DNS-BASED LOAD BALANCING FOR WEB SERVICES

Alan Nakai, Edmundo Madeira and Luiz Eduardo Buzato

Institute of Computing, Unicamp - University of Campinas, Campinas, SP, Brazil

Keywords: Load balancing, Web services.

Abstract:

A key issue for good performance of geographically replicated web services is the efficiency of the load

balancing mechanism used to distribute client requests among the replicas. This work revisits the research on
DNS-based load balancing mechanisms considering a SOA (Service-Oriented Architecture) scenario. In this
kind of load balancing solution the Authoritative DNS (ADNS) of the distributed web service performs the
role of the client request scheduler, redirecting the clients to one of the server replicas, according to some load
distribution policy. This paper proposes a new policy that combines client load information and server load
information in order to reduce the negative effects of the DNS caching on the load balancing. We also present
the results obtained through an experimental tesbed built on basis of the TPC-W benchmark.

1 INTRODUCTION

With the increasing adoption of SOA (Service-
Oriented Architecture), a new scenario arises, where
highly accessed web applications are deployed as web
services and clients are not web browsers accessing a
web site, but other enterprises using the services of
other providers.

This new kind of scenario may require higher lev-
els of web service dependability because of the QoS
contracted by the service consumers. Thus, providers
replicate their applications in clusters geographically
distributed linked via the Internet for the sake of fault-
tolerance and performance. A key issue for good per-
formance in these environments is the efficiency of
the load balancing mechanism used to distribute client
requests among the replicated services.

This work revisits the research on DNS-based load
balancing mechanisms for gegraphically replicated
web services. In this kind of load balancing solu-
tion the Authoritative DNS (ADNS) of the distributed
Web service performs the role of the client request
scheduler, redirecting the clients to one of the server
replicas, according to some load distribution policy.
Differently from previous works, that considered the
simple browser-server scenario, in our work we con-
sider a SOA scenario.

It is known that large Internet corporations — e.g.
Google (Barroso et al., 2003) and Akamai (Pan et al.,

Nakai A., Madeira E. and Eduardo Buzato L.
DNS-BASED LOAD BALANCING FOR WEB SERVICES.
DOI: 10.5220/0002805000950100

2003; Su et al., 2006) — use DNS-based load balanc-
ing mechanisms. These mechanisms benefit from the
existing DNS infrastructure, providing transparency
for the Web clients. However, this kind of strategy
has a main limitation: the low control of the ADNS
over the load balancing caused by the DNS caching
system, that prevents name resolution queries to reach
the ADNS.

The main contribution of this paper is the pro-
posal of a new DNS-based load balancing mecha-
nism that uses client load information in order to bet-
ter distribute the load among the replicated servers
— the Current Relative Minimum Load (CRML). Be-
sides, the mechanism reduces the negative effects of
the DNS caching over the load balancing through the
cooperation of the ADNS and the servers.

We also present the evaluation of our load balanc-
ing policy over an experimental testbed implemented
on basis of the TPC-W (TPC, 2002), a well accepted
E-Commerce benchmark. The experiments show that
the CRML policy behaved as good as other policies
in the scenario in which the ADNS had full control of
the name resolution queries and behaved better than
the others in a scenario were the ADNS had partial
control.

The remainder of this text is organized as follows.
Section 2 provides an overview of the DNS system
and the DNS-based load balancing mechanisms. Sec-
tion 3 presents related works. In Section 4 we de-

95

In Proceedings of the 6th International Conference on Web Information Systems and Technology (WEBIST 2010), page

ISBN: 978-989-674-025-2

Copyright (© 2010 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved



WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

scribe our new load balancing mechanism. Section 5
presents the testbed used for the evaluation of our pol-
icy and Section 6 shows the experimental results. Sec-
tion 7 concludes the paper with our final comments
and future work.

2 BACKGROUND

In the DNS-based load balancing mechanisms, the au-
thoritative nameserver of the distributed Web server
performs the role of the client request scheduler.
When it receives a request for URL resolution, it
replies the IP address of one of the server nodes, ac-
cording to some load distribution policy.

The main advantage of this kind of load balanc-
ing mechanism is that it benefits from the existing
DNS infrastructure. This makes these mechanisms
immediately deployable in today’s Internet (Pan et al.,
2003).

Unfortunately, a limitation of DNS-based load
balancing mechanisms is the weak control of the
ADNS over the load balancing, caused by the DNS
caching, that prevents a portion of DNS queries to
reach the ADNS.

