
REACT-MDD 
Reactive Traceability in Model-driven Development 

Marco Costa 
Universidade Autónoma de Lisboa, CESITI, Lisbon, Portugal 

Alberto Rodrigues da Silva 
INESC-ID, Instituto Superior Técnico, Lisbon, Portugal 

Keywords: Traceability, Model-driven Development, Meta-model. 

Abstract: The development of information systems has evolved to a complex task, regarding a multitude of 
programming and modelling paradigms, notations and technologies. Tools like integrated development 
environments (IDE), computer aided systems engineering (CASE) and relational database systems 
(RDBMS), among others, evolved to a reasonable state and are used do generate different types of artefacts 
needed in this context. ReacT-MDD is a traceability between artefacts open model that was instantiated in a 
prototype. We present and discuss some practical issues of ReacT-MDD in the context of reactive 
traceability, which is also described. 

1 INTRODUCTION 

The development of information systems have been 
changing regarding not only technologies but also 
notations and methodologies. As the complexity of 
the implemented systems is growing steadily, the 
need for ways of systematically develop applications 
increase. New levels of abstraction, heterogeneous 
environments, different programming paradigms and 
complex contexts, are just some issues the software 
developer has to deal with.  The model-driven 
development (MDD), which has its roots on the 
methodologies boom of the 1970s and 1980s 
(Jackson, 75; Martin, 89) is promising to increase 
the productivity of the development and 
maintenance tasks. MDD is being helped by tools 
like integrated development environments (IDE), 
computer aided systems engineering (CASE) and 
relational database systems (RDBMS), among 
others, which are already reasonable evolved  and 
are used do generate different types of artefacts. An 
artefact may be considered as something that is 
produced or crafted in the context of some tool, not 
just a data file (e.g., a Table in a RDBMS, a Class 
written with an object oriented programming 
language, a business requirement written in plain 
text). An information system involves a set of active 

artefacts that cooperate towards a common goal. 
These artefacts are present in multiple views, 
regarding the abstract layer we take as a viewpoint. 
For instance, a system may be described by its 
functions, data structures and technologies, among 
other features. Documentation is part of the solution, 
just as the formulation of a problem may be 
considered part of its solution. From requirements 
(Palo, 2003) to code (Costa, et al., 2007), it is 
possible to trace all artefacts of the system, adding 
new ones, named traces. Development of new 
applications and maintenance of the existing ones 
should be accompanied by tools and methodologies 
which minimize the risk of introducing a state of 
incoherence between some artefacts. When this 
problem is not tackled the reality shows that 
programming code evolves with no or minor relation 
with models (Figure 1).  

In large applications, when models are almost 
completely outdated the system is in risk of 
becoming unmaintainable. Traceability, as a generic 
term, is used in many different contexts from food 
industry to software development and maintenance. 
Traceability deals with keeping records of relations 
between artefacts of the same, or different abstract 
levels. We propose the term reactive traceability as 
a characteristic of a system that not only keeps 

483Costa M. and Rodrigues da Silva A. (2010).
REACT-MDD - Reactive Traceability in Model-driven Development.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
483-488
DOI: 10.5220/0002908304830488
Copyright c© SciTePress



 

information of the relations, but also can react to and 
prevent changes to artefacts or to its relations 
(traces). 

 
Figure 1: Relation between models and code as time goes 
by becomes less reliable. 

Automated transformation of models-to-models, 
models-to-code, as well as code-to-models, is 
becoming a reality. These transformations generate 
output artefacts from source artefacts. The relation 
between input and output artefacts of a 
transformation is just one, and obvious, type of 
semantic relations among others. Object 
Management Group QVT (Queries, Views and 
Tranformations) (OMG, 2005) is aimed to 
standardize not only transformations with models 
but also other operations with models, like queries 
and views. Our approach takes QVT as a starting 
point to accomplish the construction of automated 
transformations between models and implements a 
way of maintaining traces between artefacts (models 
and code) as well as reacting to changes for the sake 
of system coherence. Reactive  traceability is a way 
to accomplish the maintenance of coherence 
between artefacts with or without human 
intervention.Our proposal is aligned with OMG 
standards and recommendation like UML (OMG, 
2010) and QVT. Even if QVT by itself has not a 
complete implementation, it is however a starting 
point to different approaches and products like Tata 
ModelMorf (Tata, 2007) or Compuware Optimal J 
(Compuware, 2010). Other concurrent approaches to 
QVT include ATL (Eclipse, 2010), Mistral (Kurtev, 
et al. 2005) and EML (Kolovos, et. al., 2006), 

Executable UML (Mellor et al., 2002). The vision of 
traceability in a MDD perspective is shared with 
other initiatives, such as those in (Aizenbud-Reshef, 
et al., 2006; Walderhaug, 2006; Oldevik, et al. 
2006).  Also, the ReacT-MDD vision uses meta-
modelling and model-based model conformance 
(Paige et al., 2007).  
In Section 2 this paper explains some general 
concepts that are inherent to traceability. Section 3 
introduces a reactive traceability conceptual model. 
A prototype was developed that validated the 
ReacT-MDD approach (ReacT-Workbench) and 
enhanced his scope. In Section 4 are discussed some 
practical issues like implementation decisions that 
were made in this working prototype. Section 5 
states some relevant conclusions of this work. 

