
TEXTUAL SYNTAX MAPPING CAN ENABLE SYNTACTIC
MERGING

László Angyal, László Lengyel, Tamás Mészáros and Hassan Charaf
Department of Automation and Applied Informatics, Budapest University of Technology and Economics

Goldmann György tér 3, H-1111 Budapest, Hungary

Keywords: DSL, Round-trip Engineering, Textual Syntax Mapping, Incremental Synchronization.

Abstract: As the support is increasing for textual domain-specific languages (DSL), the reconstruction of visual
models from the generated textual artifacts has also come into focus. The state-of-the-art bidirectional
approaches support reversible text generation from models using single syntax mapping. However, even
these tools have not gone such far to facilitate the synchronization between models and generated artifacts.
This paper presents the importance of synchronization and how these mappings can enable syntactic
reconciliation for custom DSLs. Our approach provides algorithms for supporting incremental DSL-driven
software development, which enables the freedom of choosing between the textual or visual editing of
artifacts. It depends on the developer which representation is more effective for her/him at a specific
moment.

1 INTRODUCTION

In the practice of model-based software
development, the software models are usually
represented as labeled (attributed), typed graphs.
The modeling elements as nodes are connected to
each other via edges. In modern modeling
frameworks (Angyal et al, 2009) (Eclipse, 2010)
(Xtext, 2010) visual and/or textual notations can be
mapped to the nodes and edges of a metamodel to
determine how its instance models should be drawn
or written. These are referred to as the concrete
syntax, which is required to define instance models.

The most prevalent techniques for textual syntax
definition of modeling elements are originated in the
theory of parser generators. The textual model can
be parsed into an Abstract Syntax Tree (AST),
which can be considered as an abstract model
conforming to the AST metamodel. Every node in
the metamodel have an AST class representation.
The philosophy behind reversible text generation
approaches is that parsing the textual artifact into an
intermediate AST can be the input to recreate the
model. However, this is inadequate to support the
concurrent evolution of the visual and the textual
representations of the same model. These
approaches consist of two unidirectional
synchronizations, often referred to as destructive,
which means that the target model is not modified

incrementally and thus, the update rebuilds the new
content, instead of modifying the existing one.

Accordingly, the layout of the models that is
previously defined by human effort disappears. The
layout in both visual and textual representations
contains valuable extra information, which is
developed into the model. Only an incremental
approach can preserve the layout, because the
affected parts are updated only, while other parts
remain unchanged.

Figure 1: Outline of our approach.

We introduced a technique (Angyal et al, 2008)
that performs a three-way AST comparison and
incremental change propagation in order to reconcile
the differences between a source code file and a
visual model. Based on the syntax mapping, that
synchronization approach can be extended to
support arbitrary DSLs. In this paper, we
demonstrate how the single syntax specification can

308
Angyal L., Lengyel L., Mészáros T. and Charaf H. (2010).
TEXTUAL SYNTAX MAPPING CAN ENABLE SYNTACTIC MERGING.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 308-311
DOI: 10.5220/0003011403080311
Copyright c© SciTePress

be applied to implement a metamodel-specific
incremental merge approach. (Figure 1).

The remainder of the paper is organized as
follows. The next section introduces the
backgrounds. Section 3 contains an overview about
our proposal for applying textual syntax mappings in
an incremental synchronization approach of DSLs.
Finally, conclusions are elaborated.

2 BACKGROUNDS

The initial and fundamental step in textual DSL
development is the construction of the AST
metamodel (the vocabulary) and the definition of the
textual syntax for the elements. To exclude possible
but illegal model states, constraints can be defined
on the structure.

Processing textual models e.g. to generate other
artifacts, requires them to be parsed and converted
into a format, which is supported by a model
processor or a generator. Formerly, for textual
languages, a grammar file defined by developers
was used, from which a parser generator (e.g.
ANTLR, 2010) created a parser that could be
integrated into a custom tool.

As the AST metamodel-based approaches have
come into consideration in the language engineering
researches, more and more tools and approaches are
being developed to facilitate the definition of custom
textual languages.

TCS (Jounault et al, 2006) is a textual DSL
intended to bridge the modeling and the syntax
worlds. From a TCS model, the grammar file for
text-to-model transformation and text generator for
model-to-text transformation can be produced.

