
SOFTWARE RELEASES MANAGEMENT IN THE TRIGGER
AND DATA ACQUISITION OF ATLAS EXPERIMENT

Integration, Building, Deployment, Patching

Andrei Kazarov
CERN, Geneva, Switzerland, on leave from Petersburg Nuclear Physics Institute, Gatchina, Russian Federation

Mihai Caprini
National Institute of Physics and Nuclear Engineering, Bucharest, Romania

Igor Soloviev
Department of Physics, University of California Irvine, Irvine, U.S.A.

Reiner Hauser
Michigan State University, East Lansing, U.S.A.

Keywords: Software, Release, Package, Building, Maintenance, Patching, CMT, RPM.

Abstract: ATLAS is a general-purpose experiment in high-energy physics at Large Hadron Collider at CERN.
ATLAS Trigger and Data Acquisition (TDAQ) system is a distributed computing system which is
responsible for transferring and filtering the physics data from the experiment to mass-storage. TDAQ
software is developed since 1998 by a team of few dozens developers. It is used for integration of all
ATLAS subsystem participating in data-taking, providing framework and API for building the s/w pieces of
TDAQ system. It is currently composed of more then 200 s/w packages which are available for ATLAS
users in form of regular software releases. The s/w is available for development on a shared filesystem, on
test beds and it is deployed to the ATLAS pit where it is used for data-taking. The paper describes the
working model, the policies and the tools which are used by s/w developers and s/w librarians in order to
develop, release, deploy and maintain the TDAQ s/w for the long period of development, commissioning
and running the TDAQ system. In particular, the patching and distribution model based on RPM packaging
is discussed, which is important for the s/w which is maintained for a long period on the running production
system.

1 INTRODUCTION

ATLAS Trigger and Data Acquisition (TDAQ)
system (Atlas, 2003) is a distributed computing
system which is responsible for transferring and
filtering the physics data from the ATLAS
experiment to mass-storage. TDAQ project was
started in the middle of 1990's as a number of small
R&D projects. In 2010 TDAQ software is composed
of more then 200 s/w packages which are built for 2
Linux platforms. The following table gives the
overview of the s/w evolution in last 10 years in

terms of number of packages and supported h/w
platforms. The total number of source files in the
s/w is currently more then 10000.

Table 1: TDAQ s/w evolution.

year s/w version N of
packages Platforms

2000 0.0.9 18 SunOs, LynxOs, Linux
2002 0.0.17 27 SunOs, LynxOs, Linux
2005 1.4.0 136 Linux SLC3

2010 2.0.3 210
32 and 64 bit Linux SLC4
and 5, MacOs (partially)

220 Kazarov A., Caprini M., Soloviev I. and Hauser R. (2010).
SOFTWARE RELEASES MANAGEMENT IN THE TRIGGER AND DATA ACQUISITION OF ATLAS EXPERIMENT - Integration, Building, Deployment,
Patching.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 220-225
DOI: 10.5220/0003010802200225
Copyright c© SciTePress

The TDAQ s/w is providing framework and API
used by other ATLAS groups to develop s/w pieces
which are all together compose the s/w running the
ATLAS trigger and data-acquisition system at the
experiment pit. Therefore, the proper s/w release
development, deployment and maintenance policy is
important to guarantee the smooth evolution of the
s/w from the integration stage to the deployment and
patching on the running system.

The s/w is made available to users in forms of
regular s/w releases. The requirements for the s/w
development model and s/w releases are listed
below:

− support of h/w platforms and compilers
used in ATLAS

− support of debugging
− support for different programming

languages and s/w tool-kits: C/C++, Java,
Python, IDL, Qt

− support of external s/w, integration with
ATLAS-wide and CERN-wide s/w

− support for remote installation
− support for patching

The development environment provided to users
should support the model of developing a package or
set of packages against a particular release.

Releases must be installed on a shared file
system (AFS, managed by CERN IT) for the testing
and development, made available for download for
the remote institutes and test labs and finally be
installed for the use at ATLAS pit for data-taking.

Before being released, a stage of integration and
testing of the s/w is necessary to guarantee the
quality and functionality of the s/w.

Still being in the development stage, the s/w was
actively used for integration with ATLAS
subdetectors and for commissioning the system at
the test beams (Gadomski, 2006).

To conclude, the s/w release model and tools
must provide the functionality and flexibility which
allow the development of TDAQ s/w, its testing and
validation, the deployment for remote labs and
institutes, the integration with the ATLAS
experiment production s/w, and finally the
maintenance of the s/w through the years of the life
of the experiment.

