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Abstract: Approximate reasoning, initially introduced in fuzzy logic context, allows reasoning with imperfect knowl-
edge. We have proposed in a previous work an approximate reasoning based on linguistic modifiers in a
symbolic context. To apply such reasoning, a base of rules is needed. We propose in this paper to use a super-
vised learning system named SUCRAGE, that automatically generates multi-valued classification rules. Our
reasoning is used with this rule base to classify new objects. Experimental tests and comparative study with
two initial reasoning modes of SUCRAGE are presented. This application of approximate reasoning based on
linguistic modifiers gives satisfactory results. Besides, it provides a comfortable linguistic interpretation to the
human mind thanks to the use of linguistic modifiers.

1 INTRODUCTION

Most information expressed by human beings is un-
certain, vague or imprecise. However, these informa-
tion is necessary for the realization and the use of in-
telligent systems. In the literature, several approaches
have been proposed for the representation of these
types of knowledge, two of which dominate: fuzzy
logic (Zadeh, 1965) and multi-valued logic (Akdag
et al., 1992). To allow systems manipulating and
reasoning with imperfect knowledge, Zadeh (Zadeh,
1975) has introduced approximate reasoning concept
in the fuzzy logic context. This reasoning is based
on a generalization of Modus Ponens to fuzzy data,
known as Generalized Modus Ponens (GMP). It cor-
responds to the following schema:

If X is A thenY is B
X is A ′

Y is B ′
(1)

whereX andY are two variables andA , A ′, B and
B
′ are predicates. Approximate reasoning can, not

only infer with an observation equivalent to the rule
premiseA , but also with an observationA ′ which is
approximately equivalent to it.

In a previous work (Kacem et al., 2008; Borgi
et al., 2008), we noticed that both fuzzy and multi-
valued GMPs are generally based on the concept
of similarity (Akdag et al., 1992; Khoukhi, 1996;
Bouchon-Meunier et al., 1997). The weakness of this
type of reasoning is that it focuses on the modifica-
tion degree (the degree of similarity betweenA and
A
′) and not to the wayA has been modified to have
A
′ (weakening, reinforcement, etc.).

We also noted that the concept of linguistic mod-
ifiers reflects a form of similarity which can be used
in the GMP for the evaluation of the changes made on
the premise to lead to the conclusion. The diagram of
approximate reasoning based on linguistic modifiers
is as follows:

If X is A thenY is B
X is m(A )

Y is m′(B )
(2)
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To determine the inference conclusionB ′ = m′(B ),
it is enough to determine the modifierm′. The lat-
ter is obtained based on the observed modifier m
(A ′=m(A )) and the correlation intensity between the
premise and the rule’s conclusion.

To apply approximate reasoning, it is necessary to
have a base of rules. Two ways are possible to ob-
tain such a base. First, it can be directly provided
by the expert. Secondly it can be automatically built,
through the use of learning systems. In our work, we
choose to use the second solution, we used a clas-
sification system for automatic generation of rules,
called SUCRAGE (Borgi, 1999; Borgi and Akdag,
2001). This system generates classification multi-
valued rules, the context of our approximate reason-
ing (Kacem et al., 2008). A classification rule predicts
the class of a new object. For example, a patient is de-
scribed by a set of attributes such as age, sex, blood
pressure, etc, and the class could be a binary attribute
concluding or not the illness of the patient by a par-
ticular disease.

In this paper, we begin in section 2 by presenting
the symbolic multi-valued logic, the context of our
work. Then, section 3 deals with the concept of lin-
guistic modifiers. We present in section 4 the SU-
CRAGE system. Then, in section 5 we explain how
to adapt and apply approximate reasoning based on
linguistic modifiers on this system. Finally, before
concluding this work we present in section 6 a com-
parative study of experimental test results.

2 SYMBOLIC MULTI-VALUED
LOGIC

Multi-valued logic is a generalization of Boolean
logic. It provides truth values that are intermediate
between True and False. We denote byM the num-
ber of truth degrees in multi-valued logic. Akdag et
al. (Akdag et al., 1992) have introduced a new gen-
eration of multi-valent logic based on the theory of
multi-sets.

