
MIGRATING LEGACY SYSTEMS TO A SERVICE-ORIENTED 
ARCHITECTURE WITH OPTIMAL GRANULARITY 

Saad Alahmari, Ed Zaluska and David De Roure 
School of Electronics and Computer Science University of Southampton, Southampton, U.K. 

Keywords: Service-Oriented Architecture, Service Granularity, Software Evolution, Legacy Systems, Architecture 
Modelling. 

Abstract: The enhanced interoperability of business systems based on Service-Oriented Architecture (SOA) has 
created an increased demand for the re-engineering and migration of legacy software systems to SOA-based 
systems.  Existing approaches focus mainly on defining coarse-grained services corresponding to business 
requirements, and neglect the importance of optimising service granularity based on service reusability, 
governance, maintainability and cohesion. An improved migration of legacy systems onto SOA-based 
systems requires identifying the ‘right’ services with an appropriate level of granularity. This paper 
proposes a novel framework for the effective identification of the key services in legacy code to provide 
such an optimal mapping. The framework focuses on identifying these services (based on standardized 
modelling languages UML and BPMN) and provides effective guidelines for identifying optimal service 
granularity over a wide range of possible service types. 

1 INTRODUCTION 

The difficulty of accommodating technology 
evolvement and rapid business changes is a 
significant problem with existing legacy software 
systems. In the past, software systems were typically 
developed with embedded business rules and logic, 
scattered and duplicated code, unstructured modules, 
and tightly-coupled functions. Such legacy systems 
nevertheless often represent a considerable 
investment by the underlying business which will 
frequently rely on the software for many day-to-day 
business activities. Service-Oriented Architecture 
(SOA) is a modern approach to implementing (and 
re-implementing) such systems as a set of robust and 
interoperable services. There are many different 
interpretations of the ‘best’ approach to build a SOA 
system (Kontogiannis et al, 2007).  

Typical SOA modelling lifecycles include the 
phases of service identification, service 
specification, and service realization (Arsanjani, 
2004). Our research emphasizes the importance of 
the service identification phase for defining the right 
service because mistakes made here can lead the 
overall failure of the resulting SOA-based system. 
The success critically depends on the correct 
identification, presentation and definition of the key 

services, because the exposed functionalities in a 
service define the service granularity. It is important 
to appreciate that achieving an optimal level of 
service granularity requires a compromise between 
many elements, both technical and non-technical. In 
particular, the optimal granularity of key services 
can be expected to vary at various layers with 
different service types (Kulkarni et al, 2008) or 
service layers (Reldin et al, 2007; Ramollari et al, 
2007). 

Recent research conducted by (Kohlborn, 2008) 
on thirty modern service analysis approaches 
showed that 76% of those approaches introduced 
two types of services (e.g. business service, software 
service or generic service). The other approaches 
defined between one and eleven types of services. 
All of the approaches studied applied one of the 
development strategy techniques (e.g. top-down, 
bottom-up and meet-in-the-middle), although the 
services identified were significantly different from 
one approach to another. This means that defining 
service granularity, which is a very challenging task, 
requires considering not only service characteristics 
but also provisional service types. For example, an 
infrastructure service that is concerned with 
providing heterogeneous underlying capabilities to 
other services should be fine-grained for high 

198 Alahmari S., Zaluska E. and De Roure D. (2010).
MIGRATING LEGACY SYSTEMS TO A SERVICE-ORIENTED ARCHITECTURE WITH OPTIMAL GRANULARITY.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
198-207
DOI: 10.5220/0002896401980207
Copyright c© SciTePress



 

reusability and encapsulation. On the other hand, a 
business service will typically be implemented as a 
coarse-grained service for maximizing business 
value and traceability of business processes. 

Our approach analyses legacy systems using two 
formal models: firstly a Unified Modelling 
Language (UML) representation and secondly a 
Business Process Modelling Notation (BPMN) 
representation. Although these present two different 
views of complex software systems, we started 
initially with a transformation from a static model 
(e.g. UML class diagram) to a behaviour model 
(BPMN) for two reasons. First, a significant number 
of current legacy systems are Object-Oriented 
systems. Second, there is already a wide acceptance 
of business process modelling for service-oriented 
systems [Rolland et al, 2007; Erradi et al, 2006; 
Erradi et al 2007] . However, BPMN and UML can 
be expected to overlap when considering workflow 
patterns and also to share significant deficiencies 
such as informal semantics and imprecise resource 
definitions. This is an important motivation for the 
investigation of a combined approach in this 
research, because relying on a single approach 
cannot be expected to produce the required ‘optimal’ 
result. The key contributions of this paper are: 
 To provide a framework and guidelines for 

identification of services from legacy code with 
proper level of granularity. 

 To propose an automated and simple 
transformation from a static model (UML) to a 
behaviour model (BPMN). 

The rest of this paper is organized as follows: in 
section 2 related work is discussed. In section 3 the 
service types and proposed approach are introduced. 
Section 4 presents an example of an application, 
followed by an example evaluation in section 5. 
Sections 6 presents the conclusions. 

