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Abstract: In this paper, we develop a face recognition system with the derived subspace learning method, i.e. 
classifier-concerning subspace, where not only the discriminant structure of data can be preserved but also 
the classification ability can be explicitly considered by introducing the Mahalanobis distance metric in the 
subspace. Most of graph-based subspace learning methods find a subspace with the preservation of certain 
geometric and discriminant structure of data but not explicitly include the classification information from 
the classifier. Via the distance metric, which is constrained by k-NN classification rule, the pairwise 
distance relation can be locally adjusted and thus the projected data in the classifier-concerning subspace 
are more suitable for k-NN classifier.  In addition, an iterative procedure is derived to get rid of the 
overfitting problem. Experimental results show that the proposed system can yield the promising 
recognition results under various lighting, pose and expression conditions. 

1 INTRODUCTION 

Face recognition has been an important issue over 
the last decades, which has created a wide range of 
applications, such as surveillance, security systems, 
etc. Among those appearance-based methods 
(Murase et al., 1999; Turk et al., 1991), the most 
well-known algorithms are Eigenface (Turk et al., 
1991) and Fisherface (Belhumeur et al., 1997). The 
former is based on principal component analysis 
(PCA) to obtain the linear transformation by 
maximizing the variance of training images but the 
class information is excluded; while the latter 
applied linear discriminant analysis (LDA) in 
(Etemad et al., 1997) which includes the class label 
information and the discriminant projection is 
obtained by maximizing the ratio of the between-
class and within-class distance. 

For non-linearly distributed data such as those 
associated with non-frontal facial images and under 
different lighting conditions, the classification 
performances of the PCA and LDA are somewhat 
limited due to their assumption of an essentially 
linear data structure. To resolve the problem, the 
graph-based dimensionality reduction methods are 
recently developed by investigating the local 
information and the essential structure of data 
manifold which are important for classification 

purpose, including isometric feature mapping 
(ISOMAP) (Tenebaum et al., 2000), locally linear 
embedding (LLE) (Roweis et al., 2000), and 
Laplacian eigenmap (LE) (Belkin et al., 2003). In 
(Yan et al., 2007), a unified framework for 
dimensionality reduction algorithms, i.e. graph 
embedding, is proposed and most dimensionality 
reduction algorithms such as PCA, LDA, LPP (He et 
al., 2003), ISOMAP, LLE and LE can be re-
formulated via specific graph Laplacian matrix 
design. Moreover, it provides a platform such that 
the new algorithm for dimensionality reduction can 
be developed with a specific motivation. 

Mostly, after obtaining the desired low-
dimensional subspace via the above dimensional 
reduction algorithm, k-NN classifier, which is 
simpler and more flexible for the multiple-class 
extension, are often applied based on Euclidean 
distance metric for recognition. However, Euclidean 
distance metric ignores the statistical properties of 
data (Weinberger et al., 2009). Instead of Euclidean 
distance metric, several distance metric algorithms 
(Bar-Hillel et al., 2005; Goldberger et al., 2004; 
Weinberger et al., 2009; Xing et al., 2003) are 
proposed to obtain a new distance metric to 
investigate the data properties from class labels in 
order that the classification accuracy can be 
improved for k-NN classifier. Among them, Mahala- 
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Figure 1: Schematic illustration of proposed subspace learning method, classifier-concerning subspace. (a) The distribution 
of training images in original input space. (b) Projecting face images to graph-based subspace using the linear 
transformation matrix A. (c) The classifier-concerning subspace is obtained by applying Large Margin Nearest Neighbour 
in subspace (b). The pairwise distance relation are locally adjusted to be more suitable for k-NN classifier. 

nobis distance metric is learned based on various 
object function. Relevant Component Analysis 
(RCA) (Bar-Hillel et al., 2005) learns a full ranked 
Mahalanobis distance metric using equivalence 
constraints and the linear transformation can be 
obtained via solving eigen-problem. In (Xing et al., 
2003), a Mahalanobis metric based on the unimodel 
assumption is proposed. Different from these 
studies, Large Margin Nearest Neighbour (LMNN) 
(Weinberger et al., 2009) learn a Mahalanobis 
distance metric by the constraint on the distance 
metric imposed by accurate k-NN classification. 
Thus, via the metric, k-nearest neighbours always 
belong to the same class while examples from 
different classes are separated by a large margin.  