2 TRACEABILITY VIEWPOINTS 

Transformations between models or between models 
and code (usually from models to code and not the 
opposite) are a relevant issue to reactive traceability. 
After transformations are performed traces are 
created (implicitly or explicitly) but this is not the 
only action that can create traces. There are two 
viewpoints (Figure 2) to the issue of creating traces: 
a) in legacy applications one may consider artefacts 
already existent and traces will instantiate and 
describe some implicit or explicit semantic relations, 
or dependencies, between them; b) from a starting 
point in an artefact (diagram or code) it is necessary 
to create (or generate) another artefact, using some 
type of transformation.. These two viewpoints are 
both necessary in a solution that implements reactive 
traceability. The first item has a focus on creating 
and maintaining the semantic relations between 
existing artefacts and the word existing is a keyword 
to understand this viewpoint. At some time of the 
development process changes in the system will 
become evolutions of an existing state. For each 
change the system coherence is checked and 
decisions are made about the new achieved system 
state.  The second gives more importance to the 
generation process (Herrington, 2003; Dollard, 
2004) and traces are relations between old and new 
(generated) artefacts. The second viewpoint is 
related to the IEEE traceability definition (IEEE, 
1990): “the degree to which a relationship can be 
established between two or more products of the 
development process, especially products having a 
predecessor-successor or master-subordinate 
relationship to one another”. When a generation of a 
set of artefacts  occurs  it is  necessary to record the 

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

484



 

 
Figure 2: Artefact relation viewpoints. 

new dependency relations that are created in the 
process. These two approaches are just not only 
valid but necessary, in a development process and 
reactive traceability must include both. 

3 A REACTIVE TRACEABILITY 
MODEL 

The building blocks of traceability, in any system, 
are traces and artefacts. As an extension we may 
consider that traces are also artefacts. With that in 
mind it is possible to consider even traces between 
traces. A trace may be considered as an algebric 
relation between elements (which in this context are 
traces). However, traces and artefacts are not enough 
to define a traceability model (Figure 3). ReacT-
MDD approach defines an event model that starts 
events, when some action over a given artefact is 
performed. The event may trigger a synchronization 
decision (e.g., “Change a name of a Java Class when 
a given UML class name has changed?”)  with or 
without user intervention. Also, an artefact is 
described by a meta-model which can be more or 
less rich, in relation with an implementation concept 
known as plug-in which enables ReacT-Workbench 
to act over artefacts of different applications. 

The meta-model is defined for any kind of artefact 
that is to be included the in traceability solution. It is 
a description needed for an artefact to be included in 
the trace definition. 

Trace

Synchronization 
Action

Synchronization 
Decision

Artefact

Ev ent

Metamodel

runs>

1..*

*

<changes

*

1..*

*

*

triggers>
1..*

*
+origin 1

*

+origin

1

<is_described_by

 
Figure 3: Simplified UML class diagram of reactive 
traceability. 

Traces may be defined between occurrences in 
particular or between types of artefacts, given a 
context. For example, in some project, it is possible 
to define a trace between the business class “Entity” 
and the Java class “Person”. When a change is made 
to one of this artefacts, ReacT-MDD triggers an 
event that require one or more synchronization 
decisions to be made. In the same example: “1 – 
Leave the artefacts unchanged”, “2 – Renew traces 
with new values”, “3 – Delete trace”. It is possible 
also to define traces between groups of artefacts like 

REACT-MDD - Reactive Traceability in Model-driven Development

485



 

“UMLClass : BusinessModelX” or “CSharpClass : 
AppTestX”. In that case, the traces are verified for 
each artefact that conforms with the meta-model 
definition and is included in the specified context.  

