
AN OPEN SOURCE SOFTWARE BASED LIBRARY
CATALOGUE SYSTEM USING SOUNDEXING RETRIEVAL

AND QUERY CACHING

Zhenghui Pan
Penrith City Library, 601 High Street Penrith Civic Centre, Penrith, NSW 2750, Australia

Yan Zhang, Jiansheng Huang
School of Computing and Math, University of Western Sydney, Sydney, NSW 1797, Australia

Keywords: Open Source Software, Library Catalogue System, Soundexing Retrieval, Query Caching.

Abstract: It has been a challenge to apply effective knowledge management tools in information systems for modern
libraries that deliver the most up-to-date, relevant information to end users in a quick, efficient, and user-
friendly manner. In this paper, the authors present the design of a library catalogue system using principally
open source software. The integrated web-based library system takes client/server architecture with multiple
tiers. For performance enhancement with respect to error tolerance, searching speed and scalability,
techniques of soundexing retrieval and query caching were applied. With the support of an appropriately
designed soundex algorithm, the catalogue system can largely increase its recall while not compromising the
search precision. On the other side, the introduced query cache speeds up the system response significantly.

1 INTRODUCTION

Catalogue systems of modern libraries are getting
more complicated than ever before. Collections of
catalogue systems are now containing CD-ROMs,
DVDs and e-books, in addition to the conventional
printed materials. Not only collections of the
catalogue systems have been expanded, but also
their users and service time. All these call for a more
efficient and user friendly service. Based on the
survey on local council libraries in Western Sydney
area, a wide existence of some common problems
concerned with searching speed and accuracy, and
user interface was found, all closely related to the
performance of the catalogue system. The library
information systems of these libraries are usually
decades old. The current marketing price (including
maintenance costs) for a library catalogue system
can be prohibitively high. Improving and updating
the information systems of these libraries using open
source software might provide a better solution.

Soundex is an algorithm for encoding a word so
that similarly sounding words are encoded the same.
The soundex algorithm was initially invented by

Robert Russell and Margaret Odell in 1918
(Wikipedia, 2007). Since then, the soundex
algorithm has been updated with some variations
and used principally in census systems for searching
people’s names (U.S. National Archives, 2007). To
improve the performance of library catalogue
systems with respect to response speed and
scalability, database caching is a very cost-effective
method. (Lempel, 2003).

This paper presents open source software based
library catalogue system using soundexing
algorithms and query caching. The paper is
organised as follows: Section 2 outlines the library
catalogue system. Section 3 briefs the soundexing
algorithms for error tolerance. Section 4 describes
the steps of embedding the soundex search into a
traditional library catalogue system. The limitations
of soundex search and the countermeasures are also
discussed in the Section. Section 5 explains the
adopted caching technique and the system design.
The eviction and start-up processes are discussed in
Section 6. Section 7 gives experiments results and
discussions, and Section 8 summarizes and
concludes the paper.

182 Pan Z., Zhang Y. and Huang J. (2010).
AN OPEN SOURCE SOFTWARE BASED LIBRARY CATALOGUE SYSTEM USING SOUNDEXING RETRIEVAL AND QUERY CACHING.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
182-189
DOI: 10.5220/0002891201820189
Copyright c© SciTePress

2 OPEN SOURCE SOFTWARE
BASED SYSTEMS

The developed open source software-based library
system takes a client/server architecture with
multiple tiers. The prototype system runs on the
Windows XP of a laptop computer with 1.5 GHz
processor and 512 MB, see Figure 1.

2.1 MySQL Database

The database uses MySQL version 1.5. The database
contains the following tables:
 Title
 Item
 Title-index
 Request-history
 Request-summary

2.2 Tom Cat Server and JVM
Environment

The system is installed with the JRE 1.5 to provide
the JVM environment. The Tomcat server is used as
the application and the web server. One package of
Java classes forms the core of the applications,
containing two main parts: the search engine module
and the background process module. The
background process module runs three processes,
system booting, query-log processing and cache
items evicting.