In symbolic multi-valued logic, each linguis-
tic term (such aslarge) is represented by a multi-
set (Akdag et al., 1992). To express the imprecision of
a predicate, a qualifiervα is associated to each multi-
set (such asrather, little, etc). When a speaker uses
a statement “X is vαA”, vα is the degree to whichX
satisfies the predicateA1. A truth-degreeτα must cor-
respond to each adverbial expressionvα so that:

1Denoted mathematically by “X ∈α A”: the objectX be-
longs with a degreeα to a multi-setA.

X is vαA ⇐⇒ ”X is vαA” is true
⇐⇒ ”X is A” is τα-true

For example, the statement “John is rather tall”
means that John satisfies the predicatetall with the
degreerather.

The set of symbolic truth-degrees forms an or-
dered listLM = {τ0, ...,τi , ...,τM−1}

2 with the total or-
der relation:τi ≤ τ j ⇔ i ≤ j, its smallest element is
τ0 (false) and the greatest isτM−1 (true). In practice,
the number of truth-degrees is often close to 7. The
expert can even propose his own list of truth-degrees;
the only restrictive condition is that they must be or-
dered.

3 GENERALIZED SYMBOLIC
MODIFIERS

A modifier is an operator that builds linguistic terms
from a primary linguistic term. This concept was in-
troduced by Zadeh (Zadeh, 1975) in the fuzzy logic
framework. We distinguish two types of fuzzy mod-
ifiers. First, reinforcing modifiers that reinforce the
notion expressed by the term (asvery). Then weaken-
ing modifiers, which weaken the notion expressed by
the term (asmore or less).

As already mentioned, we have used linguis-
tic modifiers in approximate reasoning process in
(Kacem et al., 2008; Borgi et al., 2008). Since our
work falls in multi-valued framework, we use modi-
fiers defined in this particular context.

A set of linguistic modifiers were proposed in the
multi-valued framework by Akdag and al. in (Akdag
et al., 2001), they were namedthe Generalized Sym-
bolic Modifiers. A Generalized Symbolic Modifier
(GSM) is a semantic triplet of parameters:radius,
nature (i.e dilated, eroded or preserved) andmode
(i.e reinforcing, weakening or central). The radius is
notedρ with ρ ∈ IN∗.

Definition 1. Let us consider a symbolic degreeτi
with i ∈ IN in a scaleLM of a base M∈ IN∗r {1},
and i< M. A GSM m with a radiusρ is denoted mρ.
The modifier mρ is a function which applies a linear
transformation to the symbolic degreeτi to obtain a
new degreeτi′ ∈ LM′ (whereLM′ is the linear trans-
formation ofLM) according to a radiusρ such as:

mρ : LM → LM′

τi 7→ τi′

A proportion is associated to each symbolic de-
gree within a base denotedProp(τi) =

i
M−1.

2With M a positive integer not null.
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By analogy with fuzzy modifiers, the authors pro-
pose a classification of symbolic modifiers according
to their behavior: weakening and reinforcing mod-
ifiers, and they add the family of central modifiers
(Akdag et al., 2001) that neither reinforce nor weaken
the concept. The definitions of the reinforcing, weak-
ening and central modifiers are given in table 13.
We have studied composition of these modifiers in
(Kacem et al., 2009).

4 THE LEARNING SYSTEM
SUCRAGE

To apply our approximate reasoning based on linguis-
tic modifiers, a rules base is needed. We used a learn-
ing system to obtain this base. SUCRAGE (SUper-
vised Classification by Rule Automatic GEneration)
is a supervised learning system which was proposed
by Borgi in (Borgi, 1999; Borgi and Akdag, 2001).

The construction of a classification function in
SUCRAGE is done through two phases: the learning
phase and the recognition or classification one (Borgi
et al., 2003; Borgi, 2006; Borgi et al., 2007).

4.1 Learning Phase

The rule base is generated thanks to a learning base: a
set of objects already classified. We denote byB1,...,
Bb the classes defined by the experts,X1,..., Xt the
attributes of the objects. The rules generated by SU-
CRAGE have the following form:

If Xe1 is vα1A and ... and Xen is vαnA then the class
is Bi with p

where:
Xej is vα j A a proposition which means that the

value ofXej is in [a,b]
Xej an attribute,Xej ∈ {X1, . . . ,Xt}
[a,b] the sub-interval of indexvαi in the

field of Xej

A a multi-set for the attributes fields
Bi the ith class
p a belief degree representing the

uncertainty of the conclusion
The interval[a,b] is a sub-interval of the field of

the attributeXe j. It is obtained by the a regular dis-
cretization of this field.

