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Abstract: The paper focuses on the design of a suboptimal fault-tolerant dual controller for stochastic discrete-time
systems. Firstly a general formulation of the active fault detection and control problem that covers several
special cases is presented. One of the special cases, a dual control problem, is then considered throughout
the rest of the paper. It is stressed that the designed dual controller can be regarded as a fault-tolerant dual
controller in the context of fault detection. Due to infeasibility of the optimal fault-tolerant dual controller for
general non-linear system, a suboptimal fault-tolerant dual controller based on rolling horizon technique for
jump Markov linear Gaussian system is proposed and illustrated by means of a numerical example.

1 INTRODUCTION

Fault detection is an important part of many auto-
matic control systems and it has attracted a lot of at-
tention during recent years because of increasing re-
quirements on safety, reliability and low maintenance
costs. An elementary aim of fault detection is early
recognition of faults, e.i. undesirable behaviors of an
observed system.

The very earliest fault detection methods use ad-
ditional sensors for detecting faults. These meth-
ods are simple and still used in safety-critical sys-
tems. A slightly better fault detection methods uti-
lize some basic assumptions on measured signals and
therefore they are usually called signal based meth-
ods (Isermann, 2005). To further improve fault detec-
tion, more complex methods called model based were
developed (Basseville and Nikiforov, 1993).

Except for a few situations were the primary ob-
jective is the fault detection itself, it usually comple-
ments a control system where the quality of control is
of main concern. This fact has stimulated research in
area of so called fault-tolerant control. Fault-tolerant
control methods can be divided into two basic group:
passive fault-tolerant control and active fault-tolerant
control methods (Blanke et al., 2003). Passive fault-
tolerant control methods design a controller that is ro-
bust with respect to considered faults and thus an ac-
ceptable deterioration of control quality is caused by
the considered faults. On the other hand, active fault-
tolerant control methods try to estimate faults and re-

configure a controller in order to retain desired closed
loop behavior of a system.

The mentioned fault detection methods and fault-
tolerant approaches usually use available measure-
ments passively as shown at the top of Fig. 1, where a
passive detector uses inputsuk and measurementsyk
for generating decisionsdk. In the case of stochastic
systems further improvement can be obtained by ap-
plying a suitable input signal, see e.g. (Mehra, 1974)
for application in parameter estimation problem. This
idea leads to so-called active fault detection which is
depicted at the bottom of Fig. 1. The active detector
and controller generates, in addition to a decisiondk,
an input signaluk that controls and simultaneously ex-
cites the system and thus improves fault detection and
control quality. Note, that the terms passive and ac-
tive have different meaning than in the fault-tolerant
control literature.

The active fault detection is a developing area.
The first attempt to formulate and solve the active
fault detection problem can be found in (Zhang,
1989), where the sequential probability ratio test was
used for determining a valid model and an auxiliary
input signal was designed to minimize average num-
ber of samples. More general formulation of active
fault detection was proposed in (Kerestecioğlu, 1993).
An active fault detection for systems with determinis-
tic bounded disturbances was introduced in (Camp-
bell and Nikoukhah, 2004). A unified formulation of
active fault detection and control for stochastic sys-
tems that covers several special cases was proposed
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in (Šimandl and Punčochář, 2009). One of these spe-
cial cases is the optimal dual control problem that has
not been elaborated in the context of that general for-
mulation, yet.

Therefore, the aim of this paper is to examine the
dual control problem in the context of fault detection
problem. The general formulation for the optimal
dual control problem is adopted from (Šimandl and
Punčochář, 2009) and an optimal fault-tolerant con-
troller that uses idea of active probing for improving
the quality of control is designed. Because of infeasi-
bility of the optimal fault-tolerant dual controller for a
general nonlinear stochastic system, the systems that
can be described using jump linear Gaussian multiple
models are considered and the rolling horizon tech-
nique is used for obtaining an approximate solution.