2 RELATED WORK 

Research conducted in the arena of migrating and 
integrating legacy systems for support of SOA has 
proposed several different approaches from different 
perspectives: the technical domain, the business 
domain, and the conceptual (Ramollari et al, 2007). 
Reference (Zhang et al, 2004) proposes a 
hierarchical clustering algorithm to extract 
independent services from procedural software 
systems into an object-oriented (OO) model. This 
approach uses a grey-box strategy which is a 
combination of system wrapping with the key 

business logic. However, the drawback of this 
approach is that it identifies target services at two 
different architectural levels without a 
reconsolidation process. In addition, it requires 
human intervention to identify and assess the 
appropriate services.   

Reference (Chen et al, 2005) discusses the 
transforming of legacy systems developed with 
Object-Oriented Design (OOD) or Component 
Based Design (CBD) into SOA applications using 
feature analysis. The feature analysis consist of three 
stages: identifying system features, constructing the 
feature models, and tracing the relationship between 
the defined services. The identified service 
operations are exposed by class delegations using a 
tool called a Web Service Wrapper. The authors 
claim that feature analysis bridges the gap between 
abstraction architecture and source code, whereas 
business requirements are excluded. In addition, this 
approach does not cover service classifications and 
granularity aspects. Reference (Zou et al, 2001) 
provides a framework to transform legacy systems 
into a web-enabled environment by means of a 
CORBA wrapper (CORBA IDL, SOAP, WSDL, and 
UDDI). This approach is accomplished in three 
stages. This approach does not provide enough detail 
on how to identify services along with new business 
requirements and the targeted service characteristics.  

Reference [Jianzhi et al, 2005] develops a 
framework ICENI (Imperial College e-Science 
Network Infrastructure) to leverage components of 
legacy systems into a grid environment. It applies 
reverse engineering techniques to components using 
a Java Native Interface (JNI) wrapper to encapsulate 
code and Commerce eXtensible Markup Language 
(CXML) to describe specifications for 
communication with the ICENI workflow. The 
drawback of this approach is that they lack an 
understanding of the problem domain. It migrates 
independent blocks of code directly into services 
that cannot interoperate using a bottom up approach.  
Reference (Zhang et al, 2005) proposes an 
architecture-based service-oriented reengineering 
approach that uses a hierarchical clustering method 
to identify services from legacy systems based on 
mapped requirements in UML models. This 
approach requires human supervision to assist in 
determining the optimal service granularity along 
with the clustering technique.   

Reference (Galster et al, 2008) proposes a graph-
based framework that discovers service granularity 
according to business goals during the design phase. 
However, this approach does not define fine-grained 
services and quantifies coarse-grained services using 

MIGRATING LEGACY SYSTEMS TO A SERVICE-ORIENTED ARCHITECTURE WITH OPTIMAL
GRANULARITY

199



 

a non-technical description. Reference (Suntae et al, 
2008) focuses mainly on how to define the right 
services in the analysis phase considering business 
change factors and goals. Reference (Rolland et al, 
2007) introduces an approach that depends on 
exploring the purposes of a business process in order 
to identify a service. As a result, this approach 
defines a new type of service called an “Intentional 
Service” which considers business goals, pre- and 
post-conditions, and variant interpretations instead 
of the technical aspects of interfaces, behaviour, and 
composition of services respectively.  

Reference (Sneed et al, 2006) refers to the 
importance of granularity in defining web services 
without suggesting any particular solution. 
Reference (Fareghzadeh, 2008) attempts to solve the 
gap between service provider and requester 
regarding to the service agreements. A Unified 
Service Model (USM) is proposed along with a 
service operational model to specify business 
services from a business people perspective. 
Although the authors of this approach claim that the 
USM defines business services at multiple levels of 
granularity, no metrics or guidelines are provided to 
identify the service granularity. Reference 
(Arsanjani et al, 2006) outlines set of activities in the 
analysis phase that lead to adequate broad 
foundation for service identification. The author 
classifies service types in three layers; orchestration 
layers (process service), business layer (task and 
entity service), and application service layer. Even 
though the author emphasizes the importance of the 
key principles of service-oriented, no details have 
been given as to how those principles can be applied 
to guaranteed optimized services 

In a real-world project in an Energy Management 
System (ESM), reference (Xiaofeng et al, 2007) 
utilizes specific enterprise service hierarchy patterns 
for selected business processes to determine the 
service granularity. These patterns failed to provide 
effective guidelines to enhance the service 
granularity. References (Arsanjani, 2004; Lawson, 
2009) propose a comprehensive approach with a 
high-level service architectural classification and 
iterative processes. It consists of three phases: 
identification, specification, and realization; the later 
reference added components and flow. Although 
these approaches were successful in highlighting the 
broadly architectural aspects, they failed to provide 
detailed guidance. 