3We have modified some definitions in order to respect
the bounds ofM andi.

4.1.1 Construction of the Premise

To construct the rule premise, the first task consists on
determining what are the attributes to regroup. In SU-
CRAGE, the attributes that appear in a same premise
are the correlated ones. For that, a correlation ma-
trix C is calculated:C = (r i, j )t×t , with r i, j the linear
correlation coefficient betweenXi andXj .

Then, one considers thatXi andXj are correlated if
the absolute value ofr i, j is greater than a fixed thresh-
old θ.

One must then discretizes the attributes fields. In
this work, we retained the regular discretization: it
leads toM sub ranges denoted byv0, v1, . . . , vM−1.
Condition parts of rules are then obtained by consid-
ering for each correlated components subset, a sub-
interval (vi) for each component in all possible com-
binations. Figure 1 illustrates such a partition in the
case of two correlated features with a subdivision size
M = 3.

Figure 1: Example of partition of the correlated attributes
space.

4.1.2 Construction of the Rule

Each constructed premise according to the method ex-
posed above conducts to the generation ofb rules,
with b the number of classes. The last stage con-
sists in calculating this belief degreep, which can
be represented by the conditional probability to get
the conclusion when the premise is verified:p =
proba(premise/conclusion). Conditional probabili-
ties are estimated on the training set using a frequen-
tist approach.

4.2 Classification Phase

During the classification phase, the inference engine
associates a class to a vector representing an object
to classify. Two types of reasoning are used: an ex-
act reasoning and an approximate reasoning. For ex-
act inference, the used method is the classic one. It
consists on the use of the Modus Ponens. The ap-
proximate inference method applies the Generalized
Modus Ponens:
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Table 1: Definitions of weakening, reinforcing and central modifiers.

MODE Weakening Reinforcing Central

NATURE

Erosion

τi′ = τi ERρ
τi′ = τmax(0,i−ρ) EWρ

LM′ = Lmax(2,i+1,M−ρ) τi′ = τmax(⌊ i
ρ ⌋,1) ECρ*

LM′ = Lmax(2,M−ρ) τi′ = τmax(0,min(i+ρ,M−ρ−1)) ER′ρ
LM′ = Lmax(⌊M

ρ ⌋+1,2)

LM′ = Lmax(2,M−ρ)

Dilation

τi′ = τi DWρ
LM′ = LM+ρ τi′ = τi+ρ DRρ

τi′ = τiρ DCρ
τi′ = τmax(0,i−ρ) DW′ρ

LM′ = LM+ρ LM′ = LMρ−ρ+1

LM′ = LM+ρ

Conservation
τi′ = τmax(0,i−ρ) CWρ

τi′ = τmin(i+ρ,M−1) CRρ
τi′ = τi

CC
LM′ = LM LM′ = LM LM′ = LM

* ⌊.⌋ is the floor function.

If “Xe1 is vα1A” and . . . and “Xen is vαnA” then the class isBi with p

“Xe1 is vγ1A” and . . . and “Xen is vγnA”

The class isBi with p′

To be more precise in determining the distance be-
tween the premise and the observation in approximate
reasoning, the attributes values have undergone a dis-
cretization finer than exact reasoning, specificallyM2

instead ofM.
The approach consists in using a 0+ order infer-

ence engine. The engine has to manage the rules’ un-
certainty and take it into account within the inference
dynamic. More precisely, for a new objectO to clas-
sify, the inference engine allows to obtain a final be-
lief degree associated to each class. The final belief
degree is the result of a triangular co-norm applied on
the probabilities of the fired rules that conclude to this
considered class. Finally, the winner class associated
to the new object is the class where the final belief
degree is maximal.

