
SITUATIONAL METHOD ENGINEERING APPLIED FOR THE
ENACTMENT OF DEVELOPMENT PROCESSES

An Agent based Approach

Holger Seemueller, Holger Voos
Mobile Robotics and Mechatronics Lab, University of Applied Sciences Ravensburg-Weingarten

D-88241 Weingarten, Germany

Benjamin Honke, Bernhard Bauer
Programming Distributed Systems Lab, Institute of Computer Science, University of Augsburg, D-86135 Augsburg, Germany

Keywords: Multiagent systems, Product line engineering, Model-driven development, Method engineering, Development
processes.

Abstract: Interdisciplinary product development is faced with the collaboration of diverse roles and a multitude of in-
terrelated artifacts. Traditional and sequential process models cannot deal with the long-lasting and dynamic
behavior of the development processes of today. Moreover, development processes have to be tailored to
the needs of the projects, which are usually distributed today. Thus, keeping these projects on track from a
methodology point of view is difficult. In order to deal with these challenges, this paper will present a novel
method engineering and enactment approach. It combines the ideas of workflow technologies and product line
engineering for method engineering as well as agent technology for the development process enactment.

1 INTRODUCTION

Nowadays, innovative, industrial products are the re-
sult of different disciplines, such as mechanics and
computer science. They are increasingly character-
ized by the influence of several domains working to-
gether to develop e. g. new products, add new func-
tionalities, or improve the performance done in a
geographically distributed and international context.
Currently, these interdisciplinary systems are getting
more and more complex, whilst the integration ef-
forts grow sometimes exponential. With the increas-
ing complexity of the product, the development pro-
cess is faced with new challenges concerning e. g. in-
tegration, collaboration, and coordination.
In the context of such a development process many
different roles with different background and domain
specific knowledge can be encountered. These roles
are working on different levels of abstraction with di-
verse techniques, vocabularies, and models producing
an intensive amount of work products and artifacts.
Based on existing artifacts, new artifacts evolve ei-
ther by model transformations using a model-driven
engineering (MDE) approach (Kent, 2002), such as

OMG’s MDA (OMG, 2003), or by hand resulting in
dependencies and interactions between them. Often,
interdisciplinary dependencies are the origin for new
functionality by combining e. g. mechanical with soft-
ware components, which hence leads to the need for
an intensive focus on them. In addition, also the evo-
lution of these interrelated artifacts has to be managed
between different levels of abstraction during process
execution.

Classical development processes, such as V-model
XT and RUP (Broy and Rausch, 2005; Kruchten,
2000), are mainly ”paperware” and do not support
elaborated tailoring of the project or organisation,
whereas newer approaches such as agile development
processes lack integration in complex development
processes.

Indeed, these approaches provide good support
for certain engineering domains, but a variable pro-
cess execution framework, guiding multiple disci-
plines around different abstraction levels and domain
specific information, is still missing. As processes are
long-lasting and faced with a huge degree of dynam-
ics and uncertainty, they cannot be handled by tradi-
tional process models with fixed sequences of activi-

399Seemueller H., Voos H., Honke B. and Bauer B. (2010).
SITUATIONAL METHOD ENGINEERING APPLIED FOR THE ENACTMENT OF DEVELOPMENT PROCESSES - An Agent based Approach.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
399-405
DOI: 10.5220/0003021603990405
Copyright c© SciTePress



ties.
To overcome these shortcomings, we propose an

MDE approach, in which the development process is
described with methods of software product line engi-
neering and method engineering as well as agent tech-
nology is applied for enactment.

Thus the goals of our approach are:

• Ease of method engineering, in particular tailor-
ing of development processes using MDE;

• Make development processes alive, i. e. exe-
cutable;

• Support for distributed system development and
modeling

• Pro-active support of the developers;

• Monitoring and evaluation for optimizing devel-
opment processes;

• Comprehensible development processes and steps
for safety critical application.

The rest of the paper is structured as follows. Sec-
tion 2 sketches current issues of today’s development
processes and summarizes the techniques applied in
our approach. Section 3 focuses on the design and
enactment of a process, while Section 4 describes the
runtime support using agents. After presenting related
work in Section 5, a conclusion is given in Section 6.