The simplest DNS-based load balancing mecha-
nism is the Round Robin (RR) policy. In this pol-
icy, when a request for name resolution arrives at
the ADNS, it responds with the address of the next
replica of its list, in a rotative way. More sophisti-
cated approaches apply information from server node
utilization and/or client domain information to select
a server replica.

3 RELATED WORK

The use of information about server node utilization
in DNS-based load balancing mechanisms is exem-
plified in (Colajanni et al., 1998; Yokota et al., 2004;
Moon and Kim, 2005). In these works, an agent mon-
itors the states of the servers and reports this infor-
mation to the ADNS. When a name resolution query
arrives, the ADNS uses the utilization information of
the server nodes to assign one of the replicas to the
client. Many kinds of information can be used in the
ADNS decision, such as request queue length, CPU,
network, or memory usage.

There are two types of client domain information
that can be used in the load balancing: client proxim-
ity and client domain load. In the first case, the ADNS
tries to assign the nearest server to the client (Barroso
et al., 2003; Pan et al., 2003; Su et al., 2006). A main
concern in this kind of load balancing mechanism is

96

to estimate the proximity between clients and servers.
Since the ADNS does not have information about the
client host, a solution for this problem is to assume
that clients are located near to their local nameservers
and estimate the distance between servers and local
nameservers.

The capacity of estimating the load generated by
client domains may be very useful for load balanc-
ing mechanisms. This information allows the ADNS
to treat differently domains that generate high request
rates (hot domains) from the others (cold domains).
The works (Colajanni et al., 1998), (Colajanni and Yu,
2002), and (Chatterjee et al., 2005) present promis-
ing results using information about client domain load
for: (i) avoiding the assignment of hot domains to
the same servers; (ii) estimating the real load of each
server; and/or (iii) applying different TTLs for name
resolutions addressed to hot and cold domains.

In this work, we present a new DNS-based
load balancing mechanism that combines information
from clients and servers to alleviate the effects of the
DNS caching on the load balancing.

4 THE CRML POLICY

This section presents our proposed load balancing
policy, the Current Relative Minimum Load (CRML).

4.1 Rationale

The idea for the algorithm was motivated by the anal-
ysis of the three load balancing policies described in
(Colajanni et al., 1998; Colajanni and Yu, 2002). Here
is a summary of them:

e Least Utilized Node (LUN): the ADNS assigns a
request to the less utilized node, based on the most
recent server load information;

o Two Tier Round Robin (RR2): the ADNS divides
client domains into two groups, hot and cold domains.
Hot domains are those that generate high number of
requests. The policy applies the round robin strategy
separately to each group, trying to avoid the assign-
ment of requests proceeding from hot domains to the
same server nodes;

o Minimum Residual Load (MRL): the ADNS
maintains a table containing all the assignments and
their times of occurrence. Based on this table and on
estimates of the request rate of each client domain, the
policy calculates the load of each web server replica
and assigns an incoming name resolution request to
the least loaded one;



A deficiency of LUN is that the information used
by the algorithm in decision making is often outdated.
This happen because the algorithm considers only the
last utilization information received from the servers,
however, the state of the servers may have changed
at the moment of a new assignment. In order to deal
with this deficiency it should be necessary to make de-
cisions based not only on the last utilization informa-
tion but also considering the assignments performed
after this information has arrived.

In our experiments, the RR2 policy presented a
significative improvement in comparison to RR. This
result shows us that to handle differently hot and cold
domains is a good strategy. A deficiency of RR2 is
that, even if a server is overloaded, the algorithm con-
tinues to assign new name resolution requests to that
server because of the round robin strategy.

The MRL works quite fine because of its ability of
estimating the total load of the servers based on pre-
vious name resolution assignments. Nevertheless, if
the control of the ADNS decreases, by the reason of
the caching of intermediary DNS servers, the MRL
assignment table becomes incomplete and leads the
ADNS to make wrong decisions. Moreover, if the
number of clients is very high, it could be very ex-
pensive to maintain the assignment table.

4.2 Policy Description

In the CRML policy, we follow the hypothesis that the
distribution of hot domains among the server replicas
dictates the success of the load balancing mechanism.
Thus, as well as RR2, the CRML policy divides the
clients into two groups, hot and cold domains. Cold
domains are distributed among the server replicas us-
ing the ordinary round robin strategy.

In order to better distribute the load generated by
hot domains, the ADNS maintains an assignment ta-
ble containing the assignments of servers to hot do-
mains and their time of occurrence. Note that the set
of assignments in this table is potentially incomplete,
because many clients might have received name res-
olutions from intermediary DNS servers. Hence, the
ADNS cooperates with the servers to compensate the
effect of the DNS caching. Each server tracks the cur-
rent set of hot domains from which it is receiving re-
quests and report this information to the ADNS. Be-
sides, servers also report estimates of the load (request
rates) that hot domains are generating. Combining the
information of the assignment table and the informa-
tion proceeding from the servers, the ADNS can esti-
mate the request rate each server is receiving from hot
domains.

