occur, 

8. If sensors detect an obstacle, or if slope 
inclination is greater than 15 degrees, then 
the robot stops and texture recognition 
algorithm is turned off, return to step 3; 
Otherwise, velocity is updated, return to step 
7, 

9. The robot stops when it has reached the goal 
location or destination. 

3.1 Experimental Step 

A car-like rover from the Bioloid robot transformer 
kit (ROBOTIS, 2010) is used, which uses a 
processing unit, four servomotors for power 
transmission to the wheels, two infrared sensors 
located in the robot front, and a wireless camera on 
top-front of the robot. The robot dimensions are 9.5 
cm width per 15 cm length. In these experiments the 
FNN is trained with terrain textures from images in 
Figure 1. 

 
Figure 5: Path Planning and Velocity estimation 
algorithms running concurrently. 

In this platform it is used a personal computer 
(PC) and the processor of the robot, to form a 

master-slave architecture, wirelessly communicated. 
On the PC are implemented and executed the path 
planning and velocity estimation algorithms. The 
robot, on one hand, reports to the PC the sensors 
readings and wirelessly transmits the images 
captured by the camera. On the other hand, the robot 
performs the movements in accordance with 
instructions that the PC communicates it. The 
experiments are performed in the environment 
shown in Figure 2, whose area is 2.25 m2, covered 
with dust, soil, dry leaves, branches and 2 cm-high 
grass; it contains rocks and small earth-mounds. The 
goal point is located 2.12 meters in a straight line 
from the initial location of the robot. 

There were conducted 30 tests divided into three 
parts, using the path planning algorithm. In first part, 
the tests were performed at medium constant 
velocity 6.95 cm/s; in the second part at the 
maximum velocity the robot can reach 13.88 cm/s. 
The other tests were performed with velocity 
updating, combining path planning and velocity 
updating algorithms. Table 2 shows the results. 

With velocity updating, both the detection of the 
robot environment and path planning are 
strengthened. By adjusting the velocity according to 
surface characteristics, safety increases and/or the 
travel time of the robot decreases. That is, if it 
detects that the surface is slippery then the robot 
slows down, although the robot spends more time to 
reach the goal location, the probability that the robot 
has an accident decreases. 

3.2 Results and Navigation 
Performance 

The common standards criterion to evaluate the 
performance of robots is (Dai et al., 2007), (Matthies 
et al., 1995): accurate estimation of the robot 
location, fast and accurate detection of the robot 
environment and reliable path planning for moving 
from one place to another without colliding with 
obstacles in unknown environments. This is true for 
this proposal and adds the following: 

• The total time it takes the robot to make the 
route and, 

• Comparing the distance travelled by the robot 
with the straight line distance between the 
initial and goal locations. 

When the robot moves at medium constant 
velocity (6.94 cm/s), it runs 107.72% of the straight 
line distance between the initial and goal locations. 
The travel distance is increased because of the 
obstacle avoidance and the location estimation errors 
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Table 2: Autonomous navigation results with and without 
velocity updating. 

 
Constant velocity 

With 
velocity 

updating 

Navigation 
velocity 6.94 cm/s 13.88 

cm/s 

8.65 cm/s 
(average 
velocity) 

Navigation 
distance 228.5 cm 111.29 

cm 220.33 cm 

Navigation 
time 43.10 s 19.08 s 32.55 s 

generated by the slippage of wheels. On the other 
hand, when the robot moves at maximum constant 
velocity (13.88 cm/s) runs, on average, 52.46% of 
the path. The plausible explanation is that when the 
robot moves at maximum velocity the wheels slip 
more often and therefore the location estimation of 
the robot becomes very imprecise. With velocity 
updating the robot travels the 103.86% of the 
straight line distance between the initial and goal 
locations. In this case the distance is less than with 
medium constant velocity because the wheel 
slippage is less frequent, see Table 3. By updating 
the velocity the robot moves slower in areas that 
favour the slippage of wheels, for instance loose 
soil. Because of there are fewer slippages, the 
location estimation of the robot is more accurate and 
consequently the robot approaches the goal location. 

