
AN EXPERIMENTAL PROTOTYPE FOR AUTOMATICALLY
TESTING STUDENT PROGRAMS USING TOKEN PATTERNS*

Chung Man Tang, Yuen Tak Yu and Chung Keung Poon
Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong

Keywords: Automated Assessment Tool, Pattern-oriented Software Testing, Program Assessment Requirements,
Program Validation, Testing of Student Programs, Token Pattern.

Abstract: Automated systems and tools for assessing student programs are now commonly used for enhancing the
teaching and learning of computer programming. However, many such systems employ rudimentary
techniques in comparing program outputs when testing student programs for determining their correctness.
These comparison techniques are typically inflexible and disallow even slight deviations of program output
which a human assessor would normally tolerate. This may give rise to student frustrations and other
undesirable pedagogical issues that can undermine the benefits of using these assessment tools. This paper
presents an experimental prototype we have developed that adopts a token-pattern-based approach to
accommodate more tolerant output comparisons in testing student programs, followed by a preliminary
validation of the prototype by showing how it can be configured to handle the assessment of variants of
program outputs.

1 INTRODUCTION

The use of automated software systems and tools for
assessing student programs is now popular in many
universities (Ala-Mutka, 2005). These systems have
not only relieved instructors’ workload in
administering and assessing student program
submissions (Helmick, 2007; Joy et al., 2005), but
also provided fast and useful feedback on students’
work (Lam et al., 2008; Morris, 2003), thereby
facilitating the use of enhanced pedagogy in Web-
based or blended learning environments (Choy et al.,
2007; Higgins et al., 2003), as well as increasing
students’ motivation to learn and improve through
extensive practice (Law et al., 2010; Yu et al.,
2006).

Ideally, all aspects of student programs should be
evaluated to contribute to a holistic and impartial
assessment, including but not limited to functional
correctness (or simply correctness), run-time
efficiency, memory usage, coding style and code
structure (Ala-Mutka, 2005; Jackson and Usher,

1997). However, comprehensive assessment is very
time-consuming and cannot be done very frequently
for large classes. Moreover, each course may differ
in its emphasis and value some aspects more highly
than others. In most of the introductory
programming classes, for instance, code correctness
and structure is commonly considered more
important than run-time efficiency.

One of the few aspects that are assessed
automatically in most of the existing systems is the
(functional) correctness of student programs,
typically by means of testing (Jackson, 1991; Morris,
2003; Yu et al., 2006). A program is usually tested
by executing it against a prescribed set of test cases
and comparing its output (the actual output) in every
test run with the expected output (that is, the output
produced by a correct program with the input of the
test run). Such a method of determining program
correctness is known as the (program) output
comparison method (Tang et al., 2009a).

This output comparison method has been used, in
one form or another, in most of the existing systems,
such as ASSYST (Jackson and Usher, 1997), BOSS
(Joy et al., 2005), Ceilidh/CourseMarker (Higgins et
al., 2003), HoGG (Morris, 2003) and PASS (Choy et
al., 2008; Yu et al., 2006). In principle, the method
can also be applied to non-text-based programs by

* The work described in this paper is supported in part by
grants (project numbers 123206 and 123207) from the
Research Grants Council of the Hong Kong Special
Administrative Region, China.

144
Man Tang C., Tak Yu Y. and Keung Poon C. (2010).
AN EXPERIMENTAL PROTOTYPE FOR AUTOMATICALLY TESTING STUDENT PROGRAMS USING TOKEN PATTERNS.
In Proceedings of the 2nd International Conference on Computer Supported Education, pages 144-149
DOI: 10.5220/0002800301440149
Copyright c© SciTePress

adding wrapper modules to convert their inputs and
outputs into text strings (Morris, 2003). This paper,
however, focuses mainly on program assessment in
elementary programming courses, which in most
cases require students to write text-based programs.
Readers may refer to (Ala-Mutka, 2005) for a
comprehensive survey of methods that apply to
various types of non-text-based programs.

In practice, however, many existing systems
employ rudimentary techniques in comparing the
program outputs. These comparison techniques are
typically inflexible and disallow even slight
deviations of program output which a human
assessor would normally tolerate (Jackson, 1991).
This may give rise to student complaints,
frustrations and other undesirable pedagogical issues
that can undermine the benefits of such automatic
assessment systems (Ala-Mutka, 2005; Higgins et
al., 2003; Tang et al., 2009b; Yu et al., 2006).

In the rest of this paper, we shall first analyze the
characteristics of common minor deviations of
student program outputs (Section 2). We then
review an improved output comparison approach
based on token patterns (Section 3), present our
newly developed experimental prototype which
adopts the token pattern based approach to
accommodate more tolerant output variants in
testing student programs, followed by a preliminary
validation using the prototype (Section 4). Finally,
we conclude this paper in Section 5.