Reference (Erradi et al, 2006) introduces the 
Service Oriented Architecture framework (SOAF) 
with five conceptual levels: information elicitation, 
service identification, service definition, service 

realization, and roadmap with planning. Each level 
requires inputs to proceed with a set of activities that 
deliver outputs as inputs for the next layer. For 
service identification, it defines the design tasks to 
be performed (e.g. specifying service policy). It also 
scales service granularity levels by means of the 
grouping of the number of invoked components or 
services via an operation on a service interface and 
the number of updated sources. Finally, 
transformation strategies are defined along with the 
plan for service implementation. Reference (Erradi 
et al, 2007) extends the service design concepts of 
the SOAF framework (Erradi et al, 2006) with a 
business-driven approach based on a meta-model to 
define service granularity. It highlights broad 
guidelines for enhancing the service granularity such 
as reusability, business-alignment, designing for 
assembly, and reducing the ripple effects of 
application changes.    

Reference (Dwivedi et al, 2008) introduces a 
semi-automated approach to identify services on 
process-oriented systems. It converts the UML based 
business process models into XMI. The XMI reader 
“NSUML” is used to produce the MOF (Meta 
Object Facility) for mapping XMI meta-model. The 
algorithm used runs over an XMI meta-model 
developed a statistic based approach which helped in 
creating APIs to query candidate services. Although 
this approach provides a good definition of the 
service identification issues and presents an 
interesting tool, it fails to demonstrate how the tool 
will integrate the service hierarchy layers and 
properties. Reference (Shirazi et al, 2009) attempts 
to categorize services based on operational state of 
services and logical presentations, i.e. differentiating 
between application and business services. However, 
this approach is incomplete because authors do not 
consider important elements that effect service 
identification phase such as granularity and 
complexity. 

By analysing all of this related work, it is found 
that none of the previous approaches has enabled 
accurate service identification, in terms of when 
services should be coarse-grained and fine-grained. 
Although the approaches studied usually conclude 
with various service design principles, they do not 
provide well-defined and effective mechanisms to 
accomplish these principles. However, all of the 
references agree on the complexity of considering all 
applicable factors to fulfil both the business and the 
technical aspects. We believe that service granularity 
is a key aspect of service design that has a 
significant impact on other aspects such as 
reusability, maintainability, performance and 

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

200



 

flexibility. As confirmed by this literature review, 
there are no close approaches to the work reported in 
this paper.  

3 SERVICE IDENTIFICATION 
FRAMEWORK 

3.1 Defining Service Types 

The functional scope of different services is a key 
element required to construct service taxonomy. A 
service should accomplish certain goals that can be 
quantified correspond to a business or a technical 
requirement. Our classification is concerned 
primarily with defining right level of granularity for 
every service type. This classification will guide the 
service identification framework to define roles and 
properties for each service type. It will be also used 
along with the proposed metric in indentifying the 
right service with optimal granularity. The closest 
service type classification to that in our approach is 
the work by (Kulkarni et al, 2008a, 2008b), who 
identify eight generic service types from a 
hierarchical perspective of the enterprise layers. In 
contrast, our classification focus is on defining the 
purpose of the service, i.e. what the service is 
expected to expose to the service consumer. Table 1 
shows service types with different levels of 
granularity from the functional perspective. We 
define seven service types; process service, business 
service, composite service, transactional-data 
service, master-data service, utility service, and 
infrastructure service. The services are defined from 
the most granular (e.g. process service) to the least 
granular (e.g. infrastructure service). 

The purpose of the service can be defined as 
CRUD (create, retrieve, update, delete) functions or 
business logic or specific domain functions (e.g. a 
service for customer credit check) or infrastructure 
capabilities. The data nature is also considered as a 
function of the frequency of data modification. This 
consideration facilitates data exposure and process 
access functions through flexible and reusable 
services (Lawson, 2009). Based on the concept of 
the Business Intelligence (BI) meaning of data we 
define two new types of services: master-data 
service and transactional-data services. For example, 
master data (such as customer data name and 
address) is not likely to change on a frequent basis, 
hence few data parameters are manipulated, and 
there is no verification or compensation mechanism 
required (Haesen et al, 2008). In contrast, with a 

transactional data (such as “items ordered”) always 
changes (e.g. when the customer places a new 
order), hence such a service requires more 
communications to process. 

Table 1: Service types. 

Service type Functional scope 

Process Service Processing sequenced tasks in a 
pre-defined flow of business 
process (coarse-grained).

Business Service Presenting business logic of a 
transaction or a business entity 
(coarse-grained). 

Composite Service Aggregating several services in 
the enterprise (coarse-grained). 

Transactional-data 
Service 

Processing CRUD functions of 
transitional data (fine-grained). 

Master-data Service Processing CRUD functions of 
master-data (fine-grained). 

Utility Service Providing business domain 
functionalities to other services 
(fine-grained). 

Infrastructure Service Providing essential technical 
functionalities for other 
services and the architectural 
enterprise (fine-grained). 