The paper is organized as follows. A general for-
mulation of active fault detection and control is given
in Section 2 and the design of a fault-tolerant dual
controller is introduced as a special case of the gen-
eral formulation. The optimal fault-tolerant dual con-
troller obtained using the closed loop information pro-
cessing strategy is presented in Section 3. Section 4
is devoted to the description of a system using mul-
tiple models and the relations for state estimation are
given. Finally, a suboptimal fault-tolerant dual con-
troller based on rolling horizon technique is presented
in Section 5.
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Figure 1: Block diagrams of the passive detection and con-
trol system and the active detection and control system.

2 PROBLEM STATEMENT

In this section a general formulation of the active fault
detection and control problem is adopted and then a
fault-tolerant dual control problem is specified as a
special case of the general formulation.

2.1 System

The problem is considered on the finite horizonF . Let
an observed system be described at each timek∈ T =
{0, . . . ,F} by the state space discrete-time nonlinear
stochastic model

xk+1 = fk (xk,µk,uk,wk) , (1)

µk+1 = gk (xk,µk,uk,ek) , (2)

yk = hk (xk,µk,vk) , (3)

where nonlinear vector functionsfk (xk,µk,uk,wk),
gk (xk,µk,uk,ek) and hk (xk,µk,vk) are known. The
input and output of the system are denoted asuk ∈
U k ⊆ R

nu and yk ∈ R
ny, respectively. The subset

U k can be continuous or discrete and it determines
admissible values of the inputuk. The unmeasured
state x̄k =

[

xT
k ,µ

T
k

]T
consists of variablesxk ∈ R

nx

and µk ∈ M ⊆ R
nµ. The variablexk is the part of

the state that should be driven by the inputuk to a de-
sirable value or region. The variableµk carries infor-
mation about faults. The variableµk can be a vector
representing fault signals or a scalar that determines
the mode of system behavior. The initial statex̄0 is
described by the known probability density function
(pdf) p(x̄0) = p(x0) p(µ0). The pdfsp(wk), p(ek)
and p(vk) of the white noise sequences{wk}, {ek}
and{vk} are known. The initial statēx0 and the noise
sequences{wk}, {ek}, {vk} are mutually indepen-
dent.

2.2 Active Fault Detector and
Controller

In the general formulation, the goal is to design a dy-
namic causal deterministic system that uses complete
available information to generate a decision about
faults and an input to the observed system. Such a
system can be described at each time stepk ∈ T by
the following relation

[

dk
uk

]

=

[

σk
(

Ik
0

)

γk

(

Ik
0

)

]

= ρk

(

Ik
0

)

, (4)

where σk
(

Ik
0

)

and γk

(

Ik
0

)

are some unknown vec-
tor functions which should be designed to obtain an
active fault detector and controller. The complete
available information, which has been received up to
the timek, is stored in the information vectorIk

0 =
[

yk
0

T
,uk−1

0
T
,dk−1

0
T
]T

. The notationy j
i represents a

sequence of the variablesyk from the time stepi up to
the time stepj. If i > j then the sequencey j

i is empty
and the corresponding variable is simply left out from
an expression. According to this rule, the information
vector for timek= 0 is defined asI0

0 = I0 = y0.
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2.3 Criterion

Analogously to the optimal stochastic control prob-
lem (Bar-Shalom and Tse, 1974), the design of the op-
timal active detector and controller is based on mini-
mization of a criterion. A general criterion that penal-
izes wrong decisionsdk and deviations of variablesxk
anduk from desired values over the finite horizon is
the following

J
(

ρF
0

)

= E
{

L
(

xF
0 ,µ

F
0 ,u

F
0 ,d

F
0

)}

, (5)

where E{·} is the expectation operator with respect to
all included random variables andL

(

xF
0 ,µ

F
0 ,u

F
0 ,d

F
0

)

is a non-negative real-valued cost function. Due to
practical reasons, the cost function is considered in
the following additive form