Inspired from above studies, we propose a 
subspace learning method with the goal that in the 
obtained subspace, defined as classifier-concerning 
subspace, not only the local geometric and 
discriminative structure of data can be preserved but 
also the projected data are suitable for using k-NN 
classifier. Fig. 1 shows the schematic illustration for 
our proposed method. Firstly, in order to analyze the 
high-dimensional input images in a compact low-
dimensional subspace, the graph-based subspace 
learning method are applied that the discriminant 
structure of data can be preserved. As shown in Fig. 
1(b), most data in the subspace can be well-
separated by preserving the local discriminant 
structure but there exists the data that can not be 
correctly classified by the k-NN classifier, i.e. yi and 
yk in Fig. 1(b). Then, in order to make them 
separable, the Mahalanobis distance metric is 
learned with the constraint on k-NN classification 
rule. Thus, via the learned distance metric, the 
pairwise distance of bad-separated points can be 
locally adjusted while relations of well-separated 

ones are kept separable (Fig. 1(c)). Moreover, in 
order to cope with the overfitting problem, an 
iterative optimization process is derived to obtain a 
more general subspace than overfitting one for k-NN 
classifier.  

2 GRAPH-BASED SUBSPACE 
LEARNING  

The essential task of subspace learning is to find a 
mapping function F: x → y that transforms each 
image x DR∈  into the desired low-dimensional 
representation y dR∈  (d<<D) such that y can 
represent x well in terms of various optimal criteria 
and each of which corresponds to a specific graph 
design (Yan et al., 2007). Suppose we have the face 
image set  X=[x1, x2,…, xN]. and each image xi has 
the corresponding subject (class label) { }cli ,...,2,1∈ , 
where N is number of training images and c is the 
number of subjects. 

2.1 Dimensionality Reduction using 
Graph Embedding  

Given the set X, which could be represented by an 
intrinsic graph { }WX,=G , where the vertices X 
corresponds to all facial data and each element Wij of 
similarity matrix NNR ×∈W  measures the pairwise 
similarity between vertex xi and xj. The diagonal 
matrix D  and the Laplacian matrix L of graph G are 
defined as  

∑ ∀=−= j ijii iWD,WDL  (1)
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Let { }CX,=cG  be a constraint graph with the same 
vertex set X as that of intrinsic graph G and 
constraint matrix C. Note that the similarity matrix 
W and the constraint matrix C are designed to 
capture certain geometric or statistical properties of 
the data set.  

The purpose of graph embedding is to find the 
low-dimensional representation, i.e. Let 
Y=[y1,y2,…,yN] for data set X such that the pairwise 
similarities measured by W can be preserved and the 
similarities measured by C can be suppressed. 
Therefore, the optimal Y can be obtained by 

)(minarg)(2min arg     

 min arg* ,
2
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In order to minimize the object function, for larger 
similarity between samples xi and xj, the distance 
between yi and yj should be smaller; while smaller 
similarity between xi and xj should lead to larger 
distances between yi and yj (Yan et al., 2007). The 
optimization of Eq. (2) can be solved by a 
generalized eigenvalue problem as LY=λCY.  

2.2 Linear Transformation  

Assume that the low-dimensional representation y 
can be obtained from a linear transformation vector 
a, i.e. yi=aTxi. Thus the Eq. (2) can be rewritten as 

)( minarg)( 2minarg*
aXCXa
aXLXaaXLXaa TT

TT

IaXCXa TT
trtr TT ==

=
 

(3) 

The transformation A=[a1,a2,…,ad] can be solved 
as aXCXaXLX TT λ=  by selecting the eigenvectors 
corresponding to d smallest eigenvalue. Different 
design on intrinsic and constraint graphs will lead to 
many popular linear dimensionality reduction 
algorithms (Cai et al., 2007; Etemad  et al., 1997; He 
et al., 2003; Yan et al., 2007). For example, the 
graphs of the locality sensitive discriminant analysis 
(LSDA) are defined by  
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where the subject of each element in Nw(xi) is as 
same as xi and Nb(xi) is as different as xi. The 
detailed graph design and objective function can 
refer to (Cai et al., 2007). 