3.2 Proposed Approach  

A service definition is inevitably derived from 
business processes or business functions (Steghuis, 
2006). This paper aims to develop an SOA 
architectural framework to assist service 
identification for migrated legacy systems with 
optimal service granularity. The framework is based 
on process portfolios that are derived from the UML 
and BPMN standards in addition to an optional 
knowledge portfolio (as shown in figure 1). In the 
case of new system requirements, business processes 
in BPMN models are updated. Then, a cluster 
metrics is used to generate services based on the 
proposed previously service types classification. The 
SOA meta-model provides a comprehensive 
description of service types integrating the semantic 
of business processes. It provides effective standards 
for service granularity quantification after capturing 
potential services.  
In many practical legacy system migrations, there is 
no available information about the legacy system 
apart from the code. Thus, assuming that only the 
code is available (as an extreme scenario); our 
approach consists of three main stages as follows: 

First stage: the analysis and reengineering stage 
has the following activities: 

MIGRATING LEGACY SYSTEMS TO A SERVICE-ORIENTED ARCHITECTURE WITH OPTIMAL
GRANULARITY

201



 

1. If any documentation, expertise, or staff 
interviews are available, an analysis model can be 
produced to provide a knowledge portfolio 
(optional). 

 

2. Transforming the legacy system codes into a 
formal representation using UML models by 
reverse-engineering techniques to obtain a static 
model automatically (using modelling tools such 
as IBM Rational Rose). The reverse-engineering 
process results in class diagrams which can then 
be produced to activity diagrams of the legacy 
system. 
 

3. Transforming the UML models into BPMN 
models automatically using model driven 
development (MDD) techniques in order to define 
a business processes portfolio. The Relation 
Definition Language (RDL) describes the 
transformation rules as part of the Eclipse 
Modelling Framework (EMF) which utilizes the 
IBM Model Transformation Framework (MTF) 
running on the IBM WebSphere Business 
Modeler. Standards for mapping elements between 
UML activity diagram and BPMN diagrams are 
identified according to the pattern-based BPMN 
analysis (Russell et al, 2006; Griffen et al, 2007). 

Second stage: the services elements identification 
stage has the following activities:  
4. Defining atomic processes and business entities 

(Teale et al, 2004) from the processes portfolio; 
applying a clustering metrics on atomic processes 
to define fine-grained services based on CRUD 
functions (Griffen et al, 2007) and business logic 
metrics.  

Third stage: the services evaluation stage has the 
following activities:  
5 Evaluating coarse-grained and fine grained 

services against the SOA meta-model. 

 
Figure 1: Service identification framework.  

 
 

3.2.1 Analysis and Re-engineering Stage 

To construct a sufficient underpinning for the 
service identification, the analysis and re-
engineering stage consists of three models. First, the 
analysis model provides high-level system 
understanding and support for the business 
requirements. Secondly, the activity portfolio 
provides the structure of the legacy system. Thirdly, 
the process portfolio describes the behaviour of the 
legacy system. 

The analysis model is based on understanding 
what the system does from the legacy code only is 
not sufficient. Legacy software systems were 
typically developed with embedded business rules 
and logic, scattered and duplicated code, 
unstructured modules, and tightly-coupled functions. 
The aim is to discover the system main functions 
and components via workshops, questionnaires, 
interviews and available documents. The outputs 
will complement the modelling of the atomic 
processes in BPMN and also capture additional 
information of non-functional requirements such as 
performance and reusability. 

The UML model ensures decomposed units are 
relative and coarse-grained. Here our aim is to 
partition the class diagrams in terms of business 
functions in order to determine primitive functions 
and then atomic processes; the class diagrams are 
derived from the legacy code using IBM Rational 
Rose and reverse-engineering techniques. Business 
functions are defined from the knowledge portfolio 
process.  We describe the structural and behaviour of 
the legacy system using UML class diagrams and 
activity diagrams respectively. Firstly, the reverse-
engineering process results in a class diagram that 
shows the defined classes of the legacy code 
providing a static model. Secondly, after 
automatically generating the class diagram of the 
legacy code, use cases and activity diagrams are 
defined manually. It is important to guarantee 
consistency, completeness, and correctness when 
devising a behavioural diagram (e.g. activity 
diagram) from a structural diagram (e.g. class 
diagram), otherwise all subsequent diagrams would 
inherit the same issues. Several approaches attempt 
to check the rightness of UML diagrams using 
different techniques such as verification rules and 
meta-models (Kyu et al, 2003), profiling 
inconsistency and evaluation (Egyed, 2007). 
However, no tools in the industry yet are sufficient 
to solve these issues and in addition current 
approaches are time-consuming and affected always 
by model changes (Egyed, 2007). To resolve this 

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

202



 

issue in our approach, the legacy code is reviewed 
manually line by line after identifying targeted 
classes. 

The BPMN model is used to depict the business 
processes of the legacy system and also new 
requirements. The adoption of process modelling 
using BPMN as a modelling language in this 
research is motivated by several factors. First, 
relevant research agrees that process-oriented 
modelling provides a good basis for SOA (Rolland 
et al, 2007; Erradi et al, 2006; Erradi et al 2007). 
Secondly, UML 2.0 Activity Diagrams for business 
process modelling introduced by OMG suffers from 
limitations on modelling related resource and 
representing various types of control-flow constructs 
(Russell et al, 2006). It is important to note that 
BPMN has specific advantages over UML in 
describing complex scenarios such as richer 
constructs (Recker et al, 2009).  

