
A FLEXIBLE FRAMEWORK FOR APPLYING DATA ACCESS
AUTHORIZATION BUSINESS RULES

Leonardo Guerreiro Azevedo, Sergio Puntar, Raphael Thiago, Fernanda Baião and Claudia Cappelli
NP2Tec – Research and Practice Group in Information Technology

Federal University of the State of Rio de Janeiro (UNIRIO), Av Pasteur 458, Rio de Janeiro, Brazil

Keywords: Database Security, Data Access Authorization Business Rules, VPD, TPC-H Benchmark.

Abstract: This work proposes a flexible framework for managing and implementing data access authorization
business rules on top of relational DBMSs, in an independent way for the applications accessing a database.
The framework adopts the RBAC policy definition approach, and was implemented on Oracle DBMS.
Therefore, data access security is managed by the data server layer in a centralized manner, rather than in
each application that accesses data, and is enforced by the database server. Experimental tests were executed
using the TPCH Benchmark workload, and the results indicate the effectiveness of our proposal.

1 INTRODUCTION

Business rules are policies which define and
describe business logic. According to the taxonomy
defined by BRG (2009), one type of business rules is
authorization action assertion rule, or authorization
rule for short, which restricts who is allowed to
perform a certain action in an organization.

Authorization rules are gaining major importance
in organizations, since they are central in most data
access security initiatives. The definition and control
of who may have access to each piece of information
during the execution of a business process is vital to
prevent frauds and to conduct controlling initiatives.

An authorization rule is composed by: (i) Data
on which the rule is applied; (ii) The user (or profile
or user group) whose access to the data is controlled
by the rule; and (iii) the rule description.

Applications have tended to define their own
security policies and enforce them at the client layer.
However, this is not a properly solution when it
comes to very frequent scenarios in which large
companies are required to adhere to a whole new set
of authorization rules defined by controlling
initiatives derived by SOX (SOX, 2009) or other
security demand. Therefore, there is a need of a
flexible framework for the implementation of
authorization rules on top of existing databases,
which minimizes the changes required on the legacy
applications that manipulate existing data.

This work proposes a flexible framework for
managing and implementing authorization rules on
top of relational DBMSs, in an independent way for
the applications accessing the database. The
framework adopts the RBAC (Role-based access
control) policy definition approach, and was
implemented on top of Oracle 10g DBMS using its
VPD (Virtual Private Database) features.
Experimental tests were performed on top of the
TPCH Benchmark (TPC Council, 2008).

This work is divided as follows. Section 2
presents database security concepts. Section 3
presents the proposed framework. Section 4 details
its implementation, while section 5 presents the
experimental results. Section 6 and 7 presents
related work, and conclusions and future works,
respectively.

2 DATA SECURITY CONCEPTS

Data access control is one of the major components
of database security, and has been the focus of
several database security approaches provided by
most DBMS vendors. Typically, those security
mechanisms consist of defining users (a database-
level identity to anyone connected to the database),
profiles (group of users with similar privileges to
database structures and data) and database sessions
(which allows the DBMS to identify and control the
sequence of commands performed by a single user

275Guerreiro Azevedo L., Puntar S., Thiago R., Baião F. and Cappelli C. (2010).
A FLEXIBLE FRAMEWORK FOR APPLYING DATA ACCESS AUTHORIZATION BUSINESS RULES.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
275-280
DOI: 10.5220/0002909602750280
Copyright c© SciTePress

in each connection).
Murthy and Sedlar (2007) argue that those access

control mechanisms, although simple and frequently
used, present significant drawbacks. Firstly, the
same underlying data may have to be accessed via
many different applications and it is hard to
reconcile different application security mechanisms.
Secondly, many data warehousing and data mining
tools require direct access to the database (via SQL)
and it is impossible to enforce application level
security during direct SQL access. Thirdly, the lack
of a common security framework makes it very hard
to administer the policies and increases the risk of
security holes. Finally, there is a significant
performance impact by always evaluating data
access authorization rules at the application layer.

The mechanisms for access control can be
classified into: DAC (Discricionary Access Control),
MAC (Mandatory Access Control), both proposed
by DoD (1983), and RBAC (Role-Based Access
Control) (Ferraiolo and Khun, 1992).

DAC policies are based on the identity of the
requestor and on access rules stating what requestors
are (or are not) allowed. They can be implemented
by an access matrix model which regulates the
privileges that a subject can have on an object. An
object can be a table, a view, a procedure or any
other database object. Yang (2009) presents that
DAC policies do not enforce any control on the flow
of information, thus making it possible for processes
to leak information to users not allowed to read it.
SQL Server, MySQL, Oracle Database, DB2 and
Sybase DBMSs support the implementation of DAC
policies through access matrix models.