3 CLASSIFIER-CONCERNING 
SUBSPACE LEARNING  

After finding a subspace, k-NN classifier is widely 
applied for classification in the desire low-
dimensional subspace. Inspired by this situation, in 
Section 3.1, our face recognition system attempts to 
find a subspace, i.e. classifier-concerning subspace, 
where not only the structure of data can be preserved 
but also the classification ability can be explicitly 
considered by introducing the Mahalanobis distance 
metric in the subspace. In addition, an iterative 
optimization for obtaining the subspace is derived in 
Section 3.2. 

3.1 Margin Enhancement in Subspace 

As known, the face images under different poses, 
lighting conditions and facial expressions are non-
linearly distributed in high-dimensional input space. 
Hence, at the first step of our proposed method (Fig. 
1), an projection matrix A=[a1,a2,…,ad], learned by 
the graph-based subspace learning method, such that 
most of the desired low-dimensional data 
{ } dn

ii Ry ∈=1 , i.e. Y=ATX, can be well-separated in 
that subspace. 

Although the discriminant structure has been 
discovered in the subspace A, there exists some bad-
separated data, i.e. the distance of yi and yj of the 
same subject (class) is larger than the distance yi and 
yj of different subjects (shown in Fig. 1(b)). 
Therefore, in the second step, a Mahalanobis 
distance metric is applied to enhance the margin 
between data in the subspace A by applying LMNN 
(Weinberger et al., 2009) which is according to the 
k-NN classification rule. Thus, via the learned 
distance metric, the distances for those bad-
separated data can be locally adjusted and 
meanwhile the distance for well-separated data can 
be kept in the resulting subspace, named as 
classifier-concerning subspace (Fig. 1(c)). As 
shown, the k-nearest neighbours always belongs to 
the same class while data from different classes are 
separated by a large margin and thus the projected 
data in the classifier-concerning subspace would 
have better distance relation for the k-NN classifier 
for recognition. 

Let each data yi in the subspace A with the class 
label { }cli ,...,2,1∈ . The Mahalanobis distance metric 

ddR ×∈M  can be expressed in terms of the square 
matrix EEM T= , where ddR ×∈E  represents a 
linear transformation. The square distance between 
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two low-dimensional embeddings yi and yj is 
computed as: 

2
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According to the k-NN classification rule, the cost 
function can be defined as (Weinberger et al., 2009): 
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where }1,0{∈ijη  indicate whether  yj  is a target 

neighbour of yi, }1,0{∈ik  indicate whether yi and 
yk  share the same class label, and )0,max(][ zz =+  
denotes the standard hinge loss function. Note that 
the first term of cost function only penalizes large 
distances between each input yi and its target 
neighbour. While the second term penalizes small 
distances between each input and all other inputs 
with different class label. The scalar α  can be tuned 
the importance between two terms. By introducing a 
nonnegative slack variable ijkδ , Eq.(6) can be 
reformulate to a semi-definite programming (SDP) 
problem, as well as SVM (Weinberger et al., 2009). 

0                

0                

1)()( )()(      s.t.      

  )1()()(min   

M

MM

M

≥

−≥−−−−−

−+−−∑ ∑

ijk

ijkji
T

jiki
T

ki

ijkikij ijk ijji
T

jiij

yyyyyyyy

lyyyy

δ

δ

δηαη

  

(7)

Thus, for the input image xi, the desired low-
dimensional representation contained the 
classification information, y~ , can be obtained by 

XPXAEEYY TT === )(~  (8) 

Note that via the transformation matrix P, the 
pairwise distance between low-dimensional data y~  
in the obtained subspace, named as classifier-
concerning subspace, is constraint on the k-NN 
classification rule. Thus, not only the desired data 
structure in the high-dimensional space can be 
preserved but also the low-dimensional data are 
suitable for using k-NN classifier for further 
classification. 

3.2 Iterative Optimization  

In this subsection, a procedure is derived to optimize 
the classifier-concerning subspace P in Eq. (8) via 

iteratively optimizing the graph-embedding 
projection A and the distance metric M.  From Eq. 
(3), learning a subspace via specific graph Laplacian 
matrix, the better graph embedding projection can be 
obtained if classifier-concerning information could 
be acquired from distance metric M. And thus the 
desire low-dimensional subspace not only preserve 
the data structure but are also suitable for k-NN 
classifier, i.e. the ideal case in classifier-concerning 
subspace learning is P=A, and M is an identity 
metric. However, it is not intuitive to know the 
classification results in advance but via the 
Mahalanobis distance metric learned in Eq. (7), we 
can obtain the pairwise data relation, which embeds 
the classification information, in the low-
dimensional subspace. 