2 PROGRAM OUTPUT
VARIANTS

The basic approach of implementing the output
comparison method is to match the actual and
expected outputs character by character (Ala-Mutka,
2005; Helmick, 2007; Jackson, 1991). In essence,
this rudimentary character matching technique
accepts the actual output as correct if and only if it is
exactly the same text string as the expected output.

However, unless a programming exercise is
prescribed with highly precise requirements and
demands complete conformance, most instructors
would agree that, for a given test input, there exist
many variants of actual output that deviate “slightly”
or “insignificantly” from the expected output (such
as an extra blank space or fullstop at the end) but
still can be accepted as correct when judged by a
“reasonable” human assessor (Jackson, 1991). (For
simplicity, in this paper, we shall refer to these
outputs as admissible variants). Therefore, in
practice, almost all current automated programming

assessment systems supplement the basic character
matching approach with some simple filtering
strategies that disregard, for example, blanks, dots,
hyphens or control characters (Ala-Mutka, 2005; Joy
et al., 2005; Choy et al., 2008). These strategies are
nevertheless ad hoc and still unsatisfactory.

To deal with this problem, we adopt a more
fundamental and systematic approach. We first
extracted a sample of programming exercise
solutions previously submitted by our students
across different courses, topics and intended learning
outcomes. We then manually examined, in detail,
the output variants that are rejected by our automatic
assessment system as “wrong outputs” (Lam et al.,
2008). Among these output variants, we were able
distinguish between admissible variants (which we
considered acceptable as correct) from other variants
(which we considered as truly incorrect). Our
analysis of the admissible variants showed that they
are typically characterized as follows: (1) typos,
such as misspelling of words, (2) equivalent words,
that is, different words that basically have the same
meaning as the expected output words, (3) numeric
precision, that is, floating point numbers outputed in
a higher or lower precision than the expected values,
(4) presentation, such as spacing and relative
positioning of output items, (5) ordering, which is
regarded as immaterial for some programming
problems, (6) punctuation mark, which is also
considered immaterial for most programming
problems. Note that this list is not exhaustive as it
results from the analysis of our sample exercises
only. It, however, serves as an useful guide for the
design of an experimental prototype to improve the
capability of automated systems in assessing
admissible output variants.

Moreover, our analysis of the output variants
makes it clear that most of the deviations pertain to
information of elements such as words, numbers,
ordering, etc., that cannot be easily captured by
inspecting individual characters. Thus, instead of
using a character-based matching approach, we
experimented with an approach based on the notion
of token pattern, recently introduced by Tang et al.
(2009a). In the next section, we shall summarise the
key notions involved and briefly describe the new
approach of output comparison before presenting
our experimental prototype in Section 4.

AN EXPERIMENTAL PROTOTYPE FOR AUTOMATICALLY TESTING STUDENT PROGRAMS USING TOKEN
PATTERNS

145

 Data type Space

Don’t care

Char

Ignore

The

Char

Correction:
Dictionary

average

Space

Don’t care

Char

Ignore

of

Space

Don’t care

Integer

N/A

3

Space

Don’t care

Char

Correction:
Dictionary

numbers

Space

Don’t care

Double

Dec. place
at least 2

74.67

Char

Ignore

is

Space

Don’t care

Value

Matching rule

Data type Space

Don’t care

Space

Don’t care

Char

Ignore

The

Char

Ignore

The

Char

Correction:
Dictionary

average

Char

Correction:
Dictionary

average

Space

Don’t care

Space

Don’t care

Char

Ignore

of

Char

Ignore

of

Space

Don’t care

Space

Don’t care

Integer

N/A

3

Integer

N/A

3

Space

Don’t care

Space

Don’t care

Char

Correction:
Dictionary

numbers

Char

Correction:
Dictionary

numbers

Space

Don’t care

Space

Don’t care

Double

Dec. place
at least 2

74.67

Double

Dec. place
at least 2

74.67

Char

Ignore

is

Char

Ignore

is

Space

Don’t care

Space

Don’t care

Value

Matching rule

Figure 1: A token pattern example.

3 A TOKEN PATTERN BASED
APPROACH

3.1 Token and Token Pattern

An output string can be decomposed into groups of
successive characters, called tokens, representing
meaningful pieces of information. To each token
extracted from the expected output, one can attach
precise criteria for comparison with tokens derived
from an actual output. A token pattern thus refers to
a string of tokens, each having a data type, value,
and some associated (tagged) matching rule. For
example, when an expected output token value is a
floating point number, then the associated rule may
state the desired minimum number of decimal places
so that matching the token’s value succeeds only if
the actual output token has the same value, correct to
the stated number of decimal places.