2 S/W RELEASE MODEL

2.1 Definitions

Package: an independently developed piece of s/w
providing some well-defined functionality in form of
libraries, applications and data files. Normally there
may be few developers contributing to a package.
Typically the source code of a Package resides in a
separate area in a code repository (e.g. SVN, see
Section 3.1).
Version Tag: a reference in the code repository
which uniquely defines some version of a package.
Usually it has a form of <package>-MM-VV-PP.
Platform: a combination of h/w and s/w tags which
identifies the type of binaries to be built. For
instance: i686, Linux slc5, gcc43, debug, profiled. A
release is build for a number of platforms (Section
3.2.2).
Release: a set of tagged packages built together for a
number of platforms, providing some well defined
and documented functionality for end users and
made available for distribution. It is a way in which
all efforts of developers of many packages is
exposed to users in a common structure.

2.2 Release Policy and Live Cycle

The release policy should provide a good balance
between moving the s/w forward and keeping it
stable for end users. Two types of releases are
foreseen by the model: major releases and minor
releases. Major releases may contain important
changes in the architecture of s/w, new functionality
and API changes in packages, database schema
changes and other similar changes which require
some actions from end users.

Minor releases may contain some internal
changes which do not require code changes at user's
side.

In addition, a patching schema is foreseen, where
a particular problem may be fixed by a binary patch
to a package in the release which is already deployed
to the system.

In the last years when the major development
was done, 2-3 major releases per year were
produced, and each one may be followed by 1-2
minor releases. In the present condition, when the
release is used for data-taking in ATLAS pit, no
major changes in s/w is possible, and all
maintenance and implementation of new required
features is made via the patching mechanism which
is described in more details in Section 4.

SOFTWARE RELEASES MANAGEMENT IN THE TRIGGER AND DATA ACQUISITION OF ATLAS
EXPERIMENT - Integration, Building, Deployment, Patching

221

On Figure 1 the life cycle of a typical TDAQ
release is presented.

Integration
(nightly builds)

Integration
(nightly builds)few months

buildbuild2-3 days

validationvalidation

deployment &
maintanance

deployment &
maintanance1-1.5 years

1 month

patching
Figure 1: s/w release cycle.

The integration phase is finished when all the
required functionality is available and all packages
are successfully built altogether the nightly build
(Section 2.4). Then the release is built and made
available for testing on the shared filesystem and on
the dedicated labs for the validation phase. In case of
major problem found in this phase, the release may
be rebuilt including new tags of packages which
failed in the validation.

After validation phase, the release made
available for download and can be deployed to the
production sites. From this point, the patching
procedures are activated (Section 4.1.2).

2.3 Scope of TDAQ s/w, External
Dependencies

2.3.1 Scope and Projects

TDAQ s/w is organized in a tree of “projects” or
sub-releases: tdaq-common, dqm-common and main
tdaq release. Such factorization made possible the
integration of TDAQ s/w with other ATLAS s/w
projects as shown in Figure 2.

Such integration allows to use many commonly
used packages provided by other projects (described
in the next section) but from other side it dictates the
platforms and compilers which can be used in the
project and also directly affects the time schedule of
s/w releases.

tdaq-commontdaq-common

dqm-commondqm-common

LCGCMTLCGCMT

tdaqtdaq

High-Level TriggerHigh-Level Trigger

ATLAS OfflineATLAS Offline

ATLAS detectorsATLAS detectors

Figure 2: integration of TDAQ s/w projects with other
ATLAS projects and external s/w.

2.3.2 External and Third-party s/w

The following third-party s/w packages are widely
used within TDAQ s/w:

Boost (version 1.39), Python 2.5, Qt4, Java
1.6.0, Oracle v10 client, ROOT 5.0.22.

These packages are built and maintained by
other teams and are accessed by other projects from
LCGCMT project (LCG, 2010).

Some other more specific packages are
integrated and built within TDAQ release:
OmniORB (a CORBA implementation), CLIPS
(expert system framework) and maintained as other
TDAQ s/w packages.

2.4 Nightly Builds

Regular “nightly” builds are performed on a shared
filesystem during the night hours, so every day
developers access the most fresh versions of all
packages built together as “nightly” release.

Nightly builds are the main area for the
integration of new developments and the target for
regular automatic validation tests.

Figure 3 shows a fragment of the web page
which displays the results of a nightly build in form
of a table. In the first column all packages and their
versions used in the build are listed. Other columns
correspond to the platform used in this build, e.g.
i686-slc4-gcc-34-opt. For every package and
platform combination, the log files from the make
and check targets are accessible.
In case of failure of the make or of the check target
of a package, an e-mail is sent to the responsible
developers of that package, as defined in the
package configuration file.

When a particular nightly release is successfully
built for all essential packages and platforms and
passed some validation checks, it is installed in more
permanent area and thus it can used by developers in
case the most fresh nightly build is failed by some
reason.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

222

Figure 3: Web page with nightly release build table
(fragment).