To obtain a virtual high-dimensional distance 
metric which can pass the low-dimensional pairwise 
distance relation into the original input space, we 
first inspect the pairwise distance in the desire low-
dimensional subspace  

)(ˆ)(     

)()(     

  )()(

ji
T

ji

ji
TT

ji

ji
T

jiij

xxxx

xxxx

yyyyd

−−=

−−=

−−=

M

AMA

M
 (9) 

From Eq. (9), we know Mahalanobis distance metric 
M can be re-projecting to the original space via the 
projection A. i.e. TAMAM =ˆ .As the metric can be 
represented as EEM T= , the metric M̂  can be as 

EEM ˆˆˆ 2/12/1 TTT
SVD

UUUU =ΛΛ=Λ=  (10) 

mm RR →:Ê  is a linear transformation. Thus, 
through Ê , each original input data xi can be 
represented as ii xEx ˆˆ =  such that the all input data 

XEX ˆˆ =  would implicitly have k-NN classification 
information. Therefore, by using the data with 
classification information, i.e. X̂ , the new graph-
embedding projection A=[a1,a2,…,ad] can be 
obtained based on the data structure as: 

 )ˆˆ( minarg*
2

∑ −= ij ijji
T

a
wxxaa  (11) 

By introducing the Laplacian matrix L and 
constraint matrix C according to the original data 
structure, Eq. (11) can be derived as 
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The optimal projection A in Eq. (12) can be solved 
by the generalized eigenvalue problem, and the 
newly low-dimensional embedding are 

XAY ~'~ T= .Though the iterative process, the new low-
dimensional distance metric M and projection A are 
obtained alternatively by using the information from 
the other until IM ≈ , e.g. all the classification 
information can be embedded to the project A, i.e. 
P=A. The proposed iteratively updating procedure is 
summarized in Fig. 2.  

4 EXPERIMENTAL RESULTS 

In this section, we investigate the performance of the 
proposed subspace learning method for face 
recognition under different lightings, poses, and 
expressions. Subspace learning methods: supervised-
LPP (Zheng et al., 2007) (designated as SLPP) and 
LSDA (Cai et al., 2007) are compared with our 
proposed model, e.g. supervised-LPP cascaded by 
LMNN model (designated as SLPP+LMNN) and 
LSDA cascaded by LMNN model (designated as 
LSDA+LMNN), respectively. In addition, Eigenface 
(PCA) (Murase et al., 1995) and RLDA (Ye et al., 
2006) which give impressive results (Cai et al. 2007) 
are compared as well. Note that k-nearest 
neighbours (k=3) are applied in the following 
experiments. We use the source code kindly proved 
the authors of (Cai et al., 2007; Weinberger et al., 
2009). 

4.1 Database and Image Preprocess 

Both Extended Yale-B1 and CMU PIE2 database are 
considered as a tough task for face recognition 
problem because they are in a complex 
environmental setting. Hence, we use both databases 
to evaluate our proposed method. The Extended 
Yale-B face database contains 16128 images of 38 
human subjects under 9 poses and 64 illumination 
conditions. We choose the frontal pose and use all 
the images under different illumination, thus we get 
64 images for each person. The CMU PIE face data 
base contains 68 human subjects with 41,368 face 
images. The face images were acquired across 
different poses, illumination conditions, and 
expressions. In our experiment, five near  frontal po- 

Input: All training images m
N R,...,xxx ∈= }  ,{ 21X  
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12. End 

13. 
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Figure 2: Procedure of iteratively optimizing the subspace 
P. 

ses (C05, C07, C09, C27, C29) and all the images 
under different illuminations and expressions are 
used, thus we get 170 images for each individual. 

For both databases, all these face images are 
manually aligned and cropped to 32x32 pixels, and 
the pixel values are then normalized to the range [0, 
1] (divided by 256). Each database is then 
partitioned into the gallery and probe set, denoted as 

qp PG /  ,where p images per person are randomly 
selected for training and the remaining q images are 
used for test. Note that in order to reduce the noise, 
the data are processed by PCA and 98% energy is 
saved. The dimensionality of feature subspace is set 
to c-1 for all subspace learning methods, where c is 
the number of individuals.  