The use of MDD is a growing trend, as it 
provides capabilities to transform a model notation 
to other models (Griffen et al, 2007; Kalnins et al, 
2006). Our transformation uses the concept of MDD 
in terms of converting a model to different level of 
abstraction using an alogrithm. Since most (if not 
all) legacy systems are based on functional 
decomposition, the UML standards are adequate for 
capturing the detailed design of legacy systems by 
the reverse-engineering technique. Reference 
(Griffen et al, 2007) introduces the capabilities of 
using WebSphere Business Modeler to automatically 
transform UML activity diagrams into business 
processes. This capability is used to achieve the 
transformation between UML activity diagrams and 
business processes in BPMN standards by 
modifying the proposed XMI content elements. 
Figure 2 shows the entire process of the 
transformation using MTF and EMF models.  
The IBM WebSphere Business Modeler tool is used 
to perform the conversion (Griffen et al, 2007). It 
includes a general XML schema which supports the 
mapping  of an  XML  file to   business   processes. 

 
Figure 2: UML and BPMN transformation method. 

This paper utilizes the structure of the XML schema 
provided with different interpretation of the business 
processes. After defining our EMF model using the 
Rational Rose tool, the transformation rules are 
developed in RDL. The MTF (a set of tools 
facilitating transformations between EMF models) 
parses the written relations rules. The transformation 
engine then executes the rules to match both models: 
the source (UML) model and target (BPMN) model. 

3.2.2 Service Elements Identification Stage 

The service identification stage is an essential step 
for the architecture of service-oriented systems. The 
term optimal service or ‘right service’ refers to a 
service that offers an acceptable size of 
functionalities without interfering with the pre-
defined service properties. The service properties 
will be established according the service agreements 
between service provider and consumer. The 
properties can be expressed in terms of absolute 
number (e.g. execution time of service), or scale 
(e.g. the security of a service). For example, a 
service that requires a very strong security policy is 
likely to have lower performance. In this example, 
the service properties should include a high scale for 
the security and a rational execution time. We need 
to deduce the underpinning elements that assist in 
identifying ‘optimal’ services from the three models 
(e.g. UML, BPMN and the analysis model). Those 
elements are atomic processes and relative data 
entities (objects). A bottom-up analysis is conducted 
to reveal functions and data structure as part of the 
knowledge portfolio. The results of this stage will be 
a set of services implementing various service types 
derived from the activity and process portfolios 
respectively.  
Transforming UML activity diagrams to business 
processes in BPMN provides the basis for capturing 
existing business activities. It is also a shift from an 
object-oriented architecture (in this case study) or 
functional decomposition to a process-oriented 
methodology for SOA. Using BPMN fills the gap 
between business process design and process 
realizations. As a basis for the BPMN diagrams, 
transformed activity diagrams have been refined 
with the detailed flow of processes using 
information from the knowledge portfolio. BPMN 
models help to describe granular business activities 
in details or sub-processes implying cohesively the 
optimal granularity. For example, the “pool” 
notation in BPMN represents a business entity or 
business role in a process which is linked to another 
entity with “message flow” arrows. In SOA, this can 

MIGRATING LEGACY SYSTEMS TO A SERVICE-ORIENTED ARCHITECTURE WITH OPTIMAL
GRANULARITY

203



 

help to identify initially the size of exchange 
messages among business entities in a service or 
different services.  

In order to define optimal services, a set of 
distinct metrics is designed. Metrics include number 
of atomic processes and relative data entities 
(objects). Reference (Jamshidi et al, 2008) uses 
CRUD functions to define the affinity between 
assumed elementary business processes and business 
entity. Our metrics are derived from the metric 
proposed by reference (Jamshidi et al, 2008) with 
several main changes. Firstly, our atomic processes 
are automatically driven from a legacy system using 
revere re-engineering technique. Secondly, in the 
cluster technique distinct CRUD functions and 
business logic are used. Thirdly, we establish rules 
for the identification of optimal services. Finally, our 
metric is service type classification dependent. 
Eventually, this classification will provide guidance 
to an intensive description of each service (e.g. 
messages data types). We focus on what the atomic 
processes are, not how they are performed. 
Gathering similar behaviour atomic processes leads 
to high cohesion and loose coupling among services. 
Encapsulating atomic processes and relevant data 
entities increases reusability and eliminates 
redundancy. The aim is to disunify groups of atomic 
processes and data entities into services according to 
specific rules. These rules will be applied as follow:  

 A service can have CRUD and executed business 
logic for either one entity and any number of 
processes or any number of entities and one 
process.  

 A process that has CRUD functions for many 
entities can be encapsulated in a service with 
other similar processes and entities.   

 A service can not cover CRUD functions and 
executed business logic for one entity if they are 
provided by different processes. Those processes 
which provide CRUD functions will be defined 
by a service.  

 Every data entity must have at least one creation 
operation and each atomic process presents a 
coherent functionality. Every atomic process 
invokes at least one entity. 

The CRUD functions and business logic identify the 
relationship between an atomic process and an entity 
as following: 
 "C" means this atomic process CREATES an 

instance of this data entity.  
 "R" means this atomic process READS an 

instance of this data entity.  