MAC policies, also known as label security, are
based on mandated regulations determined by a
central authority. The most common form of MAC
is the multilevel security policy using classification
of subjects and objects in the system. In multilevel
mandatory policies, an access class is assigned to
each object and subject. MAC policy controls flow
of information, thus preventing leakages to
unauthorized subjects. However, it does not address
actions that users are allowed to execute over data
(Ferraiolo and Khun, 1992).Most database vendors
offer label security supporting features, such as
Oracle, Sybase and Microsoft SQL Server.

MAC policies assume that each label is applied
to the whole table row, thus preventing the definition
of authorization rules on a subset of the row
attributes. Besides, since a label is attached to each
table row, if many policies are applied, management
and maintenance costs may be high.

An RBAC access rule states which actions and

subjects are allowed to users in a given role. RBAC
is a common paradigm to ensure that users have
sufficient rights to perform various operations
(Fischer et al., 2009), and is typically used by
organizations to specify and enforce specific
security policies in a way that maps naturally to the
organization structure. Ferraiolo et al. (2001)
propose a pattern for RBAC in order to consolidate
different RBAC reference models, commercial
products and research prototypes. Both SQL Server
and Oracle databases support concepts of roles.

RBAC policies are more flexible than MAC
ones, and therefore are the focus of our proposed
framework. Nevertheless, defining and enforcing
RBAC policies is not simple in real scenarios, since
it requires a lot of effort and knowledge from the
user responsible to create and assign rules and roles,
usually a Database Administrator (DBA). Therefore,
there is a need of a flexible and easy to use
mechanism to aid database administrators in
defining and managing RBAC policies to implement
database security.

3 PROPOSED FRAMEWORK

This section presents a framework for managing and
controlling authorization rules of applications on top
of corporative databases. The framework is
composed of two modules: (i) Authorization rule
management (ARM) and (ii) Authorization rule
execution (ARE). The authorization rule
management module is responsible for creating,
changing, viewing, composing, testing, and
simulating rules. All authorization rules defined in
this module are stored in a business rule database.

The authorization rule execution module follows
the RBAC policy described in section 2, and is
responsible for assuring that the previously defined
rules are enforced during the execution of every
application accessing the corporative database. In
other words, the execution module controls all
applications so that all data retrieved by them will
surely adhere to the authorization rules stored in the
business rule database.

To prevent changes in the source code of legacy
applications, the ARE module should be
implemented in an independent way for the
applications accessing the DBMS.

Defining and executing an authorization rule are
tasks performed in two distinct moments and,
ideally, by two distinct teams. Typically, the ARM
functions will be handled by business users, while
ARE functions should be monitored by IT users.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

276

Firstly, business users of the authorization rule
definition team uses the ARM module to define and
create the set of rules that reflects RBAC policies
over corporative data. Through the ARM module,
they may access the conceptual schema of the
organization, which represents a business (high-
level) definition of all the concepts and relationships
stored in the database. To define a new authorization
rule for a RBAC policy, the ARM user should define
a profile (for example, LocalManager), choose the
concept to be controlled (for example, Order), each
concept attribute that will be of restricted access (for
example, totalValue), along with its range interval
(for example, totalValue < 1,000.00), and the
operations that should be controlled (select, insert,
update, delete) (Figure 1). The ARM module should
therefore provide a graphical interface with usability
concerns so as to enable business users to self-
manage their authorization rules and RBAC policies.

< 1,000

Order

identifier

totalValue

LocalManager

GlobalManager

Select

Update Delete

Insert

Figure 1: Architecture of ARM component.

Client
Application ARE

User+Query

Data

DBMS

Data

Query’

Business
Rule

Database

Corporate
Database

Figure 2: Architecture of ARE component.

In execution time (Figure 2), ARE module
captures every connection from a client application
to the corporative database, transforms it (say,
“Query”) into a modified one (say, “Query´”)
according to the authorization rules present in the
business rule database for the connected user. The
ARE module then sends Query´ to the DBMS and
forwards its returned data to the client application.

3.1 Metamodel for Authorization Rules

The authorization rules are stored in the business
rule database as follows (Figure 3).