4.2 Comparison of Subspace Learning 
Methods 

The recognition results conducted on PIE and 
Extend Yale-B database are listed in Table 1 and 2, 
respectively. For each qp PG / , we have 35 random 
splits but exclude possible over-fitting splits, then 
average the remaining splits, report the mean 
recognition rate as well as the standard deviation in 
the table. Through Table 1 and 2, it can be seen that 
our proposed method can further improve the results 
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Table 1: Recognition accuracies of different algorithms on 
Extended Yale-B database. 

 G30/P34 G40/P24 

PCA (98% energy) 38.63±1.31 33.78±1.03 

RLDA 8.60±0.89 6.68±0.84 

SLPP 8.60±0.89 6.68±0.84 

SLPP+LMNN 8.13±0.64 6.63±0.71 

LSDA 8.63±0.85 6.92±0.74 

LSDA+LMNN 8.03±0.87 6.62±0.64 

 
than RLDA, SLPP and LSDA, respectively, 
especially for the PIE database. This indicates that 
embedding the classification information to the 
subspace via a trained Mahalanobis distance metric 
can discover a more discriminative structure of the 
face manifold and hence improve the recognition 
rate.  

In order to investigate the stability of the 
proposed method, we compare the results of 
projecting original data X into various d-
dimensionality feature subspaces via LSDA and 
LSDA+LMNN subspaces. Fig. 3 shows the results 
on Yale-B and PIE database, respectively. As Fig 3 
shown, metric learning needs enough desired low-
dimension to learn the Mahalanobis distance metric 
for further improvement recognition result. Ideally 
desired low-dimension set c-1 gives convenience 
and efficiency from the result.  

4.3 Recognition Results of 
Classifier-Concerning Subspace 
with Iterative Optimization 

Table 2: Recognition accuracies of different algorithms on 
PIE database. 

 G30/P34 G40/P24 

PCA (98% energy) 43.32±0.62 36.02±0.73 
RLDA 8.78±0.34 6.45±0.32 
SLPP 8.78±0.34 6.45±0.32 
SLPP+LMNN 6.60±0.21 4.94±0.20 
LSDA 8.87±0.36 6.52±0.32 
LSDA+LMNN 6.55±0.25 4.91±0.20 

As mentioned in 4.2, some splits cause overfitting 
result. The main reason is that the model fit the 
training data too much to lose the generality of the 
model. From Table 3, it can be seen that the 
overfitting problem can be overcome by iterative 
way. Interestingly, the number of PIE training data 
is enough to cause nearly no over-fitting result. 

5 CONCLUSIONS 

Table 3: Recognition accuracies of the proposed 
iteratively updating framework on extend Yale-B 
database. 

 G30/P34 
(train error / 

testerror) 

G40/P24 
(train error / 

testerror) 
LSDA 6.04±0.49/ 

8.60±1.0 
4.75±0.42/ 
6.60±0.80 

LSDA+LMNN 2.91±0.42/ 
8.79+0.96 

2.54±0.39/ 
6.70±0.95 

LSDA+LMNN+Iter. 5.41±0.6/ 
8.03+1.06 

4.60±0.36/ 
6.18±0.82 
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Figure 3: Recognition results on various d-dimensionality 
feature subspaces obtained via LSDA and the proposed 
method which embed the classification information 
additionally. 

In this paper, we have shown how to learn a 
classifier-concerning subspace for face recognition 
and that can provide the promising recognition 
results under various lighting, pose and expression 
condition. The classifier-concerning subspace 
preserves certain data characteristic by specifying a 
graph and the low-dimensional projected data are 
suitable for the usage of k-NN classifier for 
recognition task. Because the proposed method 
consists of two learning process, i.e. the initial 
subspace and the distance metric learning, the model 
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would suffer from the overfitting to data if the 
number of training data is insufficient or ineffective. 
Hence, we propose an iterative solution via a virtual 
Mahalanobis distance in original high-dimensional 
input space that can pass low-dimensional pairwise 
distance relation. Based on this virtual Mahalanobis 
distance the pairwise distance relation of data in 
input space can be adjusted and then the classifier-
concerning subspace can be updated. Ongoing work 
is to circumvent overfitting via adding some 
mechanics for choosing effective training data or 
applying regularization information. 
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