
FLEXIBLE DATA ACCESS IN ERP SYSTEMS

Vadym Borovskiy1, Wolfgang Koch2 and Alexander Zeier1

1Hasso-Plattner-Institute, Potsdam, Germany
2SAP AG, Walldorf, Germany

Keywords: ERP data access, Business object query language, Navigation in ERP systems, Enterprise composite applica-
tions, UI customization.

Abstract: Flexible data access is a necessary prerequisite to satisfy a number of acute needs of ERP system users and
application developers. However, currently available ERP systems do not provide the ability to access and
manipulate ERP data at any granularity level. This paper contributes with the concept of query-like service
invocation implemented in the form of a business object query language (BOQL). Essentially, BOQL provides
on-the-fly orchestration of CRUD-operations of business objects in an ERP system and allows to achieve
both the flexibility of SQL and encapsulation of SOA. To demonstrate the power of the suggested concept
navigation, configuration and composite application development scenarios are presented in the paper. All
suggestions have been prototyped with Microsoft .Net platform.

1 INTRODUCTION

Flexible data access is essential for Enterprise Re-
source Planning (ERP) systems. Efficient retrieval
and manipulation of data are required to address a
number of acute needs of ERP systems users and ap-
plication developers. By interviewing users of ERP
systems we found out that two the most common re-
quirements of every-day system users are: (i) efficient
navigation among ERP data and (ii) user-specific con-
figuration. The first one means dynamic and fully
automatic discovery of information semantically rel-
evant to a given user in a given context. For example,
when a sales manager views customer details the sys-
tem provides a list of links to invoices not paid by the
customer or a list of links to products ordered over
the last six months by this customer. By clicking the
provided links (basically shortcuts) the manager can
navigate to relevant data with minimum effort. The
second requirement means that a pre-packaged sys-
tem must support user-specific views on top of stan-
dard data structures. For example, a sales order in
SAP R/3 has hundreds of fields, most of which are
never used. Despite this all fields are displayed at the
sales order entry form. This complicates the form and
slows down order processing.

To satisfy these requirements an ERP system must
support data retrieval and manipulation at any granu-
larity level. Indeed, if an ERP system had applica-

tion programming interface (API) allowing to query
any piece of data and assemble dispersed data piece
in a single result set, the two requirements would be
feasible to fulfill. In fact, a solution to the second
one would become trivial. A personal configuration
would be nothing else but a set of queries return-
ing/processing only relevant attributes. The naviga-
tion challenge could also be resolved in the same way:
the list of links could be constructed based on the re-
sult set of queries. More details on that can be found
in the Section 3.

In addition to the user needs flexible data access
is relevant for ERP application developers in a num-
ber of use cases. A series of interviews conducted
by the authors revealed the need for an API as dis-
cuss above for integration and extension scenarios. In
the first case, the lack of a convenient API prevents
application developers from exchanging data between
an ERP system and other software used by an enter-
prise. In the second case, current poor APIs signifi-
cantly complicate the development of enterprise com-
posite applications (ECAs) on top of ERP systems.
Enterprise composite applications have become a pri-
mary tool of extension and adaptation of enterprise
software. They allow application developers to add
features to ERP systems and, thus, view an ERP sys-
tem not as a product but as a platform exposing data
and functionality, which can be reused/recombined in
new ways. Turning an ERP system into such a plat-

96
Borovskiy V., Koch W. and Zeier A. (2010).
FLEXIBLE DATA ACCESS IN ERP SYSTEMS.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages 96-104
DOI: 10.5220/0002976700960104
Copyright c© SciTePress



form inevitably requires a quite high degree of system
openness and, thus, appropriate API.

The current work contributes with the concept
of query-like service invocation implemented in the
form of a business object query language (BOQL).
BOQL is the corner stone of the API offering both
the flexibility of SQL and encapsulation of SOA. Sec-
tion 2 of the paper presents this concept along with
a prototype demonstrating the idea in practice. Sec-
tion 3 demonstrates the application of BOQL to the
challenges and needs discussed above. Section 4 con-
cludes the paper.