5 INTEGRATION OF
LINGUISTIC MODIFIERS IN
SUCRAGE

The rule of Generalized Modus Ponens with linguis-
tic modifiers that we proposed in (Kacem et al., 2008),
and that we intend to use for classifying objects with
SUCRAGE, deals with multi-sets. However, the con-
clusion part of SUCRAGE rules contains a numerical
belief degree. To apply our GMP, the probability mea-
sure of classBi must be symbolic. In this section we
explain the adaptation made on SUCRAGE in order

to use our approximate reasoning based on linguistic
modifiers.

5.1 Symbolic Probability

In (Seridi and Akdag, 2001), the authors have defined
a symbolic probability theory. This theory is an alter-
native to the classical theory of probability, in the spe-
cial case where values of probabilities are symbolic
degrees of uncertainty. The authors used this proba-
bility in SUCRAGE in (Seridi et al., 2006), and this
by replacing the probability measurep of the rules
by a symbolic degree of uncertainty. With the spe-
cific notation of our work, the rules generated by SU-
CRAGE become of the form:

If Xe1 is vα1A1 and . . . and Xen is vαnAn then the
class is vβBi

with Bi a class andτβ
4 the symbolic belief degree

associated with this class. Thus, a degrees scale has
been introduced to represent uncertaintyLMp com-
posed ofMp degrees:LMp = {τi , i = 0, . . . ,Mp− 1}
totally ordered. The boundaries of these sub-intervals
are denoteda0, a1, . . . , aMp. Therefore, it is associated
with each probability measurep a symbolic degree of
uncertaintyτi .

The discretization of probability can be regular or
irregular. Seridi et al. (Seridi et al., 2006) chose to
use an irregular discretization to obtain a scaleL7 of
7 sub-intervals. The numerical probability is subdi-
vided as follows:

4Let’s remind thatτβ is the symbolic degree associated
to the linguistic expressionvβ.
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p= 0 ⇔ τ0 ⇔ Impossible
p∈]0,0.5[ ⇔ τ1 ⇔ Very little possible
p∈ [0.5,0.7[ ⇔ τ2 ⇔ Little possible
p∈ [0.7,0.8[ ⇔ τ3 ⇔ Possible
p∈ [0.8,0.9[ ⇔ τ4 ⇔ Enough possible
p∈ [0.9,0.95[ ⇔ τ5 ⇔ Very possible
p∈ [0.95,1] ⇔ τ6 ⇔ Certain

In this work, we use the irregular discretization, as
used by Seridi and al. (Seridi et al., 2006). In (Seridi
et al., 2006) symbolic probabilities are used in SU-
CRAGE with exact inference, unlike our work where
we are interested in approximate reasoning.

5.2 Conclusion Deduction

After building the rules, we have to exploit them. An
inference must be applied in order to classify new ob-
jects.

5.2.1 Simple Premise

Let us start with a simple case where the rule has a
simple premise. The corresponding rule of General-
ized Modus Ponens based on linguistic modifiers is as
follows:

Rule : If ”Xe is vαA” then ”Y is vβB”
Fact : ”Xe is m(vαA)”
Conclusion : ”Y is m′(vβB)”

The modifierm′ to apply to the conclusion is ob-
tained according to the modifierm. The first step is to
determine the modifierm. As in the case of the orig-
inal approximate reasoning used in SUCRAGE, the
attributes subdivision cardinal in the rules premises is
M, while the one in the observations isM2. The pro-
posed solution is to first find the decomposition of the
modifierm with the dilating centralDC operator. In-
deed, the observation base is a multiple of the premise
base, so it undergoes a dilatation. Letτγ the member-
ship degree of the observation in the baseLM2, the
decomposition of the modifierm is given as follows:

m= mρ1 ◦DCρ2 with: ρ1 = |γ−αρ2|

ρ2 =
M2−1
M−1 = M+1

(3)

with mρ1 an elementary modification operator of
radiusρ1. This operatormρ1 may be eitherCW, CRor
CC, since it acts only on the truth degree5. Its choice
depends on the sign of(γ−α.ρ2). Thus:

mρ1 =







CWρ1, if (γ−α.ρ2)< 0;
CRρ1, if (γ−α.ρ2)> 0;
CC, else.

(4)

5The base is already dilated by the central operator DC.