Xtext (Xtext, 2010) and MontiCore (Krahn et al,
2007) are frameworks for development of textual
DSLs. In order to reduce the redundancy of the
metamodel and the concrete syntax, the definitions
of the abstract and the concrete syntaxes for the
languages are integrated into a single grammar file.
Their generators produce a parser, an AST-
metamodel as well as a full-featured text editor.

Although synchronization is a well-known
problem in the practice of software development, the
recent researches in the context of DSL engineering
are still not focusing on it.

Coarse-grained file comparison approaches like
the diff tool considers the lines as atomic building
blocks. However, to compare two pieces of textual
model correctly, the algorithm must take the
grammar of the language into consideration. The
fine-grained algorithms operate on the ASTs of the

source code files. Hierarchical structures such as
models should also be treated as source code.

3 THE MERGE APPROACH

3.1 Bidirectional Textual Syntax
Mapping

The metamodel itself does not determinate how its
instance models should be drawn or written. For a
complete language, the concrete syntax with the
assignments to the metamodel is inevitable. Figure 2
depicts our meta-metamodel, where the Template
attribute holds the textual concrete syntax mapping
belonging to that node.

Figure 2: The meta-metamodel.

The Atom node represents the self-describing
metatype for all elements in the models. An element
can (i) define own, (ii) inherit attributes and
relationships from its ancestor (inheritance), (iii)
structures can also be defined: an element can
contain other elements (containment), and (iv) other
existing elements can be referenced (cross-
reference), as well. Furthermore, the edges have
multiplicity properties, which are taken into account
in the parser and the text generator.

Figure 3: The metamodel of the template language.

We designed a simple template language (Figure
3) that expresses the textual appearance of abstract
elements. These templates are considered as input
artifacts for the template compiler, which produces
the text generator and rules for the text parser.

The abstract TemplateElement is a word in that
textual template, which can be a reference, a string
literal or a condition. The words are concatenated

TEXTUAL SYNTAX MAPPING CAN ENABLE SYNTACTIC MERGING

309

into a template with the Concatenate operator.
Additionally, each attribute has a data type with
predefined regular expression (a primitive template),
which can be overridden to determine the values
allowed in that attribute. This regular expression is
used by the parser to recognize the attributes.

3.2 Realizing the Incremental Update

3.2.1 Edit Scripts

A merge approach can be operation-based or state-
based (Mens, 2002). The operation-based one
requires recording the committed edit operations,
while the state-based one derives the changes after
they occur by a comparison. The sequence of these
operations is referred to as an edit script. Our change
propagation approach executes the edit scripts on
other artifacts to obtain the same state.

3.2.2 Update Visual Model

The structure of our proposed incremental update
component for the visual model is depicted in Figure
4. Since the underlying data types and classes are
metamodel-specific, all of these components are
generated and operate only on a specific model.
Furthermore, these classes are grouped into larger
logical units.

Figure 4: The incremental model update unit.

The Database I/O connector provides access to
the model elements stored either in a database or in a
file. The Tree producer reads the model from the
database and produces the AST in a form required
for the difference analysis. The Edit script execution
submodule performs the incremental database
update controlled by an edit script.

3.2.3 Update Textual Model

The component for the incremental textual update
(Figure 5) includes the layout preserving logic. It
contains a tree producer (denoted by Parser), which
stores trace information linked to the AST nodes to
facilitate the restoration of the original layout and
comments. The AST patch module executes the edit
script obtained from outside. After the incremental
update, the reworked AST is pretty-printed

considering the trace information and the original
textual content.

Figure 5: The incremental textual update unit.

3.2.4 Retaining the Textual Layout

The layout preservation is a crucial requirement to
artifact regeneration: overwriting a customized
layout with a generated one could be unacceptable
for the developers.

The edit operations manipulate directly the AST,
but while the reworked AST nodes or subtrees are
printed, the trace links are taken into account to
restore the original layout with comments in their
original positions. Following the approach of
(Fritzson et al, 2008), every operation in the edit
script is converted into an equivalent text
manipulation operation, which is applied on the
original text file:
• Insertion: the new node is pretty-printed and its

text is inserted into the text stream.
• Deletion: characters belonging to that node are

removed.
• Update: a substring is replaced.
• Move: remove a substring and insert into an

other position.