2 FLEXIBLE DATA ACCESS

Data access API of an ERP system highly depends on
internal details of the system. Not all architectures
can efficiently support data access from outside of the
system. In fact, most of the systems never allow such
access. Data accessibility means an ability to access
the data model (or metadata) and actual data storage.
In other words, users need to know how their business
data is structured and how they can retrieve the data.

2.1 State of the Art

A straightforward approach to data access can be
to use SQL. Since ERP systems rely on relational
databases, issue SQL statements could be issued di-
rectly against the databases to retrieve required data.
Although SQL is natively supported by the underly-
ing databases, this approach is unlikely to deliver the
expected results. SQL statements need to be written
against an actual schema of a database. The schema of
an ERP system is very complex and is not intended to
be directly used by customers. In fact, it is considered
to be private and therefore is hidden from users. ERP
vendors can use the concept of views on top of the in-
ternal database. On one hand views can hide data or-
ganization and internals. On the other hand views can
reduce the essential complexity of the schema from a
customer’s perspective by exposing only a subset of
the schema relevant to a given customer or a group of
customers. So why not to use SQL against views as a
data accessing API?

The problem with this approach is that it vio-
lates the data encapsulation principle. Basically SQL
against views exposes too much of control over the
underlying database and greatly increases the risk of
corrupting data in the system. An ERP system is not
only a collection of structured data, but also a set
of business rules that apply to the data. Generally
these rules are not a part of the system’s database.

Direct access to the database circumvents the rules
and implies data integrity violation. Therefore, to en-
force the rules the direct access to data by any means
is strictly prohibited. To enforce business rules and
further increase the encapsulation semantically re-
lated pieces of data are grouped together with busi-
ness logic (expressed in a programming language)
to form a monolithic construct called business ob-
ject. This allows to hide actual data storage behind
an object-oriented layer. Grouping data and business
logic in business objects simplifies the consumption
of data from a programming language. For these
reasons ERP systems can be seen as object-oriented
databases. In this case SQL against views as data ac-
cess API is inappropriate.

An alternative to SQL against views can be data
as a service approach. In this case a system ex-
poses a number of Web services with strictly de-
fined semantics. By calling operations of these ser-
vices required data is retrieved. For example by call-
ing ReadSalesOrder(soId) operation of SalesOrder-
Management service full information on a sales order
given its ID can be retrieved. This approach has an
advantage of hiding internal organization of data. In-
stead of a data schema a set of operations that return
data are exposed by a system. By choosing opera-
tions and calling them in an appropriate sequence re-
quired data can be retrieved. Because of using Web
services this approach is platform independent. In
fact, the data as a service approach has been very pop-
ular. SAP, for instance, has defined hundreds of Web
service operations that access data in Business Suite.
Amazon Electronic Commerce service is another ex-
ample of such approach. However, this method has
two serious disadvantages: lack of flexibility and high
cost of change. Although an ERP system vendor
can define many data accessing operations, they will
never cover all possible combinations of data pieces
of an ERP system. Often these operations are lim-
ited to one business object. ECAs on the other hand
address very specific or fine-granular needs and de-
liver value by assembling information coming from
different locations of a system. Therefore, the granu-
larity of data services does not match the granularity
of ECAs’ operations and the services cannot provide
adequate support for the ECAs. For this reason ECAs
need to issue multiple service calls and combine a re-
sult set on their own. This greatly complicates the
development of ECAs and undermines their perfor-
mance. This situation clearly demonstrates the advan-
tage of the SQL against views approach. The ability
to construct fine-granular queries that fully match the
information needs of ECAs makes SQL a much more
flexible API than data as a service.

FLEXIBLE DATA ACCESS IN ERP SYSTEMS

97



High cost of change has to do with evolution.
Over its lifecycle an ERP system will go through a
number of changes. If these changes affect internal
data organization most probably all data services that
work with affected data structures will need revision.
In the worst case a subset of data service operations
may become irrelevant and require full substitution.
Revising these operations is costly. The situation ex-
acerbates if changes to service operations make their
new versions incompatible to previous ones. This im-
plies failures in ECAs that already consume previ-
ous versions. The SQL against views approach has
less cost of change. A set of views that map the
old schema to the new one localizes changes on the
database level and does not require the revision of all
outstanding ECAs.