4 A PRACTICAL APPROACH 

ReacT-MDD was instantiated in a prototype 
(ReacT-Workbench) that implements the concepts 
and delivers the basis for researching in the practical 
issues of this field. The tool was developed with 
scalability requisites that concern the fact that it 
must deal with artefacts generated by a large number 
of tools. The approach was to develop several test 
plug-in modules that give the ability to interact with 
each needed tool or artefact. Also each plug-in gives 
an access to a meta-model of the targeted artefacts 
(Figure 4). The tool was developed in the C# 
programming language and has a plug-in for the 
same language. It was defined also a traceability 
language (which is an extension to QVT) which is 
needed to define a trace between artefacts. Also it 
was defined a context definition module that links 
each real occurrence of the artefact with its 
representation. 

 
Figure 4: UML component diagram of React-MDD 
interaction with external applications. 

When a plug-in is available for some application, or 
for some kind of artefacts (e.g., Microsoft Excel 
files) the ReacT-Workbench gets access to the 
corresponding meta-model and associated concepts 
(in the same example, Workbook, Column, Row, 
Cell). These concepts may be refered in all traces 
that are defined after.  

Of course, more components of different types may 
be added if they produce or consume artefacts with 
traces. The link between the Traceability Engine and 
each other component varies from the type of 
component. Each tool to be included in the 
traceability solution must have the plug-in that will 
be used to access the relevant artefacts which have 
traces.  
The traceability solution, which is an 
implementation of ReacT-MDD (e.g., ReacT-
Workbench), plus all artefacts and plug-ins, is 
designed to work on development operation 
environments, as opposed to test and production 
operation environments. As it acts with the structure 
of the target applications, if the structure is not 
changed there is no need to control traceability. This 
operation requisite ensures that changes to 
documentation artefacts of the project should be 
made in the same operation environment of code, 
models, or others. The operation environment may 
be just one or a set of logically connected operation 
environments as well. This is achieved at the system 
level (e.g., with drive mapping). 
The ReacT-Workbench implemented a Traceability 
Engine (TE) which permanently verifies the 
coherence state of the system in a three phase 
approach: 
Phase 1: The TE polls each artefact. When a change 
is made to an artefact, the TE adds that artefact to a 
list of changed artefacts. This phase is possible to be 
achieved concurrently, given a set of artefacts, but 
Phase2 can’t start until all artefacts where polled. 
For each type of artefact (e.g., code, model, text 
document) this phase may involve parsing and 
constructing an object tree graph and compare each 
node with a corresponding one in a stored 
representation of the initial artefact.  
Phase 2: For each artefact in the list of changed 
artefacts TE searches in an artefact event list all the 
relevant events related to that artefact. For each of 
these events found, it is necessary to verify if a valid 
action was made in the system. Possible valid 
actions are: create, update and delete. The read 
action is not valid as it does not change the system 
state. The create action is valid when used with 
meta-model artefacts. Only then it is possible to say 
if an event related directly to the artefact exists. If 
this is the case, the event is triggered. 
Phase 3: After the artefact events are verified it is 
necessary to check if traces still hold. For each 
artefact in the list of changed artefacts TE 
recursively searches trace events that refer artefacts 
contained in the artefact. If a trace event is founded, 

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

486



 

and the relevant artefact and action hold, the event is 
triggered (Figure 5).  
We consider a complete 3-phase cycle as a 
traceability event cicle, which is scheduled: a) at a 
moment, present or future, which is more convenient 
to the user, b) periodically with a time interval (from 
ms to days).  
When the trigger conditions are satisfied TE runs 
synchronization decisions. When the user selects one 
of the decisions available TE runs a set of 
synchronization actions associated to that decision. 
After the decision is taken the system is in equal or 
more coherent state than before (i.e., has the same 
number or less artefacts in an incoherent state). If a 
decision of solving a coherence issue is postponed, a 
warning is generated and logged in a to-do list for 
further processing. Also this incoherence is archived 
to override future verifications in Phase 2. 

Start

Ev ent
Selection

Action
Recognition

Synchronization
Decision

Has effects?

Synchronization
Actions

Trace Update
Has effects?

End

[true]

[false]

[false]

[true]

 
Figure 5: Event recognition and triggering of 
synchronization actions. 

The user interaction with the solution is minimized 
if trace and artefact events have only one 
synchronization decision (representing just one 
option). In that case TE may enforce or omit the 
related actions (in this case generating an entry in 
the to-do list). 
ReacT-Workbench is also able to generate some 
metrics derived from the meta-model concepts (e.g., 
how many classes, attributes and associations exist 
in a particular UML model, or how many tables 
exist in a relational database).  
Future development is needed in the design of 
attractive and efficient graphical user interfaces to 
deal with issues like simulation of action effects, 
tests, completeness and terminating analysis.  