Let S be the set of web servers; let /;(a) be the load

DNS-BASED LOAD BALANCING FOR WEB SERVICES

generated by the assignment a to the server i; let Ag;
be the set of assignments to the server i, known by
the ADNS, and whose the TTL has not expired; and
let Ay; be the assignments reported by the server i.
When the ADNS receives a name resolution request
from a hot client it computes:

CRML = min { Y li(a)}
i€ | acfAkiAm}
and assigns it to the the corresponding server.

The efficiency of the CRML depends on how the
set of assignments that the ADNS knows ({Ag; U
Apg;}) is close to the reality. The ADNS knowledge
is limited by the staleness of the information reported
by the servers. The last sets of assignments (Ag;) re-
ceived from the servers may lack assignmets that were
established after the information were sent and may
contain assigments that are not valid anymore.

In a certain limit, the use of the ADNS assign-
ment table reduces the staleness of the server-side in-
formation. Another way to reduce the effects of stale
server-side information is to exclude any assignment
of the client that is requesting a name-resolution from
the CRML calculation. Previous assignments related
to this client is obviously not valid anymore, since it
is requesting a new one.

Since the assignment table of the CRML does not
store the state of all clients, only the states of hot
clients, the cost for maintaining the table is smaller
than using MRL.

4.3 Software Architecture

This section presents the software architecture that
supports the proposed load balancing policy. The ar-
chitecture is illustrated in Figure 1.

ADNS

Scheduler
DNS query -
/ Domain Mapper
Local
DNS [ ons |

Hot Domain
DNS query i Information

Glont o[ wontar |

Server Replica

Figure 1: CRML Architecture.

In this architecture, the server replicas are com-
posed of two modules: (i) the web server module,
that processes the incoming HTTP requests, and (ii)
the monitor module, that collects information about
hot client domains and reports it to the ADNS.

97



WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

The ADNS is a DNS server extended with two
modules, the domain mapper and the scheduler. The
former is responsible for identifying if an incoming
request comes from a hot or a cold domain. The lat-
ter uses the information reported by the server repli-
cas and the information stored in the DNS assignment
table to decide the better replica to which redirect a
client.

S EXPERIMENTAL TESTBED

In order to evaluate our load balancing mecha-
nism, we implemented an experimental testbed, the
Lab4WS (Lab for Web Services). This section
presents this testbed. More details about the Lab4WS
Testbed can be found in (Nakai et al., 2009).

The testbed includes the implementation of a
SOAP Web service based on the TPC-W bench-
mark (TPC, 2002), a transactional benchmark for E-
Commerce web sites that is well accepted by the re-
search community. The service consists of a set of 20
operations that allow clients to search and buy prod-
ucts. A proxy placed in front of each service replica
collects client information and reports to the DNS the
list of hot clients that are accessing the replica and the
estimative of load generated by those clients.

The load generation of our testbed is performed
by a set of client emulators. Each load generator emu-
lates the load of an E-Commerce Web site that serves
an entire Web domain and generates requests to the
TPC-W Web Service. The generated load follows the
TPC-W specification, which specifies three kinds of
workloads that vary according to the percentage of
read and write operations. As in previous works —
e.g. (Colajanni and Yu, 2002) — the load generation
is divided between different clients according to the
Zipf’s distribution, where the probability of a client to
belong to the ith domain is proportional to 1/i*. The
testbed user can vary the skewness of the distribution
changing the exponent x of the function. This solution
was motivated by previous works that demonstrated
that if one ranks the popularity of client domains by
the frequency of their accesses to a Web site, the size
of each domain is a function with a big head and a
very long tail.

The testbed also contains a DNS emulator that ma-
terializes the ADNS of the web system. This emulator
allows the testbed user to deploy new load balancing
policies in a friendly way. The effect of the DNS
caching is implemented as a mechanism that con-
trols the percentage of name resolution requests that
reach the ADNS. The testbed user can define this per-
centage. The client emulators randomly decide what

98

name resolution requests are sent to the ADNS. When
a name resolution request is not sent to the ADNS,
the client emulator reuses the last name resolution it
received, emulating a caching effect.