L
(

xF
0 ,µ

F
0 ,u

F
0 ,d

F
0

)

=

F

∑
k=0

αkL
d
k (dk,µk)+ (1−αk)Lc

k (xk,uk) ,
(6)

whereLd
k (µk,dk) is a non-negative real-valued cost

function representing the detection aim, the non-
negative real-valued cost functionLc

k (xk,uk) ex-
presses the control aim, and the coefficientαk belong-
ing to the closed interval[0,1] weights between these
two aims. In order to regard the functionLd

k (µk,dk)
as a meaningful cost function, it should satisfy the
inequality Ld

k (µk,µk) ≤ Ld
k (µk,dk) for all µk ∈ M ,

dk ∈ M , dk 6= µk at each time stepk ∈ T , and the
strict inequality has to hold at least at one time step.
The sequence of the functionsρF∗

0 = [ρ∗
0,ρ∗

1, . . . ,ρ∗
F ]

given by minimization of (5) specifies the optimal ac-
tive detector and controller. The minimization of the
criterion (5) can be solved by using three different in-
formation processing strategies (IPS’s) (Šimandl and
Punčochář, 2009), but only the closed loop (CL) IPS
is considered in this paper because of its superiority.

2.4 Fault-tolerant Dual Controller

The introduced general formulation covers several
special cases that can be simply derived by choos-
ing a particular weighting coefficientαk and fixing
the functionσk

(

Ik
0

)

or the functionγk

(

Ik
0

)

in advance.
This paper is focused on the special case where only
control aim is considered, i.e. the coefficientαk is set
to zero for allk∈ T and none of the functionsσk

(

Ik
0

)

andγk

(

Ik
0

)

are specified in advance. The cost function
Lc

k (xk,uk) is considered to be a quadratic cost func-
tion

Lc
k (xk,uk) = [xk− rk]

T Qk [xk− rk]+uT
k Rkuk, (7)

whereQk is a symmetric positive semidefinite matrix,
Rk is a symmetric positive definite matrix, andrk is a

reference signal. It is considered that the reference
signalrk is known for the whole horizon in advance.

Since decisions are no longer penalized in the cri-
terion, the functionσk

(

Ik
0

)

can not be determined by
the minimization and the aim is to find only functions
γk

(

Ik
0

)

for all k. The resulting controller will steer the
system in such a way that the criterion is minimized
regardless the faultsµk. Moreover the controller can
exhibit the dual property because the CL IPS is used.
Due to these two facts the controller can be denoted
as the fault-tolerant dual controller.

3 DESIGN OF FAULT-TOLERANT
DUAL CONTROLLER

This section is devoted to the optimal fault-tolerant
dual controller design. The minimization of the cri-
terion (5) using the CL IPS can be solved by the dy-
namic programming where the minimization is solved
backward in time (Bertsekas, 1995).

The optimal fault-tolerant dual controller is ob-
tained by solving the following backward recursive
equation for time stepsk= F,F −1, . . . ,0

V∗
k

(

yk
0,u

k−1
0

)

=

min
uk∈U k

E
{

Lc
k (xk,uk)+V∗

k+1

(

yk+1
0 ,uk

0

)∣

∣

∣
yk

0,u
k
0

}

,
(8)

where E{·|·} stands for the conditional expectation

operator and the Bellman functionV∗
k

(

yk
0,u

k−1
0

)

is

the estimate of the minimal cost incurred from time
step k up to the final time stepF given the input-
output data

[

yk
0,u

k
0

]

. The initial condition for the
backward recursive equation (8) isV∗

F+1 =0 and it can
be shown that the optimal value of the criterion (5) is
J∗ = J

(

ρF∗
0

)

= E
{

V∗
0 (y0)

}

. Obviously, the optimal
input signalu∗

k is given as

u∗
k = γ∗k

(

yk
0,u

k−1
0

)