2 BASICS

This section presents the necessary background on
technologies used in the context of our approach,
namely methodologies, situational method engineer-
ing, product lines, as well as agent technology.

To confront the complexity of multidisciplinary
engineering activities a lot of standards and guide-
lines were developed during the last years. The VDI
guideline 2206 (VDI, 2004) describes methodologies
for the development of mechatronic systems in
general. The basic idea is the usage of the V-Model
being adapted to the specific needs of mechatronics
and therefore multidisciplinary systems.

Not only in the field of automotive the V-Model
XT combined with process maturity models such
as CMMI (Ahern et al., 2008) or SPICE (Dorling,
1993) offers well documented process references.
Additionally, there are cross-domain de facto stan-
dards, such as SysML (OMG, 2008) or EAST-ADL2
(ATESST, 2008) serving as system models on a
higher level of abstraction integrating several domain
specific information. Moreover, domain specific
standards such as AUTOSAR (AUTOSAR, 2010)

aim on simplification of knowledge exchange, col-
laboration, and integration. Other standards such as
XMI (OMG, 2007) or STEP (ISO, 2002) support tool
interoperability by common data exchange formats.

Situational Method Engineering (SME) (Saeki,
1994; Harmsen, 1997; Brinkkemper et al., 1998;
Mirbel and Ralyte, 2005; Sunyaev et al., 2009) is
a discipline exactly facing our goals by providing
strategies and techniques for building methods and
processes tailored for the situation at hand, i. e. re-
specting special requirements on individual products,
domain specific processes, disciplines, and other
available resources.

Product line engineering (PLE) techniques
(Clements and Northorp, 2001; Pohl et al., 2005;
CAFE, 2004; Families, 2005) are a way to customize
the software to be delivered using e. g. feature models
(Kang et al., 1990) to specify the features a product
should support or not. By adapting PLE to process
line engineering, where a process line of similar
processes uses a common factory that assembles and
configures parts (i. e. features) designed to be reused
across the varying development processes in the pro-
cess line, highly tailored processes can be generated.
These development processes can be modeled using
standard business process and/or workflow tools
and further refined by product and process specific
information via semantic or rule-based annotations
to provide extended traceability, activity-based
validation, and best practice capabilities.

To achieve an agile and flexible behaviour of the
process enactment, agent technology is applied. In
general, an agent can be characterized as a compo-
nent, which acts autonomously in some environment
to meet a specific objective (Wooldridge, 2009).
According to this, a multiagent system consists of
a number of single agents, each communicating
and negotiating with each other to reach an overall
goal of the system. Thus, multiagent systems are a
good starting point to support dynamic, large-scale,
globally distributed processes and pro-active process
coordination through their autonomous decision
making.

3 AGENT BASED
APPROACH - PROCESS DESIGN

Our approach combines aforementioned technologies
to provide a flexible framework for design and ex-
ecution of development processes across different
domains and locations. This section describes the
MDA-based method engineering approach for tailor-
ing project specific processes as basis for agents’ de-

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

400



cision making (see later in Section 4).

3.1 Software Process Line Approach for
Method Engineering

To take variable aspects between different projects or
process instantiations into consideration, our method
engineering is build around a method repository,
which stores reusable domain specific method assets,
such as activities, artifacts, roles, or other support-
ing process guidance information. Assets within the
method repository are independent of concrete pro-
cess instances, but serve as building blocks for the sit-
uation at hand. According to software product lines,
where “a common, managed set of features satisfy the
specific needs of particular market segment or mis-
sion are developed from a common set of core assets
in a prescribed way” (Clements and Northorp, 2001,
page 522), here a common set of method fragments
is used to specify the particular, situational mission of
software product engineering.

To enable situational process configuration, a de-
scription for these method fragments is needed. Such
a description must be specialized enough to provide
domain specific information about situations and the
context in which they can be applied. This means, a
fragment should provide information about concerned
engineering aspects, such as structure, behaviour, tim-
ing, or safety as well as information about the domain
specific process phase (e. g. system design, software
design, mechatronic design) it is optimized for. Prod-
uct specific specializations, such as activities special-
ized for diesel engine calibration or windshield wiper
development, are conceivable, too.