2.5 Developers Guidelines

A typical working mode of a developer includes the
following steps:
• check-out a package (or few packages) from

code repository
• prepare a package and build it against a release
• check the functionality of the package
• commit and tag the package in the code

repository
• submit the tag for the release build

Normally developer has a number of packages in
his working area. The mechanism is provided to
build the run-time environment such that this area is
taken into account when developer runs the s/w in
order to validate the changes before committing the
changes back to the code repository.

3 DEVELOPMENT TOOLS

3.1 Code Repository

The SVN code management system (SVN, 2010)
and repository is used for keeping the user's code
and tracking the changes. In the earlier stages, CVS
system was used, but since the global CERN policy
and support was moved to SVN, TDAQ project
moved the code repository to SVN as well. The
web-access to the repository is made available via
Trac [http://trac.edgewall.org/] and WebSVN
systems [http://svnweb.cern.ch/world/wsvn].

3.2 Development Tools

3.2.1 CMT: Configuration Management

CMT stands for Configuration Management Tool
(CMT, 2010). It was approved as a principal tool for
configuring the build and the runtime environment
in ATLAS.

CMT is not a full-featured s/w release tool, but
rather a low level configuration tool. A number of
policy files, make fragments and scripts were
developed in order to implement all the functionality
required for a release build tool.

CMT allows to describe what is provided by a
package in a special 'requirements' file and to avoid
writing ordinary makefiles for different platforms. A
requirements file includes all settings for building
libraries, applications and custom targets, and also
for defining the runtime (shell) environment which
is used for running the s/w. Essentially CMT
provides a number of make fragments, such that they
are built together and made used from the top-level
makefile when developer runs the standard “make”
command.

CMT packages can “use” other packages, thus
giving the possibility to create dependencies
between packages and to organize a group of
packages - in other words called “releases”. The
build and run-time settings are inherited through the
“use” chain.

3.2.2 Compilers and Build Platforms

The GNU compiler collection (GCC) is used as a
primary compiler for the s/w. The current version in
use is 4.3.2 on SLC5 Linux. Given the fact that
TDAQ s/w is used in scope of other projects and
also uses external s/w (see Section 2.3.2), the
supported version of the compiler is defined at the
experiment level.

The build platform tag is composed of 2 parts:
the h/w part which defines the hardware and the OS
(e.g. i686-slc5) and the s/w part which defines
compiler and compiler options (e.g. gcc43-opt).

Later these tags are used to select which binaries
can be started on particular nodes in the TDAQ
system.

The following table summarizes currently
supported build configurations.

SOFTWARE RELEASES MANAGEMENT IN THE TRIGGER AND DATA ACQUISITION OF ATLAS
EXPERIMENT - Integration, Building, Deployment, Patching

223

Table 2: Supported build platforms.

Tag Details
i686-slc4-gcc34-opt 32 bit, SLC4 Linux, gcc34

compiler, optimised code

i686-slc4-gcc34-dbg debug (-O0 -g)

i686-slc5-gcc43-opt 32 bit, SLC5 Linux, gcc43
compiler, optimised code

i686-slc5-gcc43-dbg debug

x86_64-slc5-gcc43-opt 64 bit, SLC5 Linux, gcc43
compiler, optimised code

3.2.3 Distributed Compilation

To achieve maximum performance of the releases
builds, a number of techniques is used:

• release for each platform is build
independently

• independent packages within a release are
built in parallel, using CMT tbroadcast tool

• a combination of multi-job feature of gmake
(“-jN”) and distcc (distributed CC) is used to
fully utilize a cluster of multi-core build
nodes

The described approach allows to build the
whole TDAQ release for one platform in 1-2 hours.

3.2.4 Installation Policy

After the build, all items which a package is
contributing to the release are installed in a common
installation area, according to a pre-defined layout.
Typically the sequence of gmake commands issued
by a user looks like

> gmake && gmake inst

A number of installation pattern are defined in
the TDAQ CMT policy package, allowing
developers to install different types of files
according to a predefined layout of the installation
area. The following type of files may be installed:
binaries (libraries, applications); scripts; Jar
archives; Python scripts and libraries; package data
files (e.g. images); examples; documentation.

The common installation area essentially forms
the distribution of the release which can be exported
for external use.

3.2.5 Check Target

Every package may provide a way to test it's basic
functionality e.g. by building and executing some
test application or by launching more complex

scenario from a script. This is done in special
“check” target which is normally launched after the
installation phase.

> gmake && gmake inst
> gmake check

During the nightly builds, check targets are
launched automatically for all packages, thus
helping to spot some basic problems with the s/w.

3.3 Documentation

Standard LXR and Doxygen documentation (for
Java and C++) are generated for every release,
including nightly builds.

In addition, each package provides “release
notes” which are distributed with the package, and
also a combined digest of all changes in the release
is generated.