Figure 1: Outline of Library System.

3 SOUNDEXING ALRORITHM

Soundex algorithms convert words into their
phonetic versions. For examples, ‘m’ and ‘n’, and

‘ph’ and ‘f’ are coded the same as the former is a
common typing error, and the latter is pronounced
the same.

The basic soundex algorithm is very straight
forward as outlined below:
 Retain the first letter of the string (word)
 Remove all occurrences of the following letters,

unless it is the first letter: a, e, h, i, o, u, w, y
 Assign numbers to the remaining letters (after

the first) as follows
o b, f, p, v = 1
o c, g, j, k, q, s, x, z = 2
o d, t = 3
o l = 4
o m, n = 5
o r = 6

 If two or more letters with the same number
were adjacent in the original word (before step 1), or
adjacent except for any intervening h and w, omit all
but the first.
 Return the first four characters, right-padding

with ‘]’ if there are fewer characters.

As demonstrated in the following three case
studies, the soundexing algorithm applied in a
library catalogue system can greatly increase its
recall while maintaining the search precision.

Table 1: Search results with input “hary poter rawling”.

Title Author Publication…
1 Harry Potter and the

Half-Blood Prince / by
J. K. Rowling

J. K.
Rowling

…

2 Harry Potter and the
Prisoner of Azkaban /
by J. K. Rowling and
read by Stephen Fry

J. K.
Rowling;

Stephen Fry
…

3 Harry Potter and the
Order of the Phoenix /
by J. K. Rowling and
read by Stephen Fry

J. K.
Rowling;

Stephen Fry
…

4 … … …

Case 1: Keying in words “hary poter rawling” to
search for the series of Harry Potter books by J.R.
Rowling. Even though all the three input words were
spelled wrongly, the search results using the
soundex based catalogue system returned the correct
results to the user, as given in Table 1 (including
only the first 3 records). This was due to the fact that
“hary” and “harry”, “poter” and potter”, “rawling”
and “rowling” were converted into the same
character string using the presented algorithm.
Case 2: Search results with the input “napaen rever
water polootion”. By using the same algorithm, the

AN OPEN SOURCE SOFTWARE BASED LIBRARY CATALOGUE SYSTEM USING SOUNDEXING RETRIEVAL
AND QUERY CACHING

183

search results were returned as though the correct
key words “Nepean River Water Pollution” were
inputted.
Case 3: Search results with the input “enciclopedia
scince”. Again, the algorithm avoided search failure
and returned results that were all the same as those
for “encyclopaedia science”.

Soundex searches, however, may have certain
limitations, like bringing about irrelevant
information, as to be addressed later in the paper.

4 SOUNDEX CATALOGUE
SYSTEMS

By employing the soundex algorithms, the search on
a library catalog system will be carried out with the
specified “sounds” rather than the entered words.
For such a soundex search, two main concerns
should be focused upon in the system design: the
performance and the accuracy.

4.1 Soundex Search

In the traditional catalog system, as illustrated by
Figure 2(a), the index data is built as an additional
part of the catalog database to improve the system
performance. (Dvorský, Krátký, Skopal, and Snásel,
2003). The search will be carried out on the index
data first to find the matched catalogue records, and
the catalogue details will then be returned to the user
as the search results.

It is straightforward to embed the soundex search
into the catalog system: the word index data are just
replaced by the soundex data with the latter being
generated from the catalogue records by using the
conversion algorithm given Section 3. Once the
search engine receives the request from a user, it
converts the request into the string of soundex first.
Then it will search the soundex data in the database
for the matching soundex and get the list of
catalogue keys. The final search results, i.e., the
catalogue details, are obtained according to the list
of keys, as illustrated by Figure 2 (b).

4.2 Limitation of Soundex Algorithms
and Countermeasures

In nowadays, the catalogue system is no longer a
tool only for librarians; it is often used by the public
in OPAC (Online Public Access Catalogue) systems
that are widely accessible through the Internet.
Consequently the search failures caused by spelling

or typing errors become a major concern for the
developers of such OPAC systems. Studies indicated
that over 20% of catalog search failures come from
typos of the catalogue users. (Jean, 1984).