3.2 Model-driven Method Engineering

Typical SME starts with analyzing the process re-
quirements, e. g. through goals, and refines them to
high-level methods, which are then refined to more
detailed processes. We adapt this approach and follow
an MDE approach namely OMGs MDA with com-
putational independent model (CIM), platform inde-
pendent model (PIM), and platform specific model
(PSM). Especially, as model-based techniques have
become more and more mature during the last years,
it is convenient for our goals.
It starts on an abstract level for describing common
method fragments without any implementation de-
tails, like within reference process houses. That non-
technical or business-oriented process on CIM level
not only serves as method base for further refinement
steps into process execution or agent details, but also
for general business management activities. Based on

this CIM-view different model transformations, e. g.
to MS Project, are conceivable. However, they do
only provide support for process communication and
documentation purposes and do not provide clear ex-
ecution semantics.

In our approach, we focus on a transformation
from that non-technical development process model
to a model which details specific execution infor-
mation more than conventional process frameworks.
According to our process line approach, described
in Section 3.1, a goal-driven conversion transforms
method base information on CIM level into a work-
flow skeleton (PIM), which afterwards can be refined
such that the process can be executed on an agent-
based system.

After building that technical model and adding
specific semantic information (see Section 3.3), fur-
ther transformation steps can be applied to come
up with a PSM, which controls the concrete run-
time behaviour of our method. While annotated
process models could be transformed into workflow
code optimized e. g. for some process engine, our ap-
proach proposes transformation into a model, which
pre-configures the autonomous behaviour of agents
at run-time as described above similar e. g. to the
SHAPE project (Hahn et al., 2009).

By the means of this model-driven approach, cre-
ating an evolutionary method base with additional ex-
ecution support is enabled. Thereby new fragments or
best practices can simply be integrated.

This MDA-based approach not only provides
method agents with project specific workflows on
which agents can make decisions, but enables anno-
tation of situational semantic information or guide-
lines regarding the behaviour of process and/or prod-
uct parts. As described above, the method reposi-
tory enables an iterative incremental way for build-
ing a method base, which can be used for generating
the workflow skeleton on implementation level. At
project start, a project manager describes situational
project requirements. Thereby he identifies necessary
process phases as well as domain aspects, i. e. a set
of process goals, such as special safety or timing re-
quirements, which have to be taken into account dur-
ing the product development. Afterwards, he specifies
the product as the goal of the planned process where-
upon the method repository can be queried for method
fragments coming into consideration for the situation
at hand. Based on fitting fragments and available in-
put/output relationships a workflow skeleton can be
assembled.

SITUATIONAL METHOD ENGINEERING APPLIED FOR THE ENACTMENT OF DEVELOPMENT PROCESSES -
An Agent based Approach

401



3.3 Annotations

To provide additional semantics with activities, arti-
facts, processes, etc. for method agents’ configura-
tion, the PIM enables annotating these fragments with
a couple of information, whereas the most relevant
ones are sketched as follows:

Annotation can be a mixing of syntactical, seman-
tic and rule based annotations. MDA artifacts as in-
put or output of an activity can be annotated with
syntactic meta model information in order to focus
large meta models to activities at hand. Additionally,
method fragments can be described in a semantic do-
main to provide artifacts with domain specific seman-
tic instance data about the component which has to
be modeled, e. g. the semantics of diesel engines or
windshield wipers, as long as the editing activity is
also specialized for these artifact instances. By the
means of semantic annotations, it is possible to make
different models of computation, such as CAD mod-
els and UML models or other different artifact instan-
tiations, comparable. Finally, artifacts can be anno-
tated with validation rules, such as OCL (OMG, 2006)
or RuleML (Boley et al., 2005), to prescribe necessary
conditions for indicating the validity of artifacts as
some kind of pre-conditions and/or post-conditions.

On the other side, activities can also be annotated
with additional execution semantics on PIM level. By
relating input with output information by the means
of semantic relationships or rules, an activity can pre-
scribe general guidelines or experienced best prac-
tices, such as necessary transformations, dependen-
cies in between, or designated/forbidden actions dur-
ing activities.