 "U" means this atomic process UPDATES an 
instance of this data entity.  

 "D" means this atomic process DELETES an 
instance of this data entity 

 “BL” means this atomic process has business 
logic belongs to an instance of this data entity. 

3.2.3 Service Evaluation Stage 

Classification and categorizing service types 
establish a basis to define the service granularity. 
Elements such as a service contract, an 
implementation, and an interface (Steghuis, 2006).  
They can all contribute to this classification and 
definition. Every service type is inherently 
associated with a specific level of abstract and 
implementation descriptions. Defining service types 
is always an independent task from the service 
identification process, if it is considered. Although 
the SOA architecture view of the enterprise logically 
presents potential service types, our proposed 
methodology need to comprise all service scenarios 
to be complete. We develop a SOA meta-model that 
describes service types along with the semantics of 
our approach. The SOA meta-model shown in figure 
3 presents the relationship between business process 
characteristics and different service types. We have 
assumed that the optimal granularity level of the 
service can be identified based on our classification 
and method together.  

The SOA meta-model provides a comprehensive 
understanding of two major characteristics: a 
business process and a service. When we apply our 
SOA meta-model (see case study), we will have a 
new set of services with optimal level of granularity. 
To classify the identified services in a process-
oriented system, we define the following rules: 
 Breaking down activities of every process to 

atomic activities (only systematic activities are 
considered).   

 Specifying the service type depends on the 
process functionality (purpose) and 
interoperability with other processes.    

 Every business process can be modelled as one 
operation or more of a service or as a service 
itself.  

 A high-level business process can be modelled as 
a service process type.  

 A service can be equal to one or more operations. 
 An operation encapsulates either business logic 

or CRUD functions.  
 Business logic can be implemented by a business 

service or by many business services as part of 
service composition.  

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

204



 

 One or many business service is orchestrated by 
a process service and supported by one or many 
utility services. 

 CRUD functions can be implemented by either a 
transactional service or a master-data service 
depend on the type of the data entity or as part of 
collaborative similar services in service 
composition. 

 One or more infrastructure service can be 
invoked directly or as part of a service 
composite.  Any type of service can be part of 
one or many composite service. 

 
Figure 3: SOA meta-model. 

4 EXAMPLE CASE STUDY 

This section describes and discusses a pilot 
application of our framework to re-engineer a legacy 
code implementing an e-commerce project 
(Alahmari, 2002). The aims of the project were to 
build a servlet-based, object-oriented, three-tier 
architecture, dynamic e-commerce, customizable 
website that offers online customers and an internal 
administrator a wide range of functionalities. The 
webstore consists of six java packages which have a 
total of twenty-eight classes. For brevity, we 
selected the main four java classes (as a sample) 
from the legacy code to apply our approach.  

In the analysis and reengineering stage: after the 
legacy code is reversed to java class diagrams, the 
activity diagrams are created manually as part of the 
UML model. The activity diagrams are transformed 
automatically to business processes in BPMN (as 
described previously). The transformation results in 
two main business processes with twenty one sub-
processes and tasks. 

In the service elements identification stage:  the 
proposed method (section 3.2.2) is applied to the 
atomic processes and data entities. A set of a coarse-
grained services (business and process services) are 
identified implementing cohesive functions with 
wide range of granularity. Table 2 shows the 
aggregation of relative atomic processes and data 

entities against candidate identified (coarse-grained) 
services. 

In the service evaluation stage, the identified 
services from the second stage are evaluated using 
the SOA meta-model definitions and rules. This 
stage produces a new set of various types of 
candidate services with optimal range of coarse-
grained and fine-grained services. Table 3 includes 
two columns: The first column shows processes 
identified from the processes portfolio after adopting 
the BPMN standards. The second column lists 
candidate services with the optimal level of 
granularity. For example, Pro9 has previously only 
one service (service_3), after evaluation it has a 
composite service which includes a business service 
(service_3_A) and a transactional service. Both 
defined services present optimal level of granularity.    

Table 2: The cluster matrix. 

 

Table 3: Optimal candidate services. 

Service type Functional scope 

Pro9: select products 
from a list 

business service (service_3_A) 
transactional-data service 
(service_3_B) 

Pro10:submit selected 
products 

 business service (service_3_C) 
transactional-data service 
(service_3_D) 

Pro11:create a 
shopping cart 

business service (service_4_A) 
transactional-data service 
(service_4_B) 

Pro12: view an order Transactional-data service 
(service_5_A) 

Pro13: submit an order business service (service_5_B) 
Pro14: delete shopping 
cart  

Transactional-data service 
(service_5_C) 

Pro15: cancel an Order business service (service_5_D) 
transactional-data service 
(service_5_E) 

5 CASE STUDY EVALUATION 

As the case study illustrated, to define the right 
services with optimal granularity from legacy code, 
knowledge portfolio and distinct functionalities need 
to be captured in underlying formal representations 

MIGRATING LEGACY SYSTEMS TO A SERVICE-ORIENTED ARCHITECTURE WITH OPTIMAL
GRANULARITY

205



 

(e.g. UML and BPMN). Having defined business 
processes and data entities for such system, a metric 
method can now assist the process of service 
identification. Because there are no agreed 
definitions and standards for a service, it is 
appropriate to use metric measurements. The metric 
assists in deriving optimal services considering the 
service purpose (e.g. CRUD functions, and business 
logic) and granularity rules. Because of the different 
interpretation of a business process and level of 
abstraction, we define an additional different set of 
rules for the process portfolio. 