Figure 2 (a): Traditional Catalogue System.

Figure 2 (b): Soundex Catalogue System.

To extend the soundexing search from
conventional census systems to more general
applications, ensuring the search accuracy is not a
trivial task. As soundexing is a hashing system with
one soundex mapping to many words, therefore, a
soundex search may bring about irrelevant results
and thus reduce the precision of the search. It is just
this limitation that restrict the application of the
soundexing techniques in general information
systems. Some measures have been adopted in our
project to ameliorate this limitation.

A multiple-word search will be conducted by
performing a Boolean ‘AND’ operation. The search
result is generated by combining all sub-results of
the soundex search. Thus most of the irrelevant
results will be filtered out as they hardly have any
overlap. In most of the search cases, words entered
by users are two or more so that the search results
are quite acceptable. Study result from RankStat

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

184

indicated that more than 86.5% of queries were two
or more word searches. (RankStat, 2007).

One-word searches remain problematic, which
explains why the original soundex was only used
implicitly for two or more word searches, such as in
searching a person’s name that usually contains at
least the first and the last names. One
countermeasure to this limitation is to turn off the
soundex search automatically in the case of a one-
word search. To avoid search failures, however, the
soundex search could be turn on again, should no hit
results be returned with the initial non-soundex
search.

Another area that has been investigated in the
project is the improvement of the soundex algorithm
itself. The following measures are adopted to make
the soundex more specific:

 Increasing the length of the soundex of a word
from 4 to 5;

 Adopting Celko algorithms and/or Pfeifer
algorithms. (Holmes and McCabe, 2002);

 Applying Stemming technique. (Porter, 2006);

 Using Phonix technique. (Gadd, 1990).

By adopting the above measures, search
accuracy can be improved significantly.

4.3 Soundex Catalog Search
Implementation

There are three major tasks in the implement of the
soundex search:

 A set of program packages to convert a word
string into soundex string;

 Persistent data structure (relational database
tables) to store the soundex data of the catalogue
records;

 A set of programs (the search engine) to carry
out the soundex search.

In the project, all the major types of catalogue
searches are included to store the soundex data, such
as searches on titles, authors, subjects, or on full
records. In the project, the study library catalogue
system takes the following structure (columns):

 catalog_key

 title_description

 author_description

 series_description

 subject_description

 publication_details

 isbn

 physical_description

 cost

 dewey_number

 contents

 summary

The corresponding catalog_soundex table is thus
created with the following columns:

 catalog_key

 title_soundex

 author_soundex

 series_soundex

 subject_soundex

 all_field_soundex

Data in all the above columns correspond
respectively to the columns of title_description,
author_description, series_description, subject_
description, and the catalogue table itself. By using
the catalog_soundex table, the process of soundex
search becomes very simple. Soundex based
searches can be applied to title, author, series,
subject or even all keywords from the whole
catalogue record.

Suppose that the entered string is “hary poter
rawling”, the same as Case 1 in Section 3. The
system will convert this string into a soundex string
“H5]] P25] R346”. Following that the system makes
a sql-query on the database:

select catalog_key from
catalog_soundex where
match(all_field_soundex)
against(‘+H5]] +P25] +R346’ in
Boolean mode)

The search results are as given in Table 1
(Section 3). It is apparent that the input “hry poter
rawling” may lead to a search failure with a normal
catalogue system.

The soundex search function can be easily
embedded into the catalogue by following the steps
given below:

 Add the soundex processing function into the
cataloguing module;

 Generate the soundex data of a catalogue
record;

 Commit it to the database after the catalogue
record has been added to the system;

 Modify the search engine by adding the
soundex processing function;

AN OPEN SOURCE SOFTWARE BASED LIBRARY CATALOGUE SYSTEM USING SOUNDEXING RETRIEVAL
AND QUERY CACHING

185

 Perform the sql-query on the database with
generated soundex.