= arg

min
uk∈U k

E
{

Lc
k (xk,uk)+V∗

k+1

(

yk+1
0 ,uk

0

)∣

∣

∣
yk

0,u
k
0

}

,
(9)

where the functionγ∗k(I
k
0) represents the optimal fault-

tolerant dual controller. The pdf’sp(x̄k|Ik
0,uk,dk)

andp(yk+1|Ik
0,uk,dk) needed for the evaluation of the

conditional expectation can be obtained using nonlin-
ear filtering methods. Note that there isn’t any closed
form solution to equations (8) and (9). Therefore ap-
proximate techniques have to be used to get at least
a suboptimal solution. The selection of a suitable ap-
proximation depends on a particular system descrip-
tion and estimation method.
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4 MULTIMODEL APPROACH

In the case of a general nonlinear system the state esti-
mation pose a complex functional problem that has to
be solved using approximate techniques. One of the
attractive method is based on the assumption that the
system exhibits distinct modes of behavior. Such sys-
tems can be encountered in various field of interests
including maneuvering target tracking (Bar-Shalom
et al., 2001), abrupt fault detection (Zhang, 1989) and
adaptive control (Athans et al., 2006). In this paper,
the multimodel approach is used as one step towards
the design of feasible fault-tolerant dual controller.

Henceforth, it is assumed that the variableµk
is a scalar index from the finite discrete setM =
{1,2, . . . ,N} that determines the model valid at time
stepk. If the exact behavior modes of the system are
not known, the setM can be determined by using ex-
isting techniques, see e.g. (Athans et al., 2006).

It is considered that the system can be described
at each timek∈ T as

xk+1 =Aµkxk+Bµkuk+Gµkwk,

yk =Cµkxk+Hµkvk
(10)

where the meaning of the variablesxk, yk, uk, wk and
vk is the same as in (1) to (3). The setU k is consid-
ered to be discrete. The pdf’s of the noiseswk and
vk are Gaussian with zero-mean and unit variance.
The scalar random variableµk ∈ M denotes the in-
dex of the correct model at timek. Random model
switching from modeli to model j is described by
the known conditional transition probabilityP(µk+1=
j|µk = i) = Pi j . Obviously, the decisiondk ∈ M is
now scalar too. Known matricesAµk, Bµk, Gµk, Cµk,
andHµk have appropriate dimensions.

The conditional pdf of the statexk is a weighted
sum of Gaussian distributions

p
(

xk|yk
0,u

k−1
0

)

=

∑
µk

0

p
(

xk|yk
0,u

k−1
0 ,µk

0

)

P
(

µk
0|y

k
0,u

k−1
0

)

,
(11)

where Gaussian conditional pdfp(xk|yk
0,u

k−1
0 ,µk

0) can
be computed using a Kalman filter that corresponds to
the model sequenceµk

0. The pdfP(µk
0|y

k
0,u

k−1
0 ) can be

obtained recursively as

P
(

µk
0|y

k
0,u

k−1
0

)

=
p
(

yk|yk−1
0 ,uk−1

0 ,µk
0

)

c

×P(µk|µk−1)P
(

µk−1
0 |yk−1

0 ,uk−2
0

)

,

(12)

wherec is a normalization constant. The computation
of probability of the terminal modelP(µk|yk

0,u
k−1
0 )

and the predictive conditional pdfp(yk+1|yk
0,u

k
0) is

straightforward.
Unfortunately, as the number of model sequences

exponentially increases with time, memory and com-
putational demands become unmanageable. To over-
come this problem several techniques based on prun-
ing or merging of Gaussian sum have been proposed.
A technique that merges model sequences with the
same terminal sequenceµk

k−l is used here. The prob-
ability of the terminal sequence of modelsµk

k−l is

P
(

µk
k−l |y

k
0,u

k−1
0

)

= ∑
µk−l−1

0

P
(

µk
0|y

k
0,u

k−1
0

)

(13)

and the filtering density that has the form of a Gaus-
sian sum

p
(

xk|y
k
0,u

k−1
0 ,µk

k−l

)

= ∑
µk−l−1

0

P
(

µk
0|y

k
0,u

k−1
0

)

P
(

µk
k−l |y

k
0,u

k−1
0

)

× p
(

xk|yk
0,u

k−1
0 ,µk

0

)

(14)

is replaced by a Gaussian distribution in such a way
that the first two moments, i.e. mean value and co-
variance matrix, of the variablexk remain unchanged.