Afterwards, a so designed model is used for dif-
ferent scenarios: First of all, the annotated process
model can be analyzed in front of the project even
more than with conventional techniques. Already
on model level, specialized analyses, like the data-
flow analysis from Saad and Bauer (2010) , can val-
idate process behaviour properties before its execu-
tion. Furthermore, these annotations and transitive
relationships between workflow activities and their
input/output relationships can be used by agents for
process enactment and guidance. An additional value
also comes along with flexible model-driven reconfig-
uration possibilities. Thereby, changes on abstracted
workflows can be analyzed and validated before they
are re-deployed on the agent-based run-time environ-
ment and changes affect process execution directly.

4 AGENT BASED
APPROACH - ENACTMENT

Agent technology is a promising technique to enhance
long-lasting and flexible process enactment as shown
in several research projects (SHAPE, 2010; Burmeis-
ter et al., 2008). For the enactment of our devel-
opment processes, basically, five different kinds of
agents can be identified, namely User Agents (UA),
Tool Agents (TA), Method Agents (MA), Repository
Agent (RA) and Directory Agent (DA).

4.1 Repository Agent

The Repository Agent is responsible on the one side
for storing pre-defined process fragments used during
the method engineering phase to develop the tailored
method and on the other side to support the MA with
the necessary process fragments, which have to be ex-
ecuted by different agents. Moreover, architectural
descriptions e. g. in East-ADL or SysML, are stored
for the MA.

4.2 User Agents

User Agents are the interface between the agent-based
execution mechanism and a human user. From the
engineer’s point of view, an UA deals as a ”personal
assistant”, offering him needed information about the
next process step and the work he has to achieve. To
identify himself, the agent provides a login mecha-
nism. Depending on the role of an engineer within
the development process, the agent might offer differ-
ent functionality.
From the MA’s point of view, the UA serves as a rep-
resentation of the engineer. All the communication
and negotiation with the human engineer as a target is
handled via this agent.

4.3 Directory Agent

UAs register at the Directory Agent with information
such as supported skills and roles. During run-time of
the system other agents can look e. g. for several RA
or UA, to achieve flexible work distribution depend-
ing on the skills and availability of e. g. engineers.

4.4 Method Agents

Method Agents represent an important part for pro-
cess execution. A domain neutral architecture de-
scription language such as SysML or EAST-ADL2 as
well as the development process fragments serve as a
basis for the agents. Thus, they own a comprehensive

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

402



knowledge about the entire system such as the struc-
ture, specific components or interrelations between
them. This knowledge together with the concretized
process skeleton according to the software process
line approach in touch with the idea of method en-
gineering acts as the foundation for decision making
and coordination of needed activities for successful
product development.

MAs are strongly interrelated with UAs, as work
is distributed to an appropriate engineer via its UA.
Additionally, the progress, conditions, and constraints
may be checked in cooperation with TAs respectively
their encapsulated artifacts or model data. According
to this data, next process steps are chosen.

For realisation, a hierarchical organisation of the
agents is intended. This means, that a main coordina-
tor manages and coordinates other subordinated MAs.

The usage of multiagent technology implies ad-
vantages in contrast to traditional centralised solu-
tions: Due to its autonomous and pro-active be-
haviour and proven suitability in distributed and com-
plex systems. In our opinion, the application of a mul-
tiagent system is convenient for our approach. Addi-
tional characteristics such as the loose coupling of the
agents can furthermore be used for process variability.

4.5 Tool Agents

Tool Agents serve as wrappers around tools needed
during the development process such as IDEs, mod-
eling or analysis tools, CAD etc. Tool Agents com-
municate with MAs to check specific constraints on a
domain specific model, e. g. constraints on the weight,
cost, timing aspects etc. , or to check, if specific out-
put artifacts of a process step has been achieved. As a
human engineer is working with this tool, also com-
munication between TA and UA is intended. Addi-
tionally, semantic annotations as described in section
3.3 can be used to apply domain specific semantic in-
stance data to the artifact, which is currently edited by
the tool.
In order to access the necessary internal model data,
tool specific adapters have to be developed. The ac-
cess can be realized e. g. with plugins, tool specific
APIs or exchange data formats such as STEP or XMI.

5 RELATED WORK

Previous work already exists about the support of flex-
ible and dynamic process execution.