The SOA meta-model provides a foundation for 
defining the optimal granularity by encapsulating a 
service type classification and also the method 
metric. Through our evaluation process indicates 
that the purpose of the service can assist in defining 
the right service for a process or activity, we must 
also note that there are other elements can be 
considered along with the purpose of the service. 
Adding those elements (e.g. service contract, and 
service interface) will provide a better foundation for 
defining the service granularity. The technique used 
shows that having a well-defined meta-model 
considering all service definition aspects (e.g. 
service types) and process definitions can enhance 
the service identification stage. An outcome and a 
possible limitation of this approach is that it was not 
possible to introduce automatic mapping from UML 
activity diagram to BPMN models. It is a subject of 
further research aimed at creating a bidirectional 
MDD transformation between UML class diagrams 
and activity diagrams. 

6 CONCLUSIONS 

With the increased need to expose disturbed system 
functions as interoperable services across 
enterprises, research has been focusing on providing 
a general approach for different service-oriented 
modelling lifecycle phases. Our research emphasizes 
the importance of the service identification phase for 
defining the right service, because any faults at the 
service definition stage can lead to failure of the 
entire SOA project. The main contribution of this 
paper is a framework and guidelines for 
identification of specific services from legacy code 
with the appropriate levels of granularity. It also 
introduces an intensive meta-model that defines 
uniquely the characteristics of business processes 
and service types in the way that definitions are 
mapped. The paper also emphasizes the importance 
of the classification of service types to define service 
properties. Our future work will be to expand the 
service to automate the service identification process 

and hence generate the optimal level of service 
granularity automatically. 

ACKNOWLEDGEMENTS 

We acknowledge helpful discussions with Rob 
Phippen and Kim Clark (IBM Hursley Park, UK). 

REFERENCES 

Arsanjani, A., 2004. Service-oriented modeling and 
architecture: How to identify, specify, and realize 
services for your SOA, [Online], Available at: 
http://www.128.ibm.com/developerworks/webse
rvices /library/ws-soa-design1/ [Accessed 
30/12/2009] 

Arsanjani, A., Allam, A., 2006.  Service-oriented 
modeling and architecture for realization of an SOA. 
Proc. 2006 IEEE International Conference on 
Services Computing, pp.1, IEEE Computer Soc. 

Chen, F., Li, S., Yang, H., Wang, C., Chu, W., 2005. 
Feature analysis for service-oriented reengineering. 
Proc. 12th Asia-Pacific Software Engineering 
Conference, IEEE Computer Soc. 

Dwivedi, V., Kulkarni, N., 2008. A model driven service 
identification approach for process centric systems. 
Proc. 2008 IEEE Congress on Services Part II 
(SERVICES-2), pp. 65-72. IEEE Computer Soc. 

Egyed, A., 2007. UML/analyzer: a tool for the instant 
consistency checking of UML models. Proc. 29th 
International Conference on Software Engineering 
(ICSE'07), pp.787-790. IEEE Computer Soc. 

Erradi, A., Anand, S., Kulkarni, N., 2006. SOAF: An 
architectural framework for service definition and 
realization. Proc. IEEE Services Computing 
Workshops, pp. 151-158. IEEE Computer Soc.  

Erradi A., Kulkarni N, Naveen., Maheshwari, P., 2007. 
Service design process for reusable services: financial 
services case study, ICSOC, pp.606-617. 

Fareghzadeh,N. 2008. Service identification approach to 
SOA development. Proceedings of World Academy of 
Science, Engineering and Technology, 35, ISSN 2070-
3740.  

Galster, M., Bucherer, E., 2008. A Business-Goal-Service-
Capability Graph for the Alignment of Requirements 
and Services. Proc. IEEE Congress on Services, 
pp.399-406. IEEE Computer Soc. 

Griffen, C., Huang, R., Sen, Z., Fiammante, M., 2007. 
Transforming UML «Activity» diagrams to 
WebSphere Business Modeler processes. IBM 
WebSphere Developer Technical Issue 10.6, Journal 
July 18.2007. 

Haesen,R., Snoeck, M., Lemahieu, W., Poelmanset, S., 
2008. On the definition of service granularity and its 
architectural impact. Proc. Advanced Information 

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

206



 

Systems Engineering. 20th International Conference, 
CAiSE 2008, pp. 375-389. Springer-Verrlag. 

Jamshidi, P., Sharifi, M., Mansour, S., 2008. To establish 
enterprise service model from enterprise business 
model. Proc. IEEE International Conference on 
Services Computing, pp. 93-100. IEEE Computer Soc. 