3.4 Debugging and Profiling Tools

The memory debugging and performance profiling
tools are important to guarantee the quality of the
s/w. We widely use valgrind (Valgrind, 2010) tool
for finding memory allocation problems and for
code performance profiling (“cachegrind”).
Unfortunately this tool is difficult to use to debug
race-condition related errors in a network and multi-
threaded environment environment, because it
executes the code in scope of a virtual machine
which slows it down by few tens times.

4 DISTRIBUTION AND
PATCHING

4.1 RPM: Distribution and Installation
Tool

Initially the release was distributed as a number of
“tar-ball” files by a helper script. Later, we have
chosen the standard in the Red Hat Linux world
RPM (RedHat Package Manager, (RPM, 2010)) as
the main distribution and installation tool.

During the installation phase of the make
process, a record is kept on which files get installed
in the installation area and later this list is given to
RPM build tool to build RPM packages. Every CMT
TDAQ package is packaged as a number of RPM
packages, according to the following convention:

<release>_<package>_<tag>-<version>.noarch.rpm

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

224

Where <tag> is either the binary tag for binaries
for particular platform (tag), or “noarch” for
platform independent file or “src” for package
sources. Such scheme gives the flexibility to install
only required subset of the s/w release.

Given the number of involved projects, packages
and dependencies between them, to facilitate the
installation procedures, the apt repository manager is
used (Apt, 2010). It is capable to access a number of
RPM repositories, resolve dependencies and
download packages for further local installation with
RPM.

4.2 Patching Policy and Experience

Initially the whole release was distributed as a small
number of big RPM packages without the possibility
to install or update an individual package. This
caused problems for the patching policy for TDAQ
s/w, where it was required to have a possibility to
easily install a new ("patched") version of a
particular package without disturbing the rest of the
s/w and also a possibility to roll-back the patch i.e.
to install the previous version of the package.

To fulfil this requirement, the granularity of
packaging was changed such that each CMT
package can be distributed independently. CMT
version of a package (which corresponds to tag in
SVN) is transformed in the RPM package version.
With such schema, a patch for the release is just a
new RPM version of a particular package. Thus, a
package can be upgraded or downgraded in a
relatively short time, which is essential in the
condition when the intervention to the running
system is very limited in time and must be done
smoothly and as quickly as possible.

The building of new versions of packages are
fully automated, developers simply needs to submit
a new tag to the build system.

Currently the joint ATLAS s/w RPM installation
at ATLAS pit contains about 2500 packages holding
2.5 million files which take almost 90 Gb of the disk
space. Such a scale makes it a challenge for the
packaging tool.

5 CONCLUSIONS

The paper presented an overview of the model,
policies and tools for software releases management
in a big ATLAS TDAQ project. The feature of this
project is that it's s/w has being actively developed
through last 10 years by a big distributed team of
developers and at the same time was widely used in

validation and production environment of the
ATLAS experiment, where it will be maintained in
another 10 years.

It is shown that the developed s/w release model
and tools fulfil this demanding requirements and
conditions. The key aspects of the model and the
basic tools used for the implementation are
described, emphasising the policies used for
maintaining the s/w on a productions system through
the coming years of running the ATLAS experiment.

REFERENCES

ATLAS Collaboration, 2003. ATLAS High-Level Trigger
Data Acquisition and Controls Technical Design
Report, CERN/LHCC/2003-022.

Gadomski, S. et al, 2006. Deployment and Use of the
ATLAS DAQ in the Combined Test Beam, Nuclear
Science, IEEE Transactions on Volume: 53 , Issue: 4 ,
2006 , Page(s): 2156 – 2161.

LCG, 2010. LCG-AA Software Elements, Available at
http://lcgsoft.cern.ch/ [Accessed 30 March, 2010]

SVN, 2010. Central SVN Service, Available at http://
svn.web.cern.ch/svn/index.php [Accessed 30 March
2010].

CMT, 2010. CMT Configuration Management Tool.
Available at http://www.cmtsite.org/ [Accessed 30
March 2010].

Valgrind, 2010. Valgrind 3.3 -Advanced Debugging and
Profiling for GNU/Linux applications. Available at
http://www.network-theory.co.uk/valgrind/manual/
[Accessed 30 March 2010]

RPM, 2010. Maximum RPM, Available at http://
www.rpm.org/max-rpm/ [Accessed 30 March 2010].

APT, 2010. Advanced Packaging Tool, Available at http://
en.wikipedia.org/wiki/Advanced_Packaging_Tool.
[Accessed 30 March 2010].

SOFTWARE RELEASES MANAGEMENT IN THE TRIGGER AND DATA ACQUISITION OF ATLAS
EXPERIMENT - Integration, Building, Deployment, Patching

225