6 CRML EVALUATION

In our experiments, we consider a scenario in which
a set of retailers form partnerships with a large E-
Commerce enterprise to outsource the application
logic of their e-store Web sites. Each e-store is vis-
ited by a great number of end customers, and ac-
cesses the E-Commerce enterprise services via Web
Services. The E-Commerce enterprise needs to dis-
tribute the load incoming from the e-stores among its
geographically distributed replicas of servers.

6.1 Methodology

For these experiments, our testbed was deployed on
the Emulab' network testbed. Emulab is a user-
configurable lab environment that allows users to
model and emulate network topologies on a cluster,
varying parameters such as latency and bandwidth.
We ran the experiments using 5 TPC-W Web Service
replicas and 16 machines running Emulated Clients
with a load equivalent to 300 requests/second (75 re-
quests/second for each secondary replica). All ma-
chines were Pentium Xeon 64, 3GHz, with 2GB of
memory. A latency of 100 ms was introduced into the
links between the machines, to emulate a wide area
network latency.

In order to evaluate the different load balancing
mechanisms, we adopted two main metrics: the max-
imum system queue length and the response time ob-
served by the clients. The maximum system queue
length is the largest number of requests waiting to be
answered on a service replica, observed in a given in-
stant, among all service replicas.

If the incoming load exceeds the service replica
capacity, the response rate becomes lower than the
request rate and the incoming requests tend to accu-
mulate at the server. Thus, the request queue grows.
Since the requests take longer to be served, the re-
sponse times observed by the client increase, and the
system throughput goes down.

6.2 Experimental Results

We have evaluated the CRML policy on two scenar-
ios. In the first, we compare five load balancing mech-
anisms (RR, LUN, MRL, RR2, and CRML) with

Uhttps://www.emulab.net/



Curnulative Freguency of the Maxirum Queue Length

T

RR —+—
LUN
RRZ —@

zooo |-
MEL

CRNL &
1500 [Uniform

1000

Queue Length (Number of Requests)
n
a
g

Curnulative Fraguency

(a) Cumulative frequency of the maximum system queue
length.

Responge Time (ms)

DNS-BASED LOAD BALANCING FOR WEB SERVICES

Response Time

60000 T
R
LN
50000 REZ

HRL
CRHL 4
Uniform

@

40000

30000

20000

10000

| g T i

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.3 1
Curnulative Freguency

(b) Cumulative frequency of response times.

Figure 2: Experimental results: 100% of ADNS control.

Curnulative Frequency of the Maximum Queue Length

T T T T
CRHL —+—
RR2
MRL —©

1500 |

z500

2000

1000 |

Queue Length {Number of Requests)

0.4 0.8 0.8 1

Cumulative Frequency

(a) Cumulative frequency of the maximum system queue
length.

Regponge Time (me)

Responge Time

60000

T
CRHL —+—
RR2

sooop |- MRL €
40000 |-
30000 |-

20000

10000 - P

0.5 0.6 0.7 0.8 0.3 1
Cumnulative Frequency

(b) Cumulative frequency of response times.

Figure 3: Experimental results: 30% of ADNS control.

a uniform distribution, which represents the “ideal”
load balancing, assuming that the ADNS has total
control over the name resolution requests. In the sec-
ond scenario, we compare MRL, RR2, and CRML,
which presented the better performances in the first
scenario, assuming that only 30% of the name resolu-
tion requests reach the ADNS.

In these experiments we used the DNS TTL=60s
and interval for server information dissemination of
10s. The threshold adopted to identify hot clients
was a load equal to 4 requests/second for MRL and
CRML, and a load equal to 10 requests/second for
RR2. Load was generated using Zipf distribution with
x=1.0.

Figure 2(a) shows the cumulative frequency of
the maximum system queue length for the first sce-
nario. The MRL and CRML mechanisms presented
good performances, showing maximum system queue
lengths close to the uniform distribution. This re-
sult was expected because in this scenario, where the
ADNS has full control over the name resolution re-

quests, these two policies are able to compute the
states of the servers with a high precision. The RR2
does not performed as good as CRML and MRL, but
its performance was better than RR, showing that the
use of client load information improved the round
robin strategy. The LUN policy presented the worst
performance, showing that the simple use of informa-
tion about server utilization is not effective for load
balancing.

The response times obtained in the experiments
of the first scenario reflected the results of the maxi-
mum system queue length measurement. Figure 2(b)
shows the cumulative frequency of response times for
the subjectSearch operation, which performs a search
for items by the subject in the book store. While, us-
ing CRML and MRL, 95% of the operation requests
were answered in less then 3s, using RR2, about 25%
of the requests were answered in more than 3s. Us-
ing RR, about 35% of the operation requests were an-
swered in at least 3s, and, using LUN, more than 80%
of the requests were answered in at least 3s.