Users are grouped into profiles, where each User
may be assigned to several Profiles, and each Profile
groups several Users. The self-relationship of Profile
entity allows the representation of a Profile
hierarchy. For example, Sales Manager of America

and Asia and Sales Manager of Europe profiles may
be specializations of the Sales Manager profile. This
denotes that authorization rules assigned to the more
general profile (SalesManager) should also be
enforced to all its descendents. Additionally,
descendent profiles may determine specific values
for range predicates. The Sales Manager profile may
be restricted to access Orders based on its
originatedFromContinent attribute; the Sales
Manager of America and Asia specifies the specific
(list of) values of the controlled attribute that the
profile is allowed to access (“(America, Asia)”),
thus enabling the RBAC policy to enforce access
only to Orders where “originatedFromContinent in
“(America, Asia)”).

Figure 3: Framework model.

Rule statements are stored as predicates (in
Struct Query Language (SQL) format) in table
“Rule”. The predicate is to restrict user access
returning a subset of a table. So, there is a
relationship “Rule × Table”. The same query
can be used to define an authorization rule over
different tables, and each Table may have more
than one rule statement.

A Parameter denotes an expression of the
form “Attribute operator value” in the
corresponding entities (Attribute, Operator
and Value). Attribute is a database attribute
with restricted access. Operator is a binary
operator (including “=”, “<>”, “>”, “>=”, “<”, “<=”,
AND, “OR” and “IN”). Value is specific values (or
values lists) within the attribute domain. It is used to
delimit value ranges of predicate Parameters. It is
represented by the entity Parameter which relates
the entities Attribute × Operator ×
Value. The relationship Table ×
Attribute indicates to which Table the

A FLEXIBLE FRAMEWORK FOR APPLYING DATA ACCESS AUTHORIZATION BUSINESS RULES

277

Attribute belongs. This relationship may appear
controversial, and it denotes a high-level
representation of the database schema (tables and
attributes) to which the authorization rules are
applied and that are referred as predicates'
parameters in a rule definition.

The same user can have more than one
Profile related to the same Table. For example,
the user has the profile Manager and Customer
which are related to Orders. So, when executing the
authorization rule, more than one rule (SQL for
restriction) will be returned, and they must be
composed in order to restrict access. This
composition can be executed using OR or AND
operators. Using OR operator the composition is for
permissive rules, since the user will have access to
the union of subsets of restrict table. For example,
the subset corresponding to Manager profile and the
subset corresponding to Customer profile. However,
using AND operator, it is a restrictive composition,
since the user will have access to the intersection of
the subset tables corresponding to each rule. The
proposed framework can be used to handle
permissive or restrictive rules, and it is upon the
organization to decide which composition operator
to use. Our tests applied the OR operator.

Therefore, rules created using ARM module
must be stored. During authorization rule execution,
ARE reads rules which are related to user’s profiles
and executes the restrictions.

4 IMPLEMENTATION
ARCHITECTURE AND
DETAILS

In this work, we implemented the ARE proposal on
top of Virtual Private Database (VPD), which also
follows the RBAC approach.

4.1 Virtual Private Database (VPD)

VPD enables define authorization rules for tables,
views and synonyms. When a user tries to access
(directly or indirectly) a table, view, or synonym
protected by a VPD policy (implemented in a
PL/SQL function), the server dynamically changes
the user command. This creates a predicate
(condition for the WHERE clause) returned by the
function implementing the security policy. Policies
can be set for SELECT, INSERT, UPDATE,
INDEX, and DELETE commands.

For example, a user makes the following query
in a table emp: “SELECT name, ssn FROM
emp;”. Considering that table emp has a protecting
policy, where each user can view only their own
information, then authorization VPD function
returns the following predicate ssn = 'my ssn' and
the command is rewritten as “SELECT name,
ssn FROM emp WHERE ssn='my ssn';”.

VPD is not simple to use in real scenarios. It
requires a lot of effort and knowledge from the user
responsible to create rules, usually a Database
Administrator (DBA). For example, for each rule, a
function should be implemented to return the rule
predicate. SQL, PL/SQL and the database structure
must be very well understood.

4.2 Generic Authorization Function

This work proposes a generic function for
authorization rules. This function must be applied to
all secured tables, and accordingly to information
stored in tables of the framework model, it will
return the predicate for table access restriction.

When executing the authorization rule, the
framework receives the user and the query, and
executes the following steps considering data stored
in tables of the framework (Figure 3):
 From the user in table User, it discovers the

Profiles the user has.
 From the query the user wants to execute, it

discovers which Tables are considered by the
query (tables in “from” clauses).
 From Profiles and Tables, it identifies

which rules must be applied to each table (stored in
Profile SQL).
 From the Profile and Rule, it is identified

which predicates (Attribute × Operator ×
Value) must be used by the rules to filter data.
 Finally, a predicate to restrict the queried table

is returned and the query submitted by the user (say
Query) is transformed to a restricted query (say
Query’) which is used to return only the data the
user is allowed to access.