As one can see both approaches have advantages
and disadvantages. SQL as a data access API gives
great flexibility by allowing to construct queries that
match the granularity of a user’s information needs.
However, SQL exposes too much control over the
database, circumvents business logic rules and binds
ECAs to a specific implementation platform. The data
as a service approach on the other hand enforces busi-
ness rules by exposing a set of Web operations which
encapsulate data access and hide data organization.
However, the granularity of the exposed operations
does not match that of a user’s needs, which creates
inflexibility and hits performance. Furthermore, data
as a service approach has high cost of changes.

2.2 Business Object Query Language

In this subsection we contribute with an idea of
how to combine the advantages of discussed ap-
proaches while eliminating their disadvantages and
propose a concept called business object query lan-
guage (BOQL).

It is clear that accessing raw data directly and
circumventing business logic contradicts with data
encapsulation. For this reason business objects ap-
peared. They fully control the access to the data and
protect the integrity of data. From external perspec-
tive business objects are simply a collection of seman-
tically related data, e.g. invoice, bill of material, pur-
chase order, and a number of business operations that
can be performed on the data, e.g. read, create, etc. A
business object can be represented as set of data fields
or attributes, e.g. id, count, name, and associations or
links with other business objects, e.g. a SalesOrder
is associated with a Customer and Product business
objects.

Despite the diverse semantics of business objects
they all have the same structure (an array of attributes

and associations) and behavior (a set of operations).
The most basic set of operations a business object
supports is known as CRUD - Create, Retrieve, Up-
date, Delete. Although too generic, this set of op-
erations has an advantage that any business object
can support it. Therefore, all business objects can
be derived from the same base class featuring the
mentioned arrays (of attributes and associations) and
CRUD-operations. Such uniform behavior and struc-
ture allow to introduce a query language for business
objects very much like SQL for relational entities. We
propose the following scenario:

1. A programmer composes a query, the description
of what to retrieve from the system, according to
some SQL-like grammar and sends the query as
a string to the system via a generic service opera-
tion, for example ExecuteQuery.

2. The system parses the string to detect present
clauses (from, select, where, etc.) and builds a
query tree - an internal representation of the query.
The tree is then passed for further processing to
a query execution runtime, very much like in a
DBMS).

3. Using the from clause the runtime obtains refer-
ences to the business objects from which the re-
trieval must be performed: source business ob-
jects. Then the runtime traverses the query tree
in a specific order and converts recognized query
tokens to appropriate operation calls on the source
business objects. For example, tokens from select
clause are converted to Retrieve or RetrieveByAs-
sociationChain operations, while tokens from up-
date clause are converted to Update operations.

4. Having constructed the call sequence, the runtime
binds corresponding string tokens to the input pa-
rameters of CRUD-operations. For example, the
token Customer.Name of the select clause is inter-
preted as a call to Retrieve operation with the in-
put parameter value ”Name” on the business ob-
ject Customer. Now everything is ready to per-
form the calls of CRUD-operation in the on-the-
fly constructed sequence. The last step the run-
time performs is the composition of result set. Af-
ter that the result is formatted in XML and sent
back to the calling programm.

In its essence the query language performs orches-
tration of calls to objects’ operations based on user-
defined queries. These queries are transformed to
a sequence of operation calls that yield the required
data. Business object query language has an advan-
tage of supporting fine-grained queries as in the case
of SQL without circumventing business rules as in
the case of the data as a service approach. Such an

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

98



approach is allowed by a uniform representation of
business objects (in terms of the structure and behav-
ior).

An important question to answer is what grammar
the business object query language must have. We
think SQL- or XQuery-like grammar is the most ap-
propriate choice. The former one assumes business
data to be organized as a set of relations. The later one
sees business data organized in documents. Both no-
tations are of equal power and allow for querying at a
business object level (meaning the attributes of a sin-
gle object) and at a cross business object level (mean-
ing business object joins). The semantics of both sug-
gested grammars is straightforward to understand by
developers. In fact, many of them may have already
worked with either one, and hence will quickly learn
the business object query language. An ERP provider
can support both (SQL- and XQuery-like) notations.
In the subsection 2.3 we will briefly mention what is
needed for this.