The operatormρ1 represents the real modification
made on the premise. Indeed, theDC operator is cen-
tral, so it acts as a zoom on the base and has no ef-
fect on the proportion of degrees. For this reason, the
operatormρ1 which we denote bym⋄ is the one that
we consider in determining the modifierm′ to be de-
duced. The problem in that this operator is compatible
with the observations baseLM2. It can not be directly
applied to the symbolic probability, given that its base
is different from the base of the symbolic probability.
Thus, it is necessary to convert the modifierm⋄ to be
compatible with the conclusion baseLMp. We pro-
pose to keep the same type of operator and change
only the radiusρ1.

The conversion of the modifierm⋄ when the sym-
bolic probability is irregular is a complex task. In-
deed, the amplitudes of the probability sub-intervals
are different. For this reason, we propose a solu-
tion that takes into account these amplitudes. We as-
sociate with each symbolic probability degreeτα =
{α ∈ [0..M−1]} a value calledweight(τα), which is
equal to the amplitude of the sub-interval numberα.
The weight value is given by the following function:

weight: [0..M−1] → [0,1]
α 7→ aα+1−aα

with ai the discretization bounds. Then, the new
radiusρ1 of formula (3) is obtained by the algorithm
conversionmod above. The principle of this algo-
rithm is to find the radius which causes the same mod-
ification percentage in the probability baseLMp that is
caused by the radiusρ1 in the basisLM2.

Algorithm 1 . Begin of algorithm conversionmod.

• Input values:
– The radiusρ1 of the modifier to translate;
– The symbolic probability degree to modify;
– The size of the base M2.
• The values to initialize:

– A real proportion← ρ1
M2 which represents the

proportion of the radiusρ1 in the correspond-
ing baseLM2;

– A real compteurPoids← 0, a weight counter.
• loop through the symbolic probability degrees

with a decrement, beginning with the degree to
modify. Until compteurPoids≤ proportion, in-
crease compteurPoids by the weight of the current
degree.
• The new radius is equal to the degree to modify

minus the current degree minus 1.

End of algorithm.

Thus, with this algorithm we determine the radius
ρ′1 to use to modify the probability degree, ie:m′ =
mρ′1

.
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5.2.2 Composed Premise

SUCRAGE generates rules whose premise consists
of a conjunction of propositions. Thus, the infer-
ence process can be achieved through the Generalized
Modus Ponens based on generalized linguistic modi-
fiers in the case of conjunctive rules. It is as follows:

If ” Xe1 is vα1A1” and . . . and ”Xen is vαnAn” then ”Y is vβB”

”Xe1 is m1(vα1A1)” and . . . and ”Xen is mn(vαnAn)”

”Y is m′(vβB)”

The determination ofmi is performed by the mod-
ifier determination method of simple rule, case that
we have described above. Thus, they must be oper-
ators of typeCR, CW or CC. The deduced modifier
m′ is determined by aggregating the modifiersmi . We
define for that an operator that aggregate modifiers.
In this application framework, the conclusion uncer-
tainty degree weakens when the observation moves
away from the premise. For this reason, we defined
an aggregator which is adaptable to the rules in the
SUCRAGE system:

AS(mα,m
′
β) =CWγ so thatτγ = S(τα,τβ) (5)

with:
m andm′: modifiers of typeCR, CW or CC;
τα, τβ andτγ: symbolic degrees belonging toLM;
S: a T-conorm such as the Lukasiewicz T-conorm.
As in the original SUCRAGE, the rules triggered

are grouped by class. Then, the final symbolic belief
degree of each class is calculated, and that by aggre-
gating the belief degrees by the max T-conorm. Fi-
nally, the selected class is whose final belief degree is
the greater one.

6 EXPERIMENTAL STUDY

In this section, we first describe the extension done
on SUCRAGE, in order to integrate approximate rea-
soning with linguistic modifiers. Then, we present
experimental results obtained with this application.

As we noted earlier, to implement our approach,
we need to use symbolic probability as belief degree
of the rules. For this, we integrated into SUCRAGE,
in addition to numerical probability, a new type of be-
lief degrees: irregular symbolic probability.