5 EXPERIMENTAL RESULTS

We evaluated our implementation using the TPC-H
Benchmark scenario (TPC Council, 2008). The
TPC-H is a benchmark specification of broad
industry-wide relevance that simulates a scenario of
a representative decision support application.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

278

This scenario has a realistic context. It consists
of a database schema description and a suite of
business-oriented, ad-hoc OLAP queries. The TPC-
H Benchmark was chosen to show the effectiveness
and generality of our proposed framework, since it
examines large volumes of data, executes queries
with a high degree of complexity and answers
critical business questions. TPC-H model includes
Suppliers and Customers, and Nation and Region
were they are located. Suppliers supply items (table
Part), and table Partsupp stores relationship between
Part and Supplier. Customers make orders (table
Order) of line items (table LineItem) from suppliers.

In the experimental tests, some TPC-H
Benchmark queries were chosen to cover several
user access patterns on the database, and used to
evaluate the following operations: simple queries,
queries with subqueries, queries with group by and
queries with having. Besides, we evaluated the
framework for the insert, update, and delete
operations, and for trigger. Some tests descriptions
are presented to illustrate the proposal.
Q1 – Local supplier volume. Lists the revenue
volume done through local suppliers.
Q2 – Pricing summary report. Reports the amount
of business billed, shipped, and returned.
For the tests, we have added an attribute (named
N_HEMISPHERE) to the NATION table.
T1. Authorization rule designed to Q2 query:
Restricts the access of Customers to the line itens
from Mozambique, India or Russia nations.

For this example, we created a hierarchy of
profiles Customer > Customer of Mozambique, India
or Russia. The predicate of Figure 4 was created as a
Rule related to Customer profile and Table
LINEITEM. The “?user” is replaced by the user
login. A Parameter was created for Attribute
“n_name” of Table “Nation” using
Operator “IN”. Related to this Parameter and
profile Customer of Mozambique, India or Russia,
Values Mozambique, India, Russia were created.

l_orderkey in (
 select o_orderkey
 from orders, customer, nation
 where lower(c_name) = lower(?user))
 and c_custkey = o_custkey
 and n_nationkey = c_nationkey
 and

Figure 4: Predicate for profile Customer.

After profile configuration, query Q2 was
executed by a user without restrictions, and a user
with Customer of Mozambique, India or Russia
profile. For the first user, all data was returned.

However, for the second user, the generic function
generated the right predicate, restricting accessed
data to tuples from Mozambique, India and Russia.
For the insert operation test, we tried to insert data in
a restricted table in a range that do not belong to the
user profile. In this case, the predicate is computed
and used to evaluate if the user still have access to
data after the insertion. If it can access data, then the
insertion is performed, otherwise insertion is not
executed. The same reasoning was used in update
and delete tests. So, data that do not belong to subset
corresponding to user profile was not updated or
deleted as well.

The trigger test executed on top of NATION
table. A profile was created restricting user to access
suppliers only of his nation. Table Nation did not
have restrictions. A user from Brazil trying to update
the field comment of nation Germany succeeded;
however, suppliers of Germany were not updated.
When the same user updated the comment of Brazil,
all suppliers of Brazil were updated.

6 RELATED DATABASE
SECURITY APPROACHES

Fischer et al (2009) argue that traditional RBAC
approaches does not easily express parameterized
security requirements. They proposed a generalized
RBAC model (called Object-sensitive RBAC –
ORBAC) to solve this expressiveness limitations of
RBAC by allowing roles to be parameterized by
properties of the business objects being manipulated.
ORBAC is applicable in scenarios where the
accessing application is programmed in an OO
language, which is not the case in several legacy
systems; our approach may be applied independent
of the application programming language.

Vimercati et al. (2008) present that significant
amount of research has recently focused on the
problem of processing distributed queries under
access restrictions, based on the concept of access
pattern and chase and data dependencies. Calì and
Martinenghi (2008) define the access pattern as an
approach to mark each attribute of a relation/view as
“i” (input) or “o” (output). The relation/view can
only be accessed if constants can bind the input
attributes. Data from output attributes are returned.
This approach restricts access to data, but handles
only attributes of relations, and not range of attribute
values nor relationships between relations. In our
proposal, both issues are handled. Besides, supply
input attributes to execute the access policy is not

A FLEXIBLE FRAMEWORK FOR APPLYING DATA ACCESS AUTHORIZATION BUSINESS RULES

279

feasible because of the many ways data can be
accessed, and different operations executed.