5 CONCLUSIONS 

There is a variety of development tools from 
different types (e.g., CASE , IDE) that are being 
used all over the world. Each tool is generating 
artefacts that, in many cases, should be coherent 
with other artefacts crafted with other tools. The 
number of artefacts is growing and the relations 
between them should be maintained along the 
project’s lifecycle. Notations have been replaced, 
programming languages and methodologies have 
evolved significantly but, at large extent, users are 
still responsible for the maintenance of the 
coherence between artefacts.  Existent tools can do 
some kind of synchronization but the ways for 
achieving this are tool dependent and with difficult 
customization. 
The convergence of modelling notations to UML 
was an important factor because it gives some 
stability to this field. Development teams are still 
adopting UML as the notation and practical issues 
are emerging with more experience and new releases 
of the standard. ReacT-MDD is an effort to define 
an open model to define tools that can deal with 
traceability between artefacts of a project, as well as 
react to changes in the state of coherence of the 
system.  
The ReacT-MDD approach was instantiated in a 
prototype that deals with the explained concepts. 
Instead of developing another tool as a plug-in for an 
existent single tool or set of tools, the ReacT-MDD 
defines an open architecture that enables different 
industry providers to be included. Also, it is 
orthogonal to operating systems, tools, development 
environments, methodologies and languages. 

This work presented some issues that where 
considered in the implementation of a solution 
prototype. Traceability is still regarded has a 
documentation activity. If the human resources 
involved in the project are not conscientious about 
the relevance of documentation in maintenance 
phases, traceability is not seen as a critical issue.  

In our perspective, traceability is not about 
documentation of the system, it is about the system 
itself, its parts and the way they are related to each 
other. Reactive traceability is a proposal driven by 
that principle. ReacT-MDD, as a reactive solution it 
is supposed to act, creating, updating or deleting 
artefacts of the target system, in reaction to an event. 
The number, and importance, of available artefact 
types and the level at which the tool is capable of 
interact with each of them is an important measure 
of its capabilities. 

REACT-MDD - Reactive Traceability in Model-driven Development

487



 

REFERENCES 

Aizenbud-Reshef, N., Nolan, B. T., Rubin, J., Shaham-
Gafni, Y.. 2006. Model Traceability. In IBM Systems 
Journal, Vol. 45, Nr. 3 

Compuware, 2010. Optimal J. In www.compuware.com. 
Compuware. 

Costa, M., Silva, A. R., 2007. Synchronization Issues in 
UML Models. In 9th International Conference on 
Enterprise Information Systems, Funchal - Portugal 

Dollard, K., 2004. Code Generation In Microsoft .NET. 
Apress 

Eclipse, 2010. ATL. In  www.eclipse.org/m2m/atl/  
Herrington, J., 2003. Code Generation In Action,  

Manning Pub. Co 
IEEE, 1990. IEEE Standard Computer Dictionary: A 

Compilation of IEEE Standard Computer Glossaries. 
Institute of Electrical and Electronics Engineers 

Jackson, M., 1975. Principles of Program Design,  
Academic Press. 

Kolovos, D. S., Paige, R. F., Polack, F. A. C., 2006. On-
Demand Merging of Traceability Links with Models. 
In 3rd ECMDA Traceability Workshop 

Kurtev, I., Berg, K., 2005.  MISTRAL: A Language for 
Model Transformations in the MOF Meta-modeling 
Architecture, Lecture Notes in Computer Science, 
Springer (2005). 

Martin, J., 1989. Information Engineering: Introduction, 
Prentice Hall 

Mellor, S., Balcer, M., 2002. Executable UML. Addison-
Wesley. 

Oldevik, J., Neple, T. 2006. Traceability in Model to Text 
Transformations. In 3rd ECMDA Traceability 
Workshop 

OMG, 2005. MOF QVT Final Adopted Specification. In 
http://www.omg.org/docs/ptc/05-11-01.pdf, Object 
Management Group 

OMG, 2010. OMG Unified Modeling Language  
Infrastructure. In www.uml.org/#UML2.0, Object 
Management Group 

Paige, R., Brooke, P., Ostroff, J., 2007. Meta-model-based 
model conformance and multiview consistency 
checking. In ACM Transactions on Software 
Engineering and Methodology (TOSEM) Vol. 16,  
Issue 3  (July 2007) 

Palo, M., 2003. Requirements Traceability. In Seminar 
Report, Department of Computer Science. University 
of Helsinki  

Tata, 2007. ModelMorf – A Model Transformer. In 
www.tcs-trddc.com/ModelMorf/ index.htm. Tata 

Walderhaug, S., Johansen, U., Stav, E., Aagedal, J., 2006. 
Towards a Generic Solution for Traceability in MDD. 
In 3rd ECMDA Traceability Workshop 

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

488