5 THE CACHING TECHNIQUE

While the soundexing is introduced for a better
performance in error tolerance, the caching
techniques are adopted to improve searching speed
of the catalogue system. There are two main
categories of cache, data cache and query cache.
(Luo, Krishnamurthy, Mohan, Pirahesh, Woo,
Lindsay and Naughton, 2002). In information
systems, the query cache provides users with data in
memory based on users’ previous requests, and the
caching levels can be at different places, either on
client side, server side or proxy side, either at
database tier, application server tier or web server
tier (Fagni, Perego, Silvestri and Orlando, 2006). All
these caches can be used separately and
independently, or used together in certain
combinations.

5.1 Database Design

To implement a cache in an information retrieval
system the following mechanisms need to include:
defining the structure of cache, adding items into
cache, searching the cache, continuing a search
when a cache missing occurs. Once the cache size
exceeds the limit, the cache system should remove
certain items out of the cache known as the cache
replacement, during which, the system should keep
the cached items that are likely to be requested in the
near future.

The proposed library catalogue system adopts s
query cache (Figure 3). There are two key
components in the system, the search engine module
and the cache manager module. Apart from the
catalogue data, the database of the system includes
some additional data like request history, request
summary and cached requests that are used by the
cache manger for updating the cache. There are two
data structures kept in the main memory: the query
cache and the query log. While the query cache
contains cached catalogue objects, the query log
temporarily holds the current catalogue search
requests for further processing by the cache
manager. The search engine module is responsible
for retrieving user’s required information. The cache
manager module has two roles: using requests in the
query-log to update the request-history and the
request-summary table and adding new catalogue
items to the cache. The module is also responsible

for removing items out of the cache whenever the
cache size is over the limit.

Figure 3: Catalogue System with Query Cache.

Basically the database includes the catalogue
core data, catalogue index data (soundexing) and
data for supporting the cache search. Thus the
database contains five main tables: item, title, title-
index, request-history and request-summary. The
field “in_cache_flag” of request-summary table
indicates whether a request has been cached. Full
details of the database design are beyond the subject
of this paper. Only the tables related to the caching
processes will be described here. (Pan, Zhang and
Huang, 2008).

The request-history has a very simple structure
with two fields:

 request

 timestamp

The table will hold all requests together with the
timestamp when the request entered. Data in the
table is used for updating table request-summary.

The request-summary table of the database
provides a list of all valid (a request that leads to at
least one catalogue object being retrieved) and
identical requests in conjunction with their
properties, i.e., the most recent time and the total
times this request was called. The request-summary
table also provides the system criteria for adding or
removing catalogue objects into or from the cache
according to the field “activity rate”. The table has
the following structure:

 request_id

 request

 been_called_total

 last_called_time

 activity_rate

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

186

 in_cache_flag

With this database structure, the system can keep
track of users’ requests, and select the requests with
the highest activity rates to cache.

5.2 Data Structures in Main Memory

There are two data structures staying in the system
memory to support the cache catalogue search:
query-log and query-cache. Like the request-history,
the query-log has a very simple structure with only
two fields:

 request

 timestamp

The query-log therefore can be implemented as a
hash-table or an array-list since there is not much
operations performed on it. If the query-log is
implemented in an array-list, the following
command can be used to write a request to the log:

 log.add ({request, timestamp})

To get an object from the log, the command is like:

 log.get(i)

where i is the index for the array-list. The following
command is to empty the log:

 log = new ArrayList ()

The query-cache holds cached catalogue objects
together with their correspondent requests. The
query-cache is better to be implemented in a hash-
table. With this data structure one can easily perform
operations of search, add or remove to the query-
cache. Search and retrieve data from the hash-table
(named QC) use the command like:

 data = QC.get(hash-key)

If the query-cache is in a hash-table format, it
will have the following two fields:

 request, as the hash key and

 a set of catalogue objects corresponding to the
request

With this data structure support, the command to
retrieve required catalogue objects is like:

 QC.get(request)

In this system context, both the query-log and the
query-cache need to be the global variables. It makes
the processes behave like the search engine and the
cache manager and the system start-up processes be
very simple since the global data structures are
independent of any processes.