Vimercati et al. (2008) present that the chase
process exploits a specific data structure, called
tableau, to represent a query or a relation. It is
usually adopted to study and identify functional
dependencies within a relation schema, to check if a
decomposition is lossy or lossless, to evaluate if the
result of a query qi is contained in the result of
another query qj (or vice versa) without explicitly
computing the queries. When the verification returns
false, the user receive no data, and the application
must be change to comply with the rule. In RBAC
approach, query is rewritten in order to return only
data user has access. No error is returned, and the
user receives only data he has access to. They
propose a graph model approach to model
authorization rule, database schema and queries,
using authorization compositions and coloring the
graph. This approach has the following drawbacks:
it handles authorization for read operations (queries)
and not write operations; it does not handle
authorization on specific tuples of tables; it does not
handle cyclic schemas, so it requires to remove all
cycle from existing schemas which can be very
expensive, and not feasible in practice. Medium and
large companies usually cannot change their
database to comply with this requirement.

7 CONCLUSIONS

Data access security is an important issue for
enterprises. Authorization rules are traditionally
implemented into IT applications, which define their
own security policies and enforce them at the client
layer. However, if a rule change, all applications that
implemented the rule must be updated. So, it is a
very complex problem in a scenario with lot o
legacy systems.

In order to improve this environment, there are
solutions for authorization control on top of
databases, such as Discretionary access control
(DAC), Mandatory access control (MAC), and Role-
based access control (RBAC). However, such
implementations are difficult to manage, thus
requiring skilled professionals.

In this work, we presented a flexible and easy to
use framework for managing and controlling
authorization rules of applications on top of
corporative databases. The framework has two
components (i) Authorization rule management
(ARM) and (ii) Authorization rule execution (ARE).
ARE component was implemented using Virtual

Private Database (VPD) in Oracle, and evaluated
using TPC-H Benchmark queries and data. The
results showed the effectiveness of the proposal.
Further experiments are being conducted, beyond
the scope of this work, addressing the performance
impact of our proposal.

As future work, we point the implementation of
ARM and the evaluation of the ARE in a real
scenario. For the first, we are evaluating if existing
Business Rule Management System comply with
ARM requirements. For the second, we are
executing experimental tests in real scenarios.

REFERENCES

BRG, 2009. The Business Rules Group. http://www.
businessrulesgroup.org/home-brg.shtml.

Calì, A., Martinenghi, D. 2008. Querying data under
access limitations. In ICDE 2008, Cancun.

DoD, 1983, Trusted Computer Security Evaluation
Criteria. Department of Defense, DoD 5200.28-STD.

Ferraiolo, D., Khun, D. 1992, Role-Based Access Control.
In: 15th Nat´l Computer Security Conf, pp. 554-563.

Ferraiolo, D.F., Sandhu, R., et al., 2001, Proposed NIST
standard for role-based access control. ACM
Transactions on Information and System Security 4
(3), pp. 224-274.

Fischer et al., 2009, Fine-Grained Access Control with
Object-Sensitive Roles, In: Drossopoulou (Ed.):
ECOOP 2009, LNCS 5653, pp. 173–194

Murthy, R., Sedlar, E., 2007. Flexible and efficient access
control in oracle. In ACM SIGMOD 2007, pp. 973-
980, Beijing.

ORACLE. 2003. Oracle Label Security Administrator's
Guide. Oracle Corporation.
http://download.oracle.com/docs/cd/B14117_01/netwo
rk.101/b10774.pdf.

ORACLE, 2008. Oracle Database Security Guide, Oracle
RDBMS 10gR2. Oracle Corporation. http://download.
oracle.com/docs/cd/B19306_01/network.102/b14266.p
df.

SOX, 2009. Sarbanes-Oxley: Financial and Accounting
Disclosure Information. http://www.sarbanes-
oxley.com/section.php?level=1&pub_id=SOA-Manual

TPCH, 2008. TPC Benchmark H Standard Specification
Revision 2.8.0. Transaction Processing Perfermance
Council. http://www.tpc.org/tpch/spec/tpch2.8.0.pdf.

Vimercati, S., Foresti, S. et al., P. 2008. Controlled
information sharing in collaborative distributed query
processing. In Proc. of ICDCS 2008, Beijing.

Yang, L. 2009. Teaching database security and auditing.
ACM SIGCSE 1(1), pp. 241—245.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

280