Although the suggested approach offers great ex-
tend of data access flexibility, it creates a number of
challenges. The first one is the development of the
query parser. If an ERP provider decides to support
most of the SQL features/syntax, the implementation
of the parser (and runtime) will require high effort.
Therefore, there is no sense in pursuing the suggested
approach for systems with simple data schema. For
large systems like SAP Business ByDesign, where
there are hundreds of business objects with dozens of
associations and attributes each, this approach is more
preferable. The parser and the runtime are indepen-
dent from business objects. Once the both have been
developed a provider can use them without changes to
expose new objects.

Our second concern regarding business object
query language is performance. Users may create
very complex queries and thus put a high workload on
the system. Given the fact that the system is planned
to be shared by many customers, a high workload
generated by one customer application can potentially
affect the performance of other customers’ applica-
tions. What is more disturbing is the fact that arbitrary
queries may destroy the performance of the underlay-
ing database. Every database management system has
internal query optimizer and a set of system tables ac-
cumulating the operational statistics. Given the statis-
tics and database metadata (primarily the information
on indices and the size of tables), the optimizer com-
putes the query execution plan that ensures the highest
possible performance for a given query in a given sit-
uation. The problem here is that the optimizer adjusts
itself to the most frequent types of queries. But from
time to time it will encounter a query for which it will

Figure 1: The architecture of the test system.

generate the plan much worse than its default plan,
meaning that optimization will only worsen the per-
formance. Such situations happen periodically with
many databases. The reason for this is that the internal
statistics has been computed for completely different
types of queries and the system has sharpened itself
for those queries. In such situations the optimizer can
generate a weird plan (e.g. use wrong index ) and
the query will block the system for some time. In the
worst case such rare queries may trigger the recalcu-
lation of the statistical information and readjustment
of the optimizer, which blacks the whole system for
much longer time.

In our implementation we have not experienced
such performance problems for the reason we have
cached the data in in-memory tables and did not issue
on the fly any queries to the underlaying database. In
fact, using in-memory data storage solves the perfor-
mance problem mentioned above. Nevertheless, we
believe that such a problem is worth an additional re-
search and investigation.

2.3 Suggested Architecture

The current subsection demonstrates how an ERP sys-
tem can support BOQL. The Figure 1 sketches the
architecture of a prototyped system. BOQL is im-
plemented by two elements: a business object engine
and a query engine: the former manages business ob-

FLEXIBLE DATA ACCESS IN ERP SYSTEMS

99



jects in a way BOQL assumes1 and the latter provides
access to them from outside of the owning process
via a query-like interface. These two elements are in-
stances of BoEngine and QueryEngine classes respec-
tively. Both are created at the system’s startup time.
Business object engine is instantiated first to assem-
ble business objects and store references to them in a
pool. Then the instance of the query engine is created.
It has access to the pool and thus can manipulate the
objects.

Every business object encapsulates an in-memory
table to cache data. The in-memory table is populated
with data taken from a private database. Every object
also encapsulates logic to synchronize its in-memory
table with the database. To the query execution run-
time an object is seen through its interface: a collec-
tion of attributes and associations to other objects and
a set of operations. How those are implemented is
completely hidden inside the object. Typically, at-
tributes and associations are bound to data fields and
relations of the underlying physical storage. In this
prototype we concentrate on two operations (acces-
sors) from the interface: Retrieve to get attributes of a
given object and RetrieveByAssociationChain to nav-
igate from one object to another via specified associ-
ations. These operations retrieve data from the under-
lying physical storage or the local cache according to
internal business logic. By default the accessors as-
sume one-to-one correspondence between a business
object’s logical and physical schemas. For example,
if an attribute Attr1 of a business object Bo1 is queried
the query runtime looks for data field named Attr1 in
a table corresponding to a given business object; if
an association Assoc1 of a Bo1 is queried the runtime
looks for a foreign key relationship corresponding to
the association and constructs a join.