5.3 The Searching Process

When the search engine receives a search request, it
uses the request as a hash-key and searches the
cache (the hash-table). If the searching is successful,
it gets the set of catalogue objects and returns the
results to the user. Otherwise, the search engine
continues to search the database. At the end of the
process, the search engine always writes the request
accompanied with the timestamp to the query-log.

The query log process can be scheduled to run in
background. On each run, the cache manger moves
all requests from the query-log to the request-history
table. After adding new requests with the
timestamps to the request-history table, the cache
manager uses them to update the request-summary
table. For a valid request (invalid entries will be
ignored), the cache manager will further check if the
request already exists in the request-summary table.
If existing, the properties for this request
(been_called_total and t_called_time) will be
modified. If the request is not found in the table, a
new entry for this request is created. The cache
manager will then check if the new request was
already loaded into the cache, and do this if not.

6 ADAPTIVE EVICTION
PROCESS

The system defines two variables, the maximum-
cache-size and minimum-cache-size. The maximum-
cache-size is the maximum number of requests that
can be loaded into the cache while the minimum-
cache-size is the minimum number of requests kept
in the cache at any time.

6.1 Eviction Process

There are a few of cache replacement algorithms
often used in information retrieval systems like
LRU, LFU and some hybrid replacement algorithms.
Adaptive cache replacement algorithm is an
algorithm with better performance. The algorithm,
used in the designed system, is implemented by
keeping track of both frequently used and recently
used cached items in conjunction with the recent
eviction history. (Santhanakrishnan, Amer,
Chrysanthis and Li 2004).

As aforementioned, the cache manager is also
responsible for replacement. Each time the process
runs, the cache manager checks if the maximum-
cache-size is exceeded. If it happened, the cache

AN OPEN SOURCE SOFTWARE BASED LIBRARY CATALOGUE SYSTEM USING SOUNDEXING RETRIEVAL
AND QUERY CACHING

187

manager starts the cache eviction process. The
number of objects to be removed is:

Current_cache_size–inimum_cache_size

This work can be done in several steps. The
process first calculates the activity-rate for all
requests in the request-summary table. The requests
with the smallest activity-rates will be removed. The
activity-rate calculation is based on two attributes of
a request, the been_called_total and
last_called_time. If a visit one day more recent is
equally important as three more visits, a variable
time/times ratio @ can then be calculated :

@ = 3/86400000

where 86400000=24 * 3600 * 1000, i.e., million
seconds in a day. If using T as the base time, a
variable last_called_credit can be calculated as:

last_called_credit =
(last_called_time – T) * @

Then the activity-rate of a request can be calculated
as:

activity_rate =been_called_total +
last_called_credit

6.2 System Start-up Module

Like the search engine and the cache manager
modules, the system start-up module is also
responsible for cache loading when the system re-
starts. The process works similar to the cache
replacement process. It first calculates activity-rate
for all the requests in the request-summary table.
According to the initial loading level (minimum-
cache-size), the module loads the requests with
highest activity-rates into the cache.

7 SIMULATION RESULTS
AND DISCUSSIONS

Once the Tomcat server is running, users can access
the system through a web browser. If a user enters
the following key words like “19th century”, “abc”,
etc., the response time for each normal search is
given in Table 2. The average response time =
664.18 ms. In the simulation, about 7,000 requests
are initially selected and loaded into the cache
(based on the activity-rate of the requests) from a
total of 13,500 requests in the table request-
summary. With the caching, the responding time is

less than 1 ms if the required item is found in the
cache.

Because about 50% of requests are loaded into
the cache (with the corresponding catalogue
objects), the minimum cache hits rate is about 50%.
Although the cache missing rate is still high, the
whole system throughput is improved significantly.

Table 2: Experiment on searching.