In EDONA (Ougier and Terrier, 2008), the objec-
tive is the construction of an open platform facilitat-
ing the realisation of chains of development by pro-

viding an interoperability and interchange architec-
ture for automotive development processes and tools.
EDONA’s idea behind the integration platform is to
provide access to a common storage space accessible
by any tool chain. Therefore, its goal is the provision
of a common meta model to define the data exchange
and integration between the partners, a common tech-
nical architecture based on the Eclipse Equinox plat-
form, and a set of more generic tools and tool inter-
operation bridges. Whereas our approach focuses on
method engineering and enactment, it can be com-
bined with EDONA’s idea to obtain interoperability.

In Aldazabal et al. (2008) the authors suggest
a service oriented middleware, called ModelBus,
connecting model-based development tools and the
services they offer. Thereby, process enactment
and process orchestration tools can be used to cre-
ate/orchestrate/monitor composite services by com-
bining the different services from the different tools
into a workflow described in a language such as
BPMN (BPMN, 2009). Again the focus is on model
exchange and not on method engineering and enact-
ment.

The SHAPE project (SHAPE, 2010) investigates
the development and realisation of enterprise systems
with ideas of MDE. As proposed by the MDA con-
cept, it separates the modeling into the three abstrac-
tion levels CIM, PIM and PSM and tries to fill the gap
between them with model transformation. From this
approach we borrow the idea of process enactment us-
ing agent technology.

Burmeister, Arnold, Copaciu and Rimassa (2008)
follow an approach of applying multi-agent based
technologies, namely BDI-agents, for business pro-
cesses modeling and execution. Mainly, the usage of
agent technology with its ability of flexibility and pro-
activity provides agile behaviour of the entire busi-
ness process management system whereas the ”pro-
cess plan” is described in terms of project goals and
subgoals and associated plans, which achieves the
respective goals. We adapt the notion of business
process modeling as well as using agent technology,
however, in the area of method engineering and en-
actment.

6 CONCLUSIONS AND FUTURE
RESEARCH

In the introduction we stated several goals to achieve
with our approach. This is done in the following way:
• The ease of method engineering is reached by

adopting MDE and the usage of a method reposi-
tory. Thus, we can start with a high-level process

SITUATIONAL METHOD ENGINEERING APPLIED FOR THE ENACTMENT OF DEVELOPMENT PROCESSES -
An Agent based Approach

403



and have the possibility to tailor it to the require-
ments of the product under development.

• Development processes are enacted, i. e. can be
executed in a distributed system development and
modeling through an agent-based realisation.

• Distributed system development is supported
through agents’ proven suitability in such sys-
tems.

• The pro-active support of the developers is
achieved through pro-active agents.

• The aspect of monitoring and evaluation for op-
timizing development processes was not outlined
in detail in this paper, but can be performed anal-
ogous to business processes.

• Comprehensible development processes and steps
for safety critical applications are given, as pro-
cess activities are clearly defined and documented
as well as the agent-based implementation can
document these aspects.

In a first prototype, we implemented our approach
with the usage of the Eclipse Process Framework
(EPF) (Eclipse Foundation, 2010a) on CIM level and
reached a transformation into a Java Workflow Tool-
ing (JWT) (Eclipse Foundation, 2010b) model on
PIM level by configuring the EPF model with fea-
tures and domain specific information. The next steps
are the transformation of the PIM model into the
agent system Jadex (University of Hamburg, 2010) to
achieve the method enactment.

REFERENCES

Ahern, D. M., Clouse, A., and Turner, R. (2008).CMMI
Distilled: A Practical Introduction to Integrated Pro-
cess Improvement (3rd Edition). Addison-Wesley Pro-
fessional.

Aldazabal, A., Baily, T., Nanclares, F., Sadovykh, A., Hein,
C., Esser, M., and Ritter, T. (2008). Automated model
driven development processes. InProceedings of the
ECMDA workshop on Model Driven Tool and Process
Integration. Fraunhofer IRB Verlag.

ATESST (2008). Advancing traffic efficiency and safety
through software technology: (www.atesst.org).

AUTOSAR (2010). Automotive open system architecture
(www.autosar.org).

Boley, H., Grosof, B., and Tabe, S. (2005).RuleML Tuto-
rial . The RuleML Initiative.

BPMN (2009). Business Process Model
and Notation, Version 2.0 - Beta 1.
http://www.omg.org/spec/BPMN/2.0/.