Neither the business object nor its in-memory and
database tables can be directly accessed outside of
the owning process. The direct access to the data is
prohibited to enforce integrity rules and internal busi-
ness logic implemented by business objects. To ac-
cess the business data an external application must
use the standardized query-like interface exposed by
the query engine. When the latter receives a query it
parses it and transforms recognized tokens to corre-
sponding operation invocations. The result of these
invocations is put in XML format and sent back to a
client application.

As an implementation platform for the prototype
we chose .NET. The system is implemented as a Win-
dows service and the query interface is published as
a Web service hosted by Internet Microsoft Informa-

1meaning that it guarantees the compliance to CRUD-
interface

Figure 2: Business Object Graph.

tion Services (IIS). The Web service is meant to dis-
patch a query to the system and serves as a request
entry point. There is no other way to invoke or ac-
cess the system except for issuing a call to the Web
service. The physical data storage is implemented as
a Microsoft SQL Server 2005 database.

2.4 Exposing Business Object Model

Using BOQL requires the knowledge of business ob-
ject model, that is what business objects a system has,
what attributes and associations every business object
has. To communicate this information we use ori-
ented graphs. The vertices of a graph denote busi-
ness objects and oriented edges denote associations.
A set of attributes is attached to every vertex (see Fig-
ure 2). For the sake of compactness we will not list
the attributes on further diagrams. The graph plays
the same role for business objects as the schema for a
database. It depicts the structure of business data and
is essential to know to compose queries.

We have developed a tool called Schema Explorer
that automatically retrieves metadata from the test
system and builds a business object graph. Such a tool
greatly simplifies the creation of BOQL queries. This
tool provides a plenty of useful functionality: busi-
ness object search, association and attribute search,
finding connections/paths between any two business
objects, displaying a business object graph or its part,
intellisense support for query editor, test execution
of a query, to name just a few. The implementation
of metadata retrieval depends on the implementation
of the backend system. For the implementation pre-
sented in the subsection 2.3 the metadata about the
instances of business objects is obtained using the re-
flection mechanism of .Net Framework. Query engine
exposes a number operations which internally use re-
flection in order to query the business object meta-
data. For example, if a developer wants to know what
business objects a system has the tool calls an oper-
ation which scans the pool and obtains the types of
business objects instantiated by the system. To look
up the list of associations of a given business object,

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

100



say Customer, the tool issues a call to another oper-
ation that gets the names of elements in the Associa-
tions array of the corresponding business object. Be-
cause business object model does not change (at least
should not) we cache metadata in order to avoid the
reflection overhead.

2.5 Sustaining Changes

The flexibility of BOQL in supporting fine-grained
queries comes from the way it is designed, but the
ability to sustain changes is not straightforward to see.
In fact, if the business object graph changes, previ-
ously written queries and thus all applications issuing
these queries may become invalid. The situation is
the same as in the case of changing the schema of a
database - existing SQL queries are not guaranteed
successful execution. Therefore, the suggested archi-
tecture must be augmented with a compatibility assur-
ance tool that minimizes incompatibility in the case of
changing the business object graph.

A literature review showed that in the case of re-
lational and object-oriented databases the view mech-
anism can be applied to cope with schema changes
(Curino et al., 2008), (Banerjee et al., 1987), (Brats-
berg, 1992). The prime tool for view support in
relational and object-oriented databases is mapping
(Bertino, 1992), (Shiling and Sweeney, 1989), (Liu
et al., 1994), (Monk and Sommerville, 1993). The ar-
chitecture we proposed natively supports mappings.
That is, mappings can be seamlessly embedded into
the system. The mappings can be supported in two
ways: by means of data access plug-ins and query
rewriting.

The first approach is based on substitution of de-
fault association and attribute accessors (Retrieve and
RetrieveByAssociationChain) with custom ones. This
is achieved by encapsulating a new accessor inside a
call-back operation and dynamically selecting this op-
eration when handling a data request. Associations
and attributes that have or require custom accessors
we call virtual. The set of all virtual elements of a
business object is called the view of the business ob-
ject. Every time a virtual element is called a custom
accessor implementing the mapping is invoked. This
accessor is implemented as a callback operation of a
feature pack that is dynamically loaded by the system
when it encounters a query addressed to the older ver-
sion of the schema for the first time. Having loaded
the feature pack the system plugs in the custom ac-
cessor into the runtime of the query engine. In the
prototyped system we used reflection mechanism to
redirect calls from default to custom accessors.