5 FEASIBLE ALGORITHM
BASED ON ROLLING
HORIZON

Even if the state and output pdfs are known, the
backward recursive relation (8) can not be solved an-
alytically because of intractable integrals. A sys-
tematic approach to forward solution of the back-
ward recursive relation (8) based on the stochastic
approximation method is presented e.g. in (Bayard,
1991). A simple alternative approach is represented
by the rolling horizon technique, where the optimiza-
tion horizon is truncated and terminal cost-to-go of
such truncated optimization horizon is replaced by
zero. The lengthFo > 0 of truncated horizon should
be as short as possible to save computational demands
but on other hand it has to preserve dependence of
value of the minimized criterion on the input signal
uk. In this paper the optimization horizonFo = 3 will
be considered to simplify computations. The cost-

to-go functionV∗
k+3

(

yk+3
0 ,uk+2

0

)

is replaced by zero

value. Then the inputua
k+2 = 0 and the cost-to-go

functionVa
k+2

(

yk+2
0 ,uk+1

0

)

is

Va
k+2

(

yk+2
0 ,uk+1

0

)

= (15)

E
{

[xk+2− rk+2]
TQk+2 [xk+2− rk+2] |yk+2

0 ,uk+1
0

}

.
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The input uk+2 is zero because it can not influ-
ence the value of the criterion on the optimiza-
tion horizon and the matrixRk+2 is positive defi-
nite. Note, that the value of the cost-to-go func-

tion Va
k+2

(

yk+2
0 ,uk+1

0

)

can be computed analytically

based on the first two moments of the statexk+2

given by the pdfp
(

xk+2|yk+2
0 ,uk+1

0

)

. The input

ua
k+1 = −W−1D and the cost-to-go function at time

step k+1 is

Va
k+1

(

yk+1
0 ,uk+1

0

)

=

E
{

[xk+1− rk+1]
T Qk+1 [xk+1− rk+1] |yk+2

0 ,uk+1
0

}

+K−DTW−1D, (16)
where

W = Rk+1

+ ∑
µk+1

BT
µk+1

Qk+2Bµk+1P
(

µk+1|yk+1
0 ,uk

0

)

, (17)

D = ∑
µk+1

BT
µk+1

Qk+2
[

Aµk+1x̂k+1(µk+1)− rk+2
]

×P
(

µk+1|yk+1
0 ,uk

0

)

,

(18)

K = ∑
µk+1

{

[

Aµk+1x̂k+1(µk+1)− rk+2
]T Qk+2

×
[

Aµk+1x̂k+1(µk+1)− rk+2
]

+Tr
(

Qk+2(Aµk+1Pk+1(µk+1)A
T
µk+1

+Gµk+1GT
µk+1

)
)

}

×P
(

µk+1|yk+1
0 ,uk

0

)

. (19)

The mean̂xk+1(µk+1) = E
{

xk+1|yk+1
0 ,uk

0,µk+1

}

and

the corresponding covariance matrixPk+1(µk+1) can
be obtained from estimation algorithm. If the input
uk+1 was used at time stepk+ 1 the resulting con-
troller would be cautious because it would respect un-
certainty. The input at time step k is given as

ua
k = min

uk∈U k

E
{

Lc
k (xk,uk)+Va

k+1

(

yk+1
0 ,uk

0

)

yk
0,u

k
0

}

.

The expectation of the cost functionVa
k+1

(

yk+1
0 ,uk

0

)

with respect toyk+1 seems to be computationally in-
tractable. Therefore the expectation and subsequent
minimization over discrete setU k are performed nu-
merically.