The navigation time with velocity updating is 
32.41% less and 41.38% higher than medium and 
maximum constant velocity, respectively. It is noted 
that with medium constant velocity the robot travels 
a path with good accuracy but spends more time 
doing the travelling. With maximum constant 
velocity the travelling is fast but the accuracy to 
traverse the path is very bad. With velocity updating 
performance is improved because the precision of 
the robot in the travelling of the trajectory is good 
and is performed in less time, i.e., the robot moves at 
optimum velocity, depending on surface 
characteristics, avoiding wheel slippage. With our 
approach the average velocity represents 62.13% of 
the maximum velocity the robot can reach. 

4 DISCUSSION 

Within the present approach, the robot moves on 
surfaces with different kinds of textures, to make 
navigation more versatile than such related works. 
The Martian surface can be considered as a special 
case of our approach because these surfaces are 
   

Table 3: Percentage of travelled distances, with maximum 
and medium constant velocity; and with velocity updating. 

 Constant Velocity With 
velocity 

updating Medium Maximum 

Percentage 
of distance 
travelled 

107.72% 52.46% 103.86% 

covered with sand and rocks, i.e., there is only one 
type of roughness. Actually, for the purpose of 
autonomous navigation on rough terrains is not a 
requisite to recognize textures at a high detail level. 
The high precision methods on details recognition 
are not the adequate but failed for supporting robots 
navigation –strongly some times. In addition, the 
detailed recognition of surfaces is computationally 
expensive, but a low consume of resources is 
recommended through autonomous navigation. 

Our approach can be improved on the location 
estimation of the robot. So far, it has been used 
odometry only to calculate the robot location. Most 
of the works, if not all, that employ odometry use 
other tools to estimate the location of the robot such 
as electronic compasses (Seraji and Werger, 2007), 
sonar sensors (Dai et al., 2007), GPS (Matthies et 
al., 1995), among others. However, velocity 
updating reduces wheel slippage and the drift errors 
are small or occur less often. 

On the other hand, the proposed algorithms are 
not limited to be applied to small vehicles. They can 
be extrapolated to other vehicles, depending on the 
particular characteristics, which define the 
appropriate rules of the vehicle operation. The 
algorithm is scalable to different vehicles by using 
as parameters their particular characteristics, such as 
weight, size and motor power, tires material and tire 
tread, among others.  

In this proposal we claim that for velocity 
updating the experience of human drivers is 
mimicking by using the inference system of the 
fuzzy neural network, which model the operation of 
the vehicle based on the driver experience. 

There are works that model the vehicles driving 
with differential equations (Nakamura et al., 2007), 
(Kim et al., 2008), (Ward and Iagnemma, 2008). But 
this approach is difficult because, in general, 
differential equations are nonlinear, and their 
solution is hard to obtain. 

Within the algorithms testing, we have simulated 
the path of a truck. These tests consisted of placing a 
camera on the roof of the truck. The truck runs on 
various types of textures. During the truck trips, the 
camera recorded from a similar driver’s visual field 
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the crossed surfaces. Then, texture images are 
extracted from video recordings, which are 
processed by the algorithms.  

The velocity updating results are encouraging. 
To process the 480×640-pixel images with the 
microprocessor Centrino Core 2 Duo at 2 GHz and 
1.99 Gb RAM, the algorithms time spent is small, 
0.3 seconds. It leads to conclude that vehicles with 
these computer capacities have enough time to react 
or to break on the next 5 meters, as soon as they are 
moving at 60 km/hr, which is a car maximum 
velocity in the city, and a standard speed on 
principal roads.  

5 CONCLUSIONS 

In this paper a proposal for wheeled robot navigation 
on outdoor surfaces with different kind of roughness 
and soft irregularities is presented. The robot 
integrates the path planning gradient method with a 
multi-layer fuzzy neural network in order to adjust 
velocity, by regarding the roughness and the slopes 
of the terrain. The artificial vision implementation is 
computationally low-cost. Wheeled-robot navigation 
becomes more efficient and safe because of the 
velocity updating. That is because, whenever the 
robots navigates, the velocity is updated by 
regarding the terrains characteristics, the wheel 
slippage is significant reduced, hence improving, the 
precision to achieve the goal location as well as the 
navigation time; thereafter, the risk that the robot 
suffers an accident is also decreased. On the 
opposite, without velocity updating it becomes more 
difficult the goal location approach as reported 
results show. 
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