The second approach is based on altering a query

while it is being parsed. Before converting a query
token to an appropriate operation call the parser looks
up a correspondence dictionary to find the actual path
to the asked attribute or association, rewrites the token
and re-parses it to get a valid operation call.

3 APPLYING BOQL

3.1 Profile-based Configuration

The idea of profile-based user configuration aims at
enabling end-users of a system to customize the sys-
tem’s presentation layer according to their own pref-
erences. This is achieved as follows. With the help
of Schema Explorer end-users discover information
in an ERP system that they are interested in. They
simply select business objects of interest and select
the attributes they want to see for every object. Then
with the help of the same tool they generate BOQL
that retrieve/change these data and store these queries
in a structured way in a personal profile. Next, when a
user logs in to the system the later picks up the user’s
profile executes necessary queries and presents the re-
sults to the user.

In our prototype we have implemented user inter-
face layer with Microsoft Silverlight. The UI is capa-
ble of automatically generating three different types
of frontend forms: (i) business object summary form:
lists all instances of a certain type with a short de-
scription for each instance; (ii) drilldown form: lists
detailed information on a particular business object
instance; (iii) related items form: lists instances of
other business objects that are connected with a given
object instance. Figure 3 illustrates two forms: the
upper one is a summary of all customers in the sys-
tem, and the lower one is a drilldown form for a par-
ticular instance of a sales order business object. The
related items form is essentially the same as the sum-
mary form. There is no difference in rendering them.
The only difference is the actual BOQL query, the re-
sult of which populates the form. On the right side
of the figure there is a profile from which the forms
were automatically generated. One can see that a user
called ”Purchase01” is interested in business objects
Customer, Opportunity, Material, Sales order, etc. (all
second level elements of the tree). Within each object
there is a list of fields that must be displayed for the
object. For ”Customer” the fields are name, status and
id. An object instance can also have related items as-
sociated to it. For example, when the user looks up an
instance of a sales order they might be willing to nav-
igate to services, quotes and opportunities associated
to this particular sales order. Note that the profile is

FLEXIBLE DATA ACCESS IN ERP SYSTEMS

101



Figure 3: User interface forms and profile configuration.

fully configurable and no query is executed before the
user has explicitly clicked a corresponding link.

To save time and effort of end users an ERP sys-
tem vendor can create a number of role-specific con-
figuration profiles, which users may adjust according
to their needs.

3.2 Navigation in ERP Systems

An ERP system stores all facts and figures about
a company’s business activities in a structured way.
Conventionally the data are stored in a normalized
way. This means that data generated by the same
business process is very likely to be split into pieces,
which will be stored separately. Therefore, it is al-
most for certain that semantically related data pieces
will be disjoint by the system. Even though business
objects aim at creating a semantically complete enti-
ties, they do not reassemble business data completely
after the data is normalized at the storage level of the
system. The bigger the company the more diverse and
complex data structures get and the more complicated
the reassembly becomes. This results in a partial loss
of semantical links between data in the ERP system.
The reason is that many semantical relationships are
not modeled at the database level. For example in
SAP R/3 system, there is no direct physical relation-
ship between a customer and invoice entities. They
are connected via a sales order. Therefore, if a user

wants to know if a customer paid their invoices the
user needs to find first all sales orders of the customer
and then check all associated invoices. This is not
practical.

The field research we conducted, showed that
users of ERP systems are struggling a lot with this
problem. They often find that even though their sys-
tem stores all information they need, they cannot get
it quickly because of the missing links. We have ob-
served that a user opens on average 3 to 6 windows,
performs 10 to 20 mouse clicks and types 15 to 30
characters to get semantically related data. This re-
sults that an employee spends considerable amount of
their working time on searching and looking up data
in an ERP system.