6 NUMERICAL EXAMPLE

The proposed fault-tolerant dual controller is com-
pared with a cautious (CA) controller and a heuris-
tic certainty equivalence (HCE) controller. The CA

controller is obtained when just one-step look ahead
policy is used and it takes uncertainties into account
but lacks probing. The HCE controller is based on
the assumption that the certainty equivalence princi-
ple holds even it is not true and inputs are determined
as solutions to the problem where all uncertain quan-
tities were fixed at some typical values.

Although the relative performance of three subop-
timal controllers can differ in dependence on a par-
ticular system, the dual controller should outperform
HCE and CA controllers in problems where uncer-
tainty plays a major role. This numerical example il-
lustrates a well known issue of pure CA controllers
called ’turn-off’ phenomenon, where the CA con-
troller refuses to control a system because of large
uncertainty. The initial uncertainty is quite high, but
once it is reduced through measurements the problem
becomes almost certainty equivalent. It is the reason
why the HCE controller performs quite well in this
particular example.

The quality of control is evaluated byM Monte
Carlo runs. The value of the costL for particular
Monte Carlo simulation is denotedLi and the value of
the criterion J is estimated aŝJ = 1/M ∑M

i=1Li . Vari-
ability among Monte Carlo simulations is expressed
by var{L} = 1/(M − 1)∑i=1(Li − Ĵ)2 and the qual-
ity of the criterion estimatêJ is expressed by var{Ĵ}
which is computed using bootstrap technique.

The detection horizonF = 30 is considered and
the parameters of a single input single output scalar
system are given in Table 1. The initial probabilities
areP(µ0 = 1) = P(µ0 = 2) = 0.5, the transition prob-
abilities areP1,1 = P2,2 = 0.9, P1,2 = P2,1 = 0.1, and
parameters of Gaussian distribution are ˆx′0 = 1 and
P′

x,0 = 0.01. The discrete set of admissible values of
input uk is chosen to beU k = {−3,−2.9, . . . ,2.9,3}
for all k∈ T . The reference signal is the square wave
with peaks of±0.4 and the period 13 steps and the
weighting matrices in the cost function are chosen to
beQk = 1 andRk = 0.001 for all time steps.

Table 1: Parameters of the controlled system.

µk ak(µk) bk(µk) gk(µk) ck(µk) hk(µk)

1 0.9 0.1 0.01 1 0.05
2 0.9 -0.098 0.01 1 0.05

An example of the typical state trajectories for all
three controllers is given in Fig. 2. It can be seen that
the CA controller does not control the system at the
beginning of the control horizon at all. The crite-
rion value estimateŝJ, the accuracies of these esti-
mates var{Ĵ}, and the variability of Monte Carlo sim-
ulations var{L}, that were computed usingM = 200
Monte Carlo simulations, are given in Table 2. In
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comparison with the CA controller, the quality of con-
trol is improved by 55% in the case of the HCE con-
troller and by 68% in the case of the dual controller.
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Figure 2: State trajectories for dual controller (DC), heuris-
tic certainty equivalence controller (HCEC) and cautious
controller (CAC).

Table 2: Criterion value estimates for particular controllers.

Controller Ĵ var{Ĵ} var{L}

HCEC 3.2126 0.0164 3.2885
CAC 7.2186 0.0068 1.3194
DC 2.3131 0.0109 2.0889

7 CONCLUSIONS

The optimal fault-tolerant dual controller has been
obtained as a special case of the general formula-
tion. Since the optimal fault-tolerant controller is
computationally infeasible the multimodel approach
and rolling horizon techniques were used to obtain a
suboptimal fault-tolerant dual controller. The perfor-
mance of the proposed controller was compared with
a heuristic certainty equivalence controller and cau-
tious controller in a numerical example. Although all
controllers were able to control the system even a fault
occurred, the fault-tolerant dual controller exhibits the
best performance.
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