Request
Response time

(ms)
Request

Response
time (ms)

19th century 1828 Bats 468

abc 1343 bev harvey 203

aboriginal
dreaming

609 bill hurter 156

aboriginal
language

421 biochemistry 109

addict 375 bob marley 234

African tears 78 brown 2328

alexandre dumas 328 burke 1140

alternative
medicine

797 cam jansen 94

amy jenkins 140 carol odell 109

8 CONCLUSIONS

Using open source software like MySQL and
Tomcat could be a better solution in updating library
catalogue systems for organizations with limited
resources. To improve the performance, some
techniques are investigated in the paper. Soundex
algorithms are potentially a powerful tool applicable
to library catalogue systems, as the algorithms, when
appropriately developed, can greatly increase
recalling capability while not compromising search
precision. As verified in this paper, the soundex
search can be cost-effectively embedded into a
traditional library catalogue system using
client/server and relational database technology. The
proposed soundex library system will greatly
improve efficiency and error tolerance.

Using caching techniques can effectively
improve the catalogue system in terms of responding
speed and scalability. To increasing the cache hit
rate, some methods are investigated, such as taking
into account more factors in the eviction process and
introducing a caching-index to the system for query
normalization.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

188

While there is still room for further
improvement, the test results are encouraging and
meet the expectation of the project.

REFERENCES

Wikipedia, (2007). Soundex, from http://en.wikipedia.org/
wiki/Soundex#Rules.

U.S. National Archives, (2007). from http://www.archives.
gov/genealogy/census/soundex.html.

Lempel, R., Moran, S., (2003). Predictive Caching and
Prefetching of Query Results in Search Engines.
WWW 2003, May 20-24, 2003, Budapest, Hungary.

Dvorský, J., Krátký, M., Skopal, T., Snásel, V., (2003).
Term Indexing in Information Retrieval Systems,
Communications in Computing, 2003.

Jean, D., (1984). An Analysis of User Errors in Searching
an Online Catalog. Cataloging & Classification
Quarterly, Volume 4, Issue 3 March 1984 , 19 – 38.

RankStat, (2007). from http://www.rankstat.com/html/
en/seo-news1-most-people-use-2-word-phrases-in-
search-engines.html.

Holmes, D. and McCabe, M. C., (2002). Improving
Precision and Recall for Soundex Retrieval.
Information Technology: Coding and Computing,
2002. Proceedings. International Conference on,
Volume, Issue , 8-10 April 2002, 22 - 26.

Porter, M. F., (2006). An algorithm for suffix stripping.
Program: electronic library and information systems,
2006 Volume: 40 Issue: 3, 211 – 218, ISSN: 0033-
0337.

Gadd, T., (1990). PHONIX: The algorithm. Program:
automated library and information systems, 24(4):
363-366.

Luo, Q., Krishnamurthy, S., Mohan, C., Pirahesh, H.,
Woo, H., Lindsay, B. G., Naughton, J. F., (2002).
Middle-Tier Database Caching for e-Business
discussed. ACM SIGMOD’2002, June 4-6, 2002,
Madison, Wisconsin, USA.

Fagni, T., Perego, R., Silvestri, F., Orlando, S., (2006).
Boosting the Performance of Web Search Engines:
Caching and Prefetching Query Results by Exploiting
Historical Usage Data. ACM Transactions on
Information Systems, Vol. 24, No.1, January 2006, 51-
78.

Pan, Z., Zhang, Y., Huang, J., (2008). Application of
Database Caching in a Library Catalogue System.
2008 International Conference on Computer Science
and Software Engineering (CSSE 2008), Wuhan,
China, 12-14, December 2008

Santhanakrishnan, G., Amer, A., Chrysanthis, P. K., Dan
Li, (2004). GD-Ghost: A Goal-Oriented Self-Tuning
Caching Algorithm. SAC 2004, March 14-17, Nicosia,
Cyprus.

AN OPEN SOURCE SOFTWARE BASED LIBRARY CATALOGUE SYSTEM USING SOUNDEXING RETRIEVAL
AND QUERY CACHING

189