The ability to handle the corporate data efficiently
greatly improves the productivity of the company’s
employees. The opposite is also true. If an employee
needs to spend considerable amount of time to look
up transactional or master data in an ERP system, the
employee’s productivity significantly drops. Unfortu-
nately, this is often the case. BOQL in combination
with the Schema Explorer and user profiles can solve
this problem completely.

To reconstruct semantical links between business
objects we run a path search algorithm on the business
object graph. In the example above the user would
need to select in Schema Explorer the Customer busi-
ness object as the starting point and CustomerInvoice
as the target business object. Then the tool would use
a modification of a graph traversal algorithm to find
a path from the source to the target and convert this
path to a BOQL query. After this the user just needs
to update their profile (the section Related Items of
the Customer business object). Next time when the
user opens customer details screen a corresponding
link will appear (see Figure 3).

3.3 Enterprise Composite Applications

A composite application (CA) is an application gen-
erated by combining content, presentation, or appli-
cation functionality from a number of sources. CAs
aim at combining these sources to create new useful
applications or services (Yu et al., 2008). An enter-
prise composite application is a CA application which
has an ERP system as one of its sources2. CA access
their sources via thoroughly specified application pro-
gramming interface (API). The key characteristics of
a CA are its limited/narrowed scope and straightfor-

2From now on we consider only enterprise composite
applications. The terms ”CA” and ”ECA” for the sake of
brevity are considered to mean the same in the rest of the
paper.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

102



ward result set. CAs often address situational needs
and provide replies to fine-grained information re-
quests. They are not intended to provide complex so-
lutions for general problems rather they offer compact
answers to clear-cut questions.

CAs create value by pulling all data and services a
user needs to perform a task on a single screen. These
data and services can potentially come from many
sources, including an ERP system. Very often users
are confronted with a problem of having necessary
information and functionality distributed across many
forms. By creating a CA that assembles them on the
same screen users can substantially increase the pro-
ductivity of their work. Additional benefit here is that
a CA can present information in a way that meets per-
sonal preferences of a user.

The architecture we suggest natively supports CA.
The main enabler of composite applications is the
BOQL, which basically provides a mechanism for
query-like invocation of business objects’ services.
BOQL allows CAs to manipulate ERP data from out-
side of a system without violating internal business
logic. Because the query engine supports SOAP pro-
tocol, CAs can be developed and executed on any
platform that is suitable for a user and has support for
XML.

The process of developing CAs we see as follows.

1. A user3 figure out on which business objects they
want to perform custom operations. This depends
on the actual task and application domain. Then
the user composes BOQL queries that will return
the data from the business objects. To compose
the queries the user can use Object Explorer and
Schema Explorer tools described earlier.

2. Using SOAP interface of the query engine the user
executes the queries and retrieves ERP data.

3. Using selected programming language the user
develops code that operates on the selected data
and performs the required operations.

4. In case the CA needs to change the data in the
source ERP system it composes BOQL queries
that do so and executes the queries using the same
SOAP interface of the query engine.

In the following use case the flexible data ac-
cess of the suggested approach creates business value.
Consider a Web retailer that sells items on-line and
subcontracts a logistics provider to ship sold prod-
ucts to customers. The retailer operates in a geo-
graphically large market (e.g. the US or Europe4). In

3power user or application programmer
4The greater the territory and the higher the sales vol-

ume, the more relevant the case.

Figure 4: Schema of the Web retailer’s CRM.

this situation the consolidated shipment of items can
generate considerable savings in delivery and thus in-
crease the profit of the retailer. Consolidation means
that a number of sold items is grouped in a single
bulk and sent as one shipment. The bigger the ship-
ment size, the higher the bargaining power of the
retailer when negotiating the shipment with a logis-
tics provider. The savings come from price discounts
gained from higher transportation volume5. In this
way the retailer can lower the transportation cost per
sold product. The consolidation of shipment is done
anyway by all logistics providers in order to minimize
their operating costs6 By controlling the delivery of
sold items explicitly, the retailer captures the savings
that otherwise go to a logistics provider.