Jianzhi, L., Zhang, Z., Yang, H., 2005.  A grid oriented 
approach to reusing legacy code in ICENI framework. 
Proc. Proceedings of the 2005 IEEE International 
Conference on Information Reuse and Integration, 
IEEE Computer Soc. 

Kalnins, A., Vitolins, V., 2006. Use of UML and model 
transformations for workflow process definitions. 
Vilnius Gediminas Technical Univ Press. Proc. 7th 
International Baltic Conference on Databases and 
Information Systems, pp. 3-14. Technika, 

Kohlborn, T., 2008. A consolidated approach for service 
analysis. Master’s thesis. Westfalische-Wilhelms 
University Munster. 

Kontogiannis, K., Lewis, G.A., Smith, D.B., Litoiu, M.,   
Muller, H., Schuster, S.,  Stroulia, E., 2007. ‘The 
landscape of service-oriented systems: a research 
perspective’. 2007 International Workshop on Systems 
Development in SOA Environments. Minneapolis, 
MN, IEEE Computer Soc. 

Kulkarni, N., Dwivedi, V., 2008. The role of service 
granularity in a successful SOA realization - A Case 
Study. IEEE Congress on Services. Honolulu, HI, 
IEEE Computer Soc. 

Kyu, H., L-K., Kang, B-W., 2003.  Meta-Validation of 
UML structural diagrams and behavioral diagrams 
with consistency rules. Proc. of IEEE Pacific Rim 
Conf on Communications, Computers and Signal 
Processing, PACRIM, 2, pp. 28-30.  

Lawson, J., 2009. Data services in SOA: maximizing the 
Benefits in enterprise architecture. Oracle published, 
[Online] April, 2009. Available at: 
http://www.oracle.com/technology/pub/articles/j_laws
on_soa_data.html [Accessed 30/12/2009]. 

Ramollari, E., Dranidis, D. ,Simons, A.J.H., 2007. A 
Survey of Service Oriented Development 
Methodologies. 2nd European Young Researchers 
Workshop on Service Oriented Computing. 

Recker, J.,  Muehlen, M., Siau, K.,  John,  J.,  Indulska 
,M., 2009. Measuring method complexity : UML 
versus BPMN. 15th Americas Conference on 
Information Systems, San Francisco, California. 

Reldin, P., Sundling, P., 2007. Explaining SOA Service 
Granularity: How IT-strategy shapes services. 
Master’s thesis. 

Rolland, C., Kaabi, R.S., 2007. An intentional perspective 
to service modeling and discovery.  Proc. 31st Annual 
International Computer Software and Applications 
Conference, IEEE Computer Soc. Institute of 
Technology Linkoping University. 

Russell, N., Van der Aalst, W.M.P., Ter Hofstede, 
A.H.M., Wohed, P., 2006.  On the suitability of UML 
2.0 activity diagrams for business process modelling. 
BPM Centre Report BPM-06-03, BPMcenter.org. 

Shirazi, H.M., Fareghzadeh, N., Seyyedi, A., 2009. A 
combinational approach to service identification in 
SOA. Journal of Applied Sciences Research, INSInet 
Publication, 5(10): pp.1390- 1397. 

Sneed, H.M., 2006. Integrating legacy software into a 
service oriented architecture. Proc. 10th  European 
Conference on Software Maintenance and 
Reengineering, IEEE Computer Society. 

Steghuis, C., 2006. Service granularity in SOA projects: a 
trade-off Analysis. Master’s thesis. University of 
Twente. 

Suntae,K. , Kim, M., Park, S., 2008, Service identification 
using goal and scenario in service oriented 
architecture. Proc. 2008 15th Asia-Pacific Software 
Engineering Conference, IEEE Computer Soc. 

Teale, Ph., Jarvis, R., 2004. Business patterns for software 
engineering use, Part 2. The Architecture Journal, 
[Online], Available at: 
http://msdn.microsoft.com/enus/arcjournal/aa480036.a
spx, [Accessed 30/12/2009]. 

Xiaofeng, W., Hu, S., Haq, E., Garton, H., 2007. 
Integrating legacy systems within the service-oriented 
architecture.  Proc. 2007 IEEE Power Engineering 
Society General Meeting, pp.7. IEEE Computer Soc. 

Zhang, Z., Ruimin, L., Yang, H., 2005. Service 
identification and packaging in service-oriented 
reengineering. Proceedings of the 17th International 
Conference on Software Engineering and Knowledge 
Engineering, IEEE Computer Soc. 

Zhang, Z., Yang, H., 2004. Incubating services in legacy 
systems for architectural migration. Proc. Proceedings. 
11th Asia-Pacific Software Engineering Conference, 
IEEE Computer Society. 

Zou, Y., Kontogiannis, K., 2001. Towards a Web-centric 
legacy system migration framework. The 3rd 
International Workshop on Net-Centric Computing 
(NCC): Migrating to the Web, International 
Conference on Software Engineering (ICSE'01), 
Toronto, Canada. 

MIGRATING LEGACY SYSTEMS TO A SERVICE-ORIENTED ARCHITECTURE WITH OPTIMAL
GRANULARITY

207