Figure 1 depicts an example token pattern
converted from the output text: “The average
of 3 numbers is 74.67”. Here the blank
“Space” separating the words and numbers are
associated with a “Don’t care” matching rule,
meaning that the number of blank spaces is
irrelevant as long as at least one is present as a
separator. The stop words “The”, “of” and “is”
are specified as insignificant to be “Ignored” during
matching. On the other hand, the “Char” strings
“average” and “numbers” are significant, but
variants are admissible if “Correction” can be made
to match them using a built-in “Dictionary”, thus
allowing for minor deviations of equivalent words.
For the “Integer” value “3”, exact value matching is
required and other rules are not applicable (“N/A”).
Finally, the value “74.67” is of type “Double”,
and matching succeeds only if the other value agrees
with it correct to “Decimal place at least 2”.

3.2 Output Comparison based on
Token Patterns

The token pattern approach works as follows. First,
as usual, the instructor has to provide the expected
output for each input. Next, the automated system
splits the expected output string into a sequence of
tokens. The system then automatically proposes
some default matching rules for the tokens according
to the type of token values and some configurable
default options. The instructor can then fine tune the
matching rules of individual tokens to determine
exactly how the output tokens are to be matched.

Meanwhile, the automated assessment system
also splits the actual output string into a sequence of
tokens for matching with the expected output token
pattern. A successful match according to the rules
specified in the token pattern signifies that the actual
output is acceptable as correct.

4 COMPARSION USING OUR
EXPERIMENTAL PROTOTYPE

The token pattern approach was first conceptualised
and proposed by Tang et al. (2009a). In this work,
we have built an experimental prototype to validate
the approach, evaluate its feasibility and explore the
different possible options and matching rules.

Figure 2 shows a browser-based user interface of
our experimental prototype for editing the default
comparison options. In the figure, the specified
options are as follows. (1) Character cases are
insensitive (immaterial). (2) Stop words (in the
given editable list) are ignored. (3) Other words are
corrected by using both the Soundex algorithm (a
phonetic algorithm which can correct minor
deviations of words such as missing a vowel) and

CSEDU 2010 - 2nd International Conference on Computer Supported Education

146

Figure 2: Interface of the prototype for editing the default comparison options.

searching for equivalent words using a built-in
dictionary. (4) All whitespaces (including spaces,
tabs, carriage returns/line feeds) are considered
“Don’t care”. (5) All punctuation marks in the
editable list are ignored, both at the trailing part of
every line and everywhere else.

Next, the instructor provides the expected output
(which may be automatically generated if a correct
program exists, such as the one written by the
instructor). The prototype automatically analyzes
the expected output to generate a token pattern based
on the output string and the specified default
comparison options.

In the example shown in Figure 2, the expected
output string is “The average of 3 numbers
is 74.67”. The string was decomposed by our
prototype into 13 tokens, as tabulated in Figure 3.
The table consists of 7 columns, namely, the token’s
ID, start and end positions in the output string, value,
type, matching rule (automatically proposed by the
prototype in accordance with the specified default
comparison options) and its parameters, if any.
Each row of the table corresponds to a token. The
whole token pattern, which should now be self-
explanatory, is the same as the one shown in
Figure 1. Through the interface shown in Figure 3,
the instructor may, if desired, fine tune the matching
rule of any tokens at will. When editing of this table
is completed, the prototype will generate an XML
representation of the token patterns. Thus, once
made, the instructor’s choices are recorded in the
XML representation to be subsequently interpreted

by the prototype to perform the output comparisons
accordingly.

The prototype thus allows the instructor to
specify coarse-grained criteria (comparison options
that apply to all tokens) as well as fine-grained
criteria (matching rules), if desired, for individual
tokens extracted from each test case. It also
provides an easy-to-use and intuitively meaningful
user interface to facilitate the specification of these
criteria. Alternatively, the instructor can simply
accept the default settings if they are considered
appropriate for the programming exercise.

We now demonstrate the results of comparing
two actual outputs with the token pattern specified in
Figure 3. Figure 4 shows that (1) the word “mean”
is accepted to be equivalent (or “considered
matched”) to “average” according to the built-in
dictionary, (2) the singular word “number” is
accepted as equivalent (or “considered matched”) to
its plural form while the extra colon “:” at the end
of the word is ignored, and (3) the number
“74.6667” agrees with “74.67”, correct to 2
decimal places. Thus the actual output is acceptable
according to the matching rules.

Figure 5 shows that, according to the Soundex
algorithm, the misspelt word “aevrage” is
acceptable, but not “mumber” (having a different
sound). The latter is shown in red to indicate a
mismatch. Thus, this output is rejected as incorrect.