Let the retailer use a system with a business ob-
ject graph as Figure 4 presents to manage their sales.
We assume that the system exposes a query-like Web
service interface as described in the section 2.3. The
query returning the shipping address for all sales or-
der items that are to be delivered looks as follows:

SELECT
SO.Items˜id, SO˜id,
SO.Contact.Customer˜name,
SO.Contact.Address˜street,
SO.Contact.Address˜number,
SO.Contact.Address˜zip,
SO.Contact.Address˜city,
SO.Contact.Address˜state,
SO.Contact.Address˜country

FROM
SalesOrder As SO

WHERE
SO.Status = "ToDeliver"

GROUP BY
SO.Contact.Address˜city,
SO.Contact.Address˜state

By invoking the query-liked Web service and
passing the above query to it, a third-party applica-
tion consolidates the items by their destination. The

5So called economies of scale in transportation
6In fact, the economies of scale in transportation re-

sulted in Hub-and-Spoke topology of transportation net-
works.

FLEXIBLE DATA ACCESS IN ERP SYSTEMS

103



next step for the application is to submit a request for
quote to a logistics provider and get the price of trans-
porting each group of items. Many logistics providers
have a dedicated service interface for this, so the ap-
plication can complete this step automatically. Once
the quote has been obtained and the price is appropri-
ate the products can be packaged and picked up by the
logistics provider.

To enable applications like the one just described
the system must expose a flexible data access API.
That is, the system must be able to return any piece
of data it stores and construct the result set in a user-
defined way. As mentioned in the section 2 traditional
APIs cannot completely fulfill this requirement: SQL
against views circumvents the business rules enforced
outside the database; Web services limit the retriev-
able data to a fixed, predefined set. The architecture
suggested in the current work overcomes the existing
limitations and offer the necessary degree of data ac-
cess flexibility.

4 CONCLUSIONS

Flexible data access API is essential for ERP systems.
It helps to resolve a number of challenges. Unfor-
tunately, existing approaches and APIs do not offer
appropriate level of flexibility and simplicity while
guaranteeing integrity and consistency of data when
accessing and manipulating ERP data.

The current work contributes with the concept
of query-like service invocation implemented in the
form of a business object query language (BOQL).
BOQL is the corner stone of the API offering both the
flexibility of SQL and encapsulation of SOA. In its
essence, BOQL is on-the-fly orchestration of CRUD-
operations exposed by business objects of ERP sys-
tems. In addition the paper showed how BOQL en-
ables navigation among ERP data and configuration
of UI layer as well as development of enterprise com-
posite applications. Furthermore, we outlined the ma-
jor components of the architecture and prototyped
with Microsoft .NET platform an ERP system that
supports BOQL as prime data access API.

REFERENCES
Banerjee, J., Kim, W., Kim, H.-J., and Korth, H. F. (1987).

Semantics and implementation of schema evolution in
object-oriented databases. In Proceedings of the 1987
ACM SIGMOD international conference on Manage-
ment of data, pages 311 – 322.

Bertino, E. (1992). A view mechanism for object-
oriented databases. In Proceedings of the 3rd Inter-

national Conference on Extending Database Technol-
ogy, pages 136 – 151.

Bratsberg, S. E. (1992). Unified class evolution by object-
oriented views. In Proceedings of the 11th Inter-
national Conference on the Entity-Relationship Ap-
proach, pages 423 – 439.

Curino, C. A., Moon, H. J., and Zaniolo, C. (2008). Grace-
ful database schema evolution: the prism workbench.
In Proceedings of the VLDB Endowment, pages 761–
772.

Liu, C.-T., Chrysanthis, P. K., and Chang, S.-K. (1994).
Database schema evolution through the specification
and maintenance of changes on entities and relation-
ships. In Proceedings of the13th International Confer-
ence on the Entity-Relationship Approach, pages 132
– 151.

Monk, S. and Sommerville, I. (1993). Schema evolution
in oodbs using class versioning. In ACM SIGMOD,
pages 16 – 22.

Shiling, J. J. and Sweeney, P. F. (1989). Three steps to
views: extending the object-oriented paradigm. In
Conference proceedings on Object-oriented program-
ming systems, languages and applications, pages 353
– 361.

Yu, J., Benatallah, B., Casati, F., and Daniel, F. (2008).
Understanding mashup development. IEEE Internet
Computing, pages 44–52.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

104