Brinkkemper, S., Saeki, M., and Harmsen, F. (1998). As-
sembly techniques for method engineering.Advanced
Information Systems Engineering, page 381.

Broy, M. and Rausch, A. (2005). Das neue V-Modell XT.
Informatik-Spektrum, 28:220–229.

Burmeister, B., Arnold, M., Copaciu, F., and Rimassa, G.
(2008). BDI-agents for agile goal-oriented business
processes. InAAMAS ’08: Proceedings of the 7th
international joint conference on Autonomous agents
and multiagent systems, pages 37–44, Richland, SC.
International Foundation for Autonomous Agents and
Multiagent Systems.

CAFE (2004). Cafe - from concepts to application in
system-family engineering, (http://www.esi.es/cafe/).
ITEA project.

Clements, P. C. and Northorp, L. M. (2001).Software Prod-
uct Lines: Practices and Patterns. Addison Wesely.

Dorling, A. (1993). Spice: Software process improvement
and capability determination.Software Quality Jour-
nal, 2:209–224.

Eclipse Foundation (2010a). Eclipse Process Framework
Project (EPF). http://www.eclipse.org/epf/.

Eclipse Foundation (2010b). Java Workflow Tooling (JWT).
http://www.eclipse.org/jwt/.

Families (2005). Fact-based maturity through in-
stitutionalisation lessons-learned and involved
exploration of system-family engineering,
(http://www.esi.es/families/). ITEA project.

Hahn, C., Shafiq, O., Benguria, G., Kmper, S., and Berre,
A. J. (2009). Model transformation and deployment
architecture description. SHAPE Deliverable 5.1.

Harmsen, A. F. (1997).Situational Method Engineering.
PhD thesis, University of Twente.

ISO (2002). Standard for the Exchange of Product model
data. ISO standard 10303.

Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson,
A. (1990). Feature-oriented domain analysis (foda)
feasibility study. Technical report, CMU/SEI-90-TR-
021, SEI, Carnegie Mellon University.

Kent, S. (2002). Model driven engineering.Integrated For-
mal Methods, pages 286–298.

Kruchten, P. (2000).The Rational Unified Process: An In-
troduction, Second Edition. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA.

Mirbel, I. and Ralyte, J. (2005).Situational method en-
gineering: combining assembly-based and roadmap-
driven approaches, volume 11. Springer-Verlag New
York, Inc., Secaucus, NJ, USA.

OMG (2003). MDA Guide Version 1.0.1. http://www.omg.
org/mda/.

OMG (2006). Object Constraint Language, Version 2.0.
http://www.omg.org/spec/OCL/2.0/.

OMG (2007). MOF 2.0 / XMI Mapping Specification,
v2.1.1. http://www.omg.org/technology/documents/
formal/xmi.htm.

OMG (2008). Systems Modeling Language (OMG
SysMLTM). http://www.omgsysml.org.

Ougier, F. and Terrier, F. (2008). EDONA: an Open Integra-
tion Platform for Automotive Systems Development
Tools. ERTS 2008 - Toulouse.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

404



Pohl, K., Boeckle, G., and van der Linden, F. (2005).Soft-
ware Product Line Engineering - Foundations, Prin-
ciples, and Techniques. Springer Verlag, Berlin Hei-
delberg.

Saad, C. and Bauer, B. (2010). Data-flow based model anal-
ysis. Second NASA Formal Methods Symposium (ac-
cepted).

Saeki, M. (1994). Software specification & design methods
and method engineering.

SHAPE (2010). Shape Project. http://www.shape-
project.eu.

Sunyaev, A., Hansen, M., and Krcmar, H. (2009). Method
Engineering: A Formal Description.Information Sys-
tems Development, pages 645–654.

University of Hamburg (2010). Jadex - BDI Agent System.
http://jadex.informatik.uni-hamburg.de/.

VDI (2004). Entwicklungsmethodik für mechatronische
Systeme. VDI Richtlinie 2206. Beuth Verlag.

Wooldridge, M. J. (2009).An Introduction to MultiAgent
Systems. John Wiley & Sons, 2nd edition.

SITUATIONAL METHOD ENGINEERING APPLIED FOR THE ENACTMENT OF DEVELOPMENT PROCESSES -
An Agent based Approach

405