99



WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

The results obtained in the experiments of the sec-
ond scenario are shown in Figure 3. As expected, due
to the low control of the ADNS, the RR2 and MRL
policies presented worse results than in the first sce-
nario. In more than 50% of the time, these policies
showed maximum system lengths larger than 1500
(Figure 3(a)). Differently from the others, CRML
worked quite fine in the second scenario, presenting
maximum system lengths smaller than 250 in 95% of
the time.

The performance of the three policies is also
perceived in the response time graph (Figure 3(b)).
While the CRML presented response times lower than
3s in more than 95% of the requests, RR2 and MRL
presented response times higher than 3s in 35% of the
requests.

The experimental results show that, in the scenario
where the ADNS had full control of the name reso-
lution queries, CRML performed as well as the best
policy (MRL) considered, presenting response times
close to the ideal distribution. Moreover, CRML pre-
sented a better performance than RR2 and MRL in the
scenario where the ADNS had partial control. This
result shows that the cooperation between the ADNS
and the servers compensated the effect of the DNS
caching on the calculation of the server load states,
allowing a good load balancing.

7 CONCLUSIONS

In this paper, we have presented a new DNS-based
load balancing policy, the CRML. This policy com-
bines information from clients and servers to alleviate
the negative effect of the DNS caching over the load
balancing mechanism.

The experimental results showed that our load bal-
ancing policy worked as good as other DNS-based
load balancing policies in the scenario where the
ADNS had full control over name resolution requests.
Furthermore, CRML outperformed RR2 and MRL in
the scenario where the ADNS control was limited.

Future work includes: (i) the evaluation of the
sensitivity of our policy to different combinations of
DNS TTLs, time interval of server information prop-
agation, and the threshold for identifying hot do-
mains; and (ii) the evaluation of the combination of
CRML with server redirection mechanisms and dy-
namic TTL policies.

100

ACKNOWLEDGEMENTS

The authors would like to thank Fapesp (n. 07/56423-
6), CAPES, and CNPQ for the financial support, and
Schooner, Emulab, PlanetLab, and RNP (National
Education and Research Network) for the infrastruc-
ture support.

REFERENCES

Barroso, L. A., Dean, J., and Holzle, U. (2003). Web search
for a planet: The google cluster architecture. IEEE
Micro, 23(2):22-28.

Chatterjee, D., Tari, Z., and Zomaya, A. Y. (2005). A task-
based adaptive ttl approach for web server load bal-
ancing. In Proceedings. 10th IEEE Symposium on
Computers and Communications, 2005. ISCC 2005.,
pages 877-884. IEEE Computer Society.

Colajanni, M. and Yu, P. S. (2002). A performance study of
robust load sharing strategies for distributed hetero-
geneous web server systems. IEEE Transactions on
Knowledge and Data Engineering, 14(2):398-414.

Colajanni, M., Yu, P. S., and Dias, D. (1998). Analysis of
task assignment policies in scalable distributed web-
server systems. IEEE Transactions on Parallel and
Distributed Systems, 9(6):585-600.

Moon, J.-B. and Kim, M. H. (2005). Dynamic load bal-
ancing method based on dns for distributed web sys-
tems. In E-Commerce and Web Technologies. EC-
Web, volume 3590 of Lecture Notes in Computer Sci-
ence, pages 238-247. Springer.

Nakai, A. M., Madeira, E., and Buzato, L. E. (2009).
Lab4ws: A testbed for web services. In Proceedings
of the 2nd International Conference on Computer Sci-
ence and its Applications (CSA’09)/2nd IEEE Inter-
national Workshop on Internet and Distributed Com-
puting Systems (IDCS’09), pages 647-652.

Pan, J., Hou, Y. T., and Li, B. (2003). An overview of
dns-based server selections in content distribution net-
works. Computer Networks, 43(6):695-711.

Su, A.-]., Choffnes, D. R., Kuzmanovic, A., and Bus-
tamante, F. E. (2006). Drafting behind akamai
(travelocity-based detouring). SIGCOMM Comput.
Commun. Rev., 36(4):435-446.

TPC (2002). TPC Benchmark W - Specification 1.8.
http://www.tpc.org/tpcw/spec/tpcw_V1.8.pdf.

Yokota, H., Kimura, S., and Ebihara, Y. (2004). A proposal
of dns-based adaptive load balancing method for mir-
ror server systems and its implementation. In AINA
'04: Proceedings of the 18th International Confer-
ence on Advanced Information Networking and Ap-
plications, page 208, Washington, DC, USA. IEEE
Computer Society.