AN EXPERIMENTAL PROTOTYPE FOR AUTOMATICALLY TESTING STUDENT PROGRAMS USING TOKEN
PATTERNS

147

Figure 3: Interface of the prototype for editing the token matching rules.

Figure 4: An actual output of successful match.

Figure 5: An actual output rejected as incorrect.

CSEDU 2010 - 2nd International Conference on Computer Supported Education

148

5 CONCLUSIONS

Our experience, in common with the literature, is
that students often feel frustrated with the strict
output format requirements due to the automatic
tester (Joy et al., 2005; Jackson, 1991; Morris, 2003;
Yu et al., 2006). The inflexibility of existing output
comparison approaches based on character matching
gives rise to undesirable pedagogical issues that can
undermine the benefits of using an automated
assessment system (Tang et al., 2009b). To date,
little progress has been made to address these (albeit
well known) problems since the use of lex/yacc tools
by Jackson (1991) and regular expressions (regex) in
BOSS (Joy et al., 2005) and CourseMarker (Higgins
et al., 2003). Nevertheless, regex and lex/yacc tools
demand high proficiency of the user and are not
reported to have been widely used in other systems.

In this work, we have characterized several
common types of admissible variants and validated a
newly proposed comparison approach based on
token patterns by using an experimental prototype.
We recognize some limitations of our present
prototype, such as the need for more matching rule
options. Scope of this paper forbids detailed
discussions on these. Fundamentally, however, the
token pattern approach supports easy specification
of matching criteria of varying granularity. It is
intuitively easy to understand by various users. This
is essential for determining adoption in practice and
dealing with complaints. In time, we plan to identify
areas of improvement of the new approach, perform
experiments to evaluate its effectiveness, and assess
the extent of additional effort required in practice.

REFERENCES

Ala-Mutka, K., 2005. A survey of automated assessment
approaches for programming assignments. Computer
Science Education, 15(2), 83–102.

Choy, M., Lam, S., Poon, C. K., Wang, F. L., Yu, Y. T.,
Yuen, L., 2008. Design and implementation of an
automated system for assessment of computer
programming assignments. In Advances in Web-based
Learning (LNCS 4823), 584–596. Springer.

Choy, M., Lam, S., Poon, C. K., Wang, F. L., Yu, Y. T.,
Yuen, L., 2007. Towards blended learning of
computer programming supported by an automated
system. In Workshop on Blended Learning 2007.
Pearson: Prentice Hall.

Helmick, M. T., 2007. Interface-based programming
assignments and automated grading of Java programs.
In 12th Conference on Innovation and Technology in
Computer Science Education (ITiCSE). ACM Press.

Higgins, C., Hergazy, T., Symeonidis, P., Tsinsifas, A.,
2003. The CourseMarker CBA system: Improvements
over Ceilidh. Education and Information
Technologies, 8(3), 287–304.

Jackson, D., 1991. Using software tools to automate the
assessment of student programs. Computers &
Education, 17(2), 133–143.

Jackson, D., Usher, M., 1997. Grading student programs
using ASSYST. In SIGCSE’97, Technical Symposium
on Computer Science Education. ACM Press.

Joy, M., Griffiths, N., Royatt, R., 2005. The BOSS online
submission and assessment system. ACM Journal on
Educational Resources in Computing, 5(3), Article 2.

Lam, M. S. W., Chan, E. Y. K., Lee, V. C. S., Yu, Y. T.,
2008. Designing an automatic debugging assistant for
improving the learning of computer programming. In
ICHL 2008, International Conference on Hybrid
Learning (LNCS 5169), 359–370. Springer.

Law, K. M. Y., Lee, V. C. S., Yu, Y. T., 2010. Learning
motivation in e-learning facilitated computer pro-
gramming courses. Computers & Education, in press.

Morris, D. S., 2003. Automatic grading of student’s
programming assignments: An interactive process and
suite of programs. In 33rd ASEE/IEEE Frontiers in
Education Conference. IEEE Computer Society Press.

Tang, C. M., Yu, Y. T., Poon, C. K., 2009a. An approach
towards automatic testing of student programs using
token patterns. In ICCE 2009, 17th International
Conference on Computers in Education.

Tang, C. M., Yu, Y. T., Poon, C. K., 2009b. Automated
systems for testing student programs: Practical issues
and requirements. In SPECIAL 2009, International
Workshop on Strategies for Practical Integration of
Emerging and Contemporary Technologies in
Assessment and Learning.

Yu, Y. T., Choy, M. Y., Poon, C. K., 2006. Experiences
with PASS: Developing and using a programming
assignment assessment system. In QSIC 2006, 6th
International Conference on Quality Software. IEEE
Computer Society Press.

AN EXPERIMENTAL PROTOTYPE FOR AUTOMATICALLY TESTING STUDENT PROGRAMS USING TOKEN
PATTERNS

149