3.3 Composing the Techniques
Together into a Sync Engine

Figure 6 illustrates our proposed synchronization
engine (SE) with the three input models: M0, M1, and
M2. SE realizes an incremental three-way
differencing-based merge, where the two modified
artifacts (M1, M2) are compared to the last
synchronized state (M0) in order to unambiguously
detect and propagate the committed refinements.
The synchronization is performed with the help of
intermediate artifacts, the ASTs.

Figure 6: The synchronization engine (SE).

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

310

SE can be separated into four independent parts:
(i) the difference analysis unit (DAU), which can be
considered the heart of the SE, (ii) a simple parser
unit (U1), (iii) the complex incremental textual
update unit (U2), and (iv) the visual model
manipulation unit (U3). The last mentioned three
units (U1, U2, and U3) serve as language-specific
glue units for the metamodel independent DAU.

Figure 7: The synchronization approach in the details.

The algorithms in the DAU (Figure 7) operate on
the ASTs. The procedures denoted by Diff based on
the algorithms elaborated in (Chawathe et al, 1996)
and have been customized for source code (AST)
difference analysis. A general tree matching
algorithm tries to find the correspondence between
the two trees; the nodes that remained unmatched
compose the differences. The edit scripts can
reconcile the differences between the trees.

The modifications in the two artifacts can affect
each other, since the nodes are identified by their
path. An inserted node can shift the indices and may
cause that an edit operation from the opposite edit
script can address a different node. To avoid this, we
transform (by incrementing or decrementing the
indices) the paths in the operations if they affect
each other. Finally, to propagate the changes, the
transformed edit scripts are executed on the other
side by the generated glue units (U2, and U3). At the
end of the synchronization we obtain two
syntactically equivalent artifacts.

4 CONCLUSIONS

The accelerated spread of the DSLs requires the
development of tools to support the evolution of
both the visual and textual languages. This means
just the beginning towards the round-trip
engineering and incremental synchronization
between independently, and concurrently evolved
DSL models.

The presented synchronization technique
involves structural syntactic model-text differencing

and three-way AST merging. The main advantage is
that in contrast to typical text generation approaches,
it permits modifying the generated textual artifacts
and instead of losing the changes, they will be
synchronized back to the models. The modular
design allows the model-model and in addition the
text-text synchronization. On models where
semantic conflicts never occur, this approach can be
used efficiently.

ACKNOWLEDGEMENTS

This paper was supported by the János Bolyai
Research Scholarship of the Hungarian Academy of
Sciences.

REFERENCES
Angyal, L., Lengyel L., Charaf, H. 2008. Novel

Techniques for Model-Code Synchronization. In
Proceedings of The 3rd International ERCIM
Workshop on Software Evolution. Electronic
Communication of the EASST, 8.

Angyal, L., Asztalos, M., Lengyel, L., Levendovszky, T.,
Madari, I., Mezei, G., Mészáros, T., Siroki, L., Vajk,
T., 2009. Towards a Fast, Efficient and Customizable
Domain-Specific Modeling Framework. In
Proceedings of the IASTED International Conference.
Innsbruck, Austria.

ANTLR, 2010. ANTLR Parser Generator, http://
www.antlr.org

Chawathe, S. S., Rajaraman, A., Garcia-Molina, H.,
Widom, J., 1996. Change detection in hierarchically
structured information. In: Proceedings of
International Conference on Management of Data,
Montreal, Canada, pp. 493-504.

Eclipse EMF, 2010. http://www.eclipse.org/emf
Fritzson, P., Pop, A., Norling, K., Blom, M., 2008.

Comment- and Indentation Preserving Refactoring and
Unparsing for Modelica. In: Proceedings of 6th
International Modelica Conference, Bielefeld,
Germany, pp. 657-666.

Jouault, F., Bezivin, J., Kurtev, I., 2006. TCS: a DSL for
the specification of textual concrete syntaxes in model
engineering. In: Proceedings of Generative
programming and component engineering. Portland,
USA, pp. 249-254.

Krahn, H., Rumpe, B., Völkel, S., 2007. Integrated
Definition of Abstract and Concrete Syntax for
Textual Languages. In: Model Driven Engineering
Languages and Systems (4735), pp. 286-300.

Mens, T., 2002. A State-of-the-Art Survey on Software
Merging, In: IEEE Transactions on Software
Engineering. 28(5), pp. 449-462.

Xtext, 2010. http://www.eclipse.org/Xtext

TEXTUAL SYNTAX MAPPING CAN ENABLE SYNTACTIC MERGING

311