To perform a comparative study on the classifi-
cation results, we used the learning set Iris. These
data are available on the server of the Irvine Univer-
sity of California6. This database consists of 150 ex-
amples represented by 4 numerical attributes (sepal

6//ftp.ics.uci.edu/pub/machine-learning-databases/

lenth, sepal width, petal lenth, petal width). The ex-
amples are divided over 3 classes: Iris setosa, Ver-
sicolor and Virginica. The tests are made by 10-
folds cross-validation. We use different thresholds for
correlation and for discretization cardinals of the at-
tributes. We tested our approximate reasoning based
on linguistic modifiers with irregular symbolic prob-
abilities in Table 2.

Table 2: Iris, comparative study of approximate reasoning
with irregular symbolic probability.

Subdivision size 3 5 7
threshold Reasoning
0.95 ARis 98 93.33 96

ARis/ERis 1 1 1.09
ARis/ERn 1 1.01 1.08
ARis/ARn 1 1.03 1.08

0.9 ARis 98 93.33 96
ARis/ERis 1 1 1.09
ARis/ERn 1 1.01 1.08
ARis/ARn 1 1.03 1.08

0.8 ARis 97.33 95.33 98
ARis/ERis 1 1.05 1.11
ARis/ERn 1.01 1.05 1.13
ARis/ARn 1.01 1 1.05

0.5 ARis 97.33 95.33 98
ARis/ERis 1 1.05 1.11
ARis/ERn 1.01 1.05 1.13
ARis/ARn 1.01 1 1.05

The ratio rowsARis/ERis gives the division of the
classification rate of approximative reasoningARis by
whose of exact reasoningERis with irregular sym-
bolic probability (corresponding to the subscriptis).
We note that the approximate reasoning based on
linguistic modifiers gives a best results in all cases.
Moreover, it improves the results of exact reasoning
with irregular symbolic probability when the subdivi-
sion cardinal increases. This is because the variation
of this parameter introduces imperfections (Borgi and
Akdag, 2001). Indeed, approximate reasoning helps
to limit borders problems of the discretization: the
imperfections due to a high subdivision size are cor-
rected. The rate reaches at 98% for a subdivision of
7 which represents the best rates obtained by the SU-
CRAGE system.

We also compare our approximate reasoning to
the original exact and approximate reasoning of SU-
CRAGE. The ratio rowsARis/ERn and ARis/ARn
present a comparison of our approximate reasoning
with respectively the original exact reasoningERn
and the original approximate reasoningARn of SU-
CRAGE that is based on numerical probability (cor-
responding to the subscriptn). We note through this
table that in all cases, the new version gives better re-
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sults than the original version.
Approximate reasoning with linguistic modifiers

gives satisfactory results, moreover it presents a great
advantage with regard to the numerical approach. In-
deed, approximate reasoning with linguistic modi-
fiers can refine the interpretation of classification re-
sults. The original version of SUCRAGE is a numer-
ical approach, the results of objects assignments to
classes are provided through numerical probabilities.
On the other side, approximate reasoning with lin-
guistic modifiers is a linguistic approach which pro-
vides a linguistic interpretation of the results, allow-
ing readability and easy interpretation by the human
mind. Moreover, the use of approximate reasoning
is more advantageous when the data provided by the
experts are imprecise.

7 CONCLUSIONS

In this work, we have presented an application of ap-
proximate reasoning with linguistic modifiers that we
have defined in (Kacem et al., 2008; Borgi et al.,
2008). For this purpose, we have used a rule base
generated by a supervised learning system: SU-
CRAGE (Borgi, 1999). Some adaptations have been
made to this system in order to infer with our approx-
imate reasoning. More precisely, we have included
the use of symbolic probability (Seridi and Akdag,
2001) as belief degree of the generated rules. More-
over, we have defined an aggregator of modifiers in
order to aggregate the modifiers that transform the ob-
servation elements to the premise elements. We have
noticed that classification results were improved by
using our approximate reasoning based of linguistic
modifiers. This improvement was noticed in compar-
ison with the exact reasoning, as well as with the ap-
proximate reasoning introduced in (Borgi and Akdag,
2001). In addition, our approach provides a linguistic
interpretation through the use of linguistic modifiers.
It would be interesting to complete the validation tests
with other data, and more generally to consider an ap-
plication of our approximate reasoning on a base of
rules resulting from expert knowledge acquisition.